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Abstract 

The effect of variable viscosity and thermal conductivity of two-
dimensional boundary layer flow of a micropolar fluid driven by a porous 
stretching sheet is investigated. The micropolar model due to Eringen is 
used to describe the working fluid. The partial differential equations 
governing the motion, angular momentum and energy are reduced to 
ordinary differential equations using similar transformations and then 
solved numerically using Ranga-Kutta shooting technique. The effects of 
the different parameters on velocity distribution, microrotation distribution 
and temperature distribution have been studied numerically. The results 
are presented graphically for velocity distribution, temperature distribution 
and microrotation distributions for various values of non-dimensional 
parameters. It is found that the effects of the parameters representing 
variable property of viscosity and thermal conductivity are significant. 
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1. Introduction 

Micropolar fluids are those, which contain micro-constituents which can 
undergo rotation, the presence of which can affect the hydrodynamics of the flow so 
that it can be distinctly non-Newtonian. The theory of micropolar fluids is originally 
formulated by Eringen [4, 5]. In essence, the theory introduces new material 
parameters, an additional independent vector field, the microrotation and new 
constitutive equations, which must be solved simultaneously with the usual 
equations for Newtonian flow. The desire to model the non-Newtonian flow of fluid 
containing rotating micro-constituents provided initial motivation for the 
development of the theory, but subsequent studies have successfully applied the 
model to a wide range of applications including blood flow, lubricants, porous 
media, turbulent shear flows and flowing capillaries and micro channels by 
Lukaszewicz [12]. The two-dimensional boundary layer flow introduced by a 
stretching sheet in an ambient quiescent fluid was first studied by Crane [2] who 
obtained a very closed form of exponential solution. Hady [6] studied the solution of 
heat transfer to micropolar fluid from a non-isothermal stretching sheet with 
injection. Hassanien and Gorla [7] studied the heat transfer to micropolar fluid from 
a non-isothermal stretching sheet with suction and blowing. The steady isothermal 
flow of a micropolar fluid driven by a continuous porous surface is analysed by 
numerical methods. The two-dimensional boundary layer flow caused by a moving 
plate or a stretching sheet is of interest in manufacturing of sheeting material through 
an extrusion process. Most of the existing analytical studies for this problem are 
based on the constant physical properties. Pop et al. [13] studied the effect of 
variable viscosity on laminar boundary layer flow and heat transfer due to a 
continuous moving plate. Heruska et al. [8] studied the micropolar fluid flow past a 
porous stretching sheet. 

In this paper, an attempt has been made to investigate the effect of viscosity and 
thermal conductivity on flow of a micropolar fluid bounded by a stretching sheet. 
Mathematical formulation of the problem under consideration is presented and 
similarity transformations are applied to reduce the system of partial differential 
equations and their boundary conditions describing this problem, into a boundary 
value problem of ordinary differential equations. This system of ordinary differential 
equations is solved numerically by shooting method. The effects of different 
parameters are studied numerically. The variation of the velocity, microrotation and 
temperature distribution has been illustrated. Attia [1] studied the stagnation point 
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flow and heat transfer of a micropolar fluid in a porous medium. Wilson [16] studied 
the micropolar boundary layer flow near a stagnation point with the aid of integral 
method. Kafoussias and Williams [9] investigated the thermal-diffusion and 
diffusion-thermo effects on mixed free forced convection and mass transfer 
boundary layer flow with temperature dependent viscosity. Though the viscosity and 
thermal conductivity are assumed as constant properties but in actual these are 
temperature dependent (Schlichting [15] and Eckert [3]). Therefore, in this paper, we 
consider the effect of variable viscosity and variable thermal conductivity on steady 
incompressible laminar flow of a micropolar fluid bounded by a stretching sheet by 
Kelson et al. [10] for constants properties of viscosity and thermal conductivity. 

2. Governing Equations 

The equation of motion for incompressible viscous micropolar fluid is given by 
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where ρ is the mass density of the fluid, p is the pressure, µ is the viscosity, N  is the 

angular velocity, κ is the material constant and t denotes time. F  is the body force 
per unit volume due to flow through porous media given by 

 ,VF
∗λ

ν=  (2) 

where v is the kinematic viscosity of the fluid and ∗λ  is the coefficient of 
permeability of the porous media. 

The equation of angular momentum for incompressible viscous micropolar fluid 
is given by 
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where j is the micro-inertia per unit mass and γ is the material constant. The equation 
of heat transfer is given by 
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where pC  is specific heat at constant pressure, T is the temperature of the fluid, λ is 
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the coefficient of thermal conductivity of the fluid, φ is the viscous dissipation 
function and is given by 
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3. Formulation of the Problem 

We consider two-dimensional equations governing the isothermal, steady, 
laminar, incompressible micropolar fluid in a quiescent medium by Ramachandran et 
al. [14]. Let u and v be the velocity components in x and y directions, respectively. N 
is the microrotation component and T is the temperature. The basic boundary layer 
equations for a steady two-dimensional flow of micropolar fluid are as follows: 

Mass equation: 
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Momentum equation: 
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Angular momentum equation: 
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Energy equation: 
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In the above equations, µ and γ are, respectively, the viscosity and microrotation (or 
spin-gradient) viscosity, j is the micro-inertia density, ρ is the density of the fluid, κ 
is the microrotation coupling coefficient (or coefficient of gyro viscosity or vortex 
viscosity), p is the pressure, pC  is the specific heat at constant pressure and λ is the 

thermal conductivity. 

The appropriate physical boundary conditions are 

,,0,,;0 ∞===== TTNvvuuy ww  

.,0,0;0 ∞→→→→ TTNvy  (10) 
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The governing equations subject to the boundary conditions can be expressed in 
a simpler form by introducing the following transformations 
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The fluid viscosity is assumed to be inverse linear function of temperature (Lai and 
Kulacki [11]) as 
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where a and rT  are constants and their values depends on the reference state and the 

thermal property of the fluid. In general, 0>a  for liquids and 0<a  for gases. rT  

is transformed reference temperature related to viscosity parameter. α is constant 
based on thermal property and ∞µ  is the viscosity at .∞= TT  Similarly, consider 

the variation of thermal conductivity as 
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where b and kT  are constants and their values depend on the reference state and 

thermal property of the fluid, ξ is constant based on thermal property and ∞λ  is the 

viscosity at .∞= TT  

Using equations of velocity components of u and v equation (6) is automatically 
satisfied. Substituting the expressions (11)-(14) in equations (7)-(9), we have 
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By choosing 
ν

==ν= 1, 222 cba  and introducing the physical parameters 
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and the transformed boundary conditions are 
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4. Conclusion 

In this study, we have investigated the effect of variable viscosity and thermal 
conductivity to the boundary layer equations for the micropolar fluid flow over a 
stretching sheet. We have considered in some detail the influence of the physical 
parameters on the similarity solutions using Runga-Kutta shooting method. The 
results presented demonstrate clearly that the viscosity and thermal conductivity 
parameters have a substantial effect on velocity distribution, microrotation 
distribution and temperature distribution. 

 
Figure 1. Variation of velocity distribution of F against η for various values of 
temperature corresponding to the viscosity parameter rθ  taking ,70.0=rP  ,50.0=V  

,80.01 =N  ,50.02 =N  ,50.03 =N  ,50.04 =N  .00.10−=θk  
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Figure 2. Variation of velocity distribution of F ′ against η for various values of 
temperature corresponding to the viscosity parameter rθ  taking ,70.0=rP  ,50.0=V  

,80.01 =N  ,50.02 =N  ,50.03 =N  ,50.04 =N  .00.10−=θk  

 

Figure 3. Variation of microrotation distribution of g against η for various values of 
temperature corresponding to the viscosity parameter rθ  taking ,70.0=rP  ,50.0=V  

,80.01 =N  ,50.02 =N  ,50.03 =N  ,50.04 =N  .00.10−=θk  
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Figure 4. Variation of temperature distribution (θ) against η for the various values 
of temperature corresponding to thermal conductivity parameter ( )kθ  taking 

,70.0=rP  ,50.0=V  ,80.01 =N  ,50.02 =N  ,50.03 =N  ,50.04 =N  .00.10−=θr  

Results and Discussion 

The equations (6)-(9) together with the boundary conditions (10) are solved for 
various values of the parameters involved in the equations using algorithms based on 
the shooting method. Results are presented for velocity distribution, microrotation 
distribution and temperature distribution with the variation of different parameters. 

Initially solution was taken for constant values of taking ,70.0=rP  ,50.0=V  

,80.01 =N  ,50.02 =N  ,50.03 =N  ,50.04 =N  ,00.10−=θr  10−=θk  with the 

viscosity parameter rθ  ranging from –2 to –1 at the certain values of .10−=θk  

Similarly, the solutions have been found with varying the thermal conductivity 
parameter kθ  ranging from –12 to –1 at the certain values of 10−=θr  keeping 

other values remaining same. The variation in velocity distribution, microrotation 
distribution and temperature distribution is illustrated in Figures 1 to 4. From the 
equation (11), it is found that the velocity ‘u’ is dependent on ( ).η′F  Figures 1 and 
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2 represent the variation in velocity (u) distribution with the variation of viscosity 
parameter .rθ  From Figure 3, it is seen that the variation in microrotation distribution 

with the variation of .rθ  From Figure 4, it is found that the variation in temperature 

distribution with variation of temperature corresponding to thermal conductivity 
parameter ( ).kθ  

From Figure 1, it is clear that velocity decreases as rθ  increases, i.e., rθ−  

decreases. From Figure 2, it is seen that velocity distribution decreases with the 
increase of .rθ  From Figure 3, it is seen that microrotation distribution increases as 

rθ  increases. From Figure 4, it is found that temperature distribution decreases with 

the increase of .kθ  
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