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Abstract 

The aim of the present work is to study the MHD peristaltic flow in a  
two-dimensional asymmetric channel under the assumptions of long 
wavelength and low Reynolds number in a wave frame of reference with 
heat transfer. The effects of phase shift and Hartmann number on the 
pumping characteristics are discussed in detail through graphs. 

1. Introduction 

The magnetohydrodynamic (MHD) flow of a fluid in a channel with elastic 
rhythmically contracting walls (peristaltic transport) is of interest in connection with 
certain flow problems of the movement of conductive physiological fluids and with 
the need for theoretical research on the operation of a peristaltic MHD compressor, 
also the principle of magnetic field may be used in clinical application (magnetic 
resonance imaging MRI). Agrawal and Anwaruddin [1] studied the effect of 
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magnetic field on the peristaltic flow of blood using long wavelength approximation 
method and observed for the flow of blood in arteries with arterial stenosis or 
arteriosclerosis, that the influence of magnetic field may be utilized as blood pump 
in carrying out cardiac operations. Li et al. [2] have used an impulsive magnetic field 
in the combined therapy of patients with stone fragments in the upper urinary tract. It 
was found that the Impulsive Magnetic Field (IMF) activates the impulsive activity 
of the ureteral smooth muscles in 100% of cases. Nonlinear peristaltic transport of 
MHD flow through a porous medium was studied by Mekheimer and Al-Arabi [4]. 
Mekheimer [3] studied the peristaltic transport of blood under effect of a magnetic 
field in non-uniform channels. Some of the physiological systems in human body 
cannot be modeled by a symmetrical channel, especially the sagittal cross section of 
the uterus. Recently, Mishra and Rao [5] developed the flow in an asymmetric 
channel generated by peristaltic waves propagating on the walls. Mishra and Rao [5] 
obtained a perturbation solution for the problem of peristaltic flow of a viscous 
Newtonian fluid in an asymmetric channel. Most of these studies are without       
heat transfer. In general, heat transfer will play vital role on peristalsis. Peristaltic 
transport of a heat conducting fluid subject to Newton’s cooling law at the boundary 
was investigated by Tang and Shen [7]. Tang and Shen [8] studied asymptotic 
solutions for the peristaltic flow of a heat conducting fluid. Motivated by these, we 
modeled the peristaltic transport of a heat conducting fluid in an asymmetric channel. 

Therefore, the objective of the present paper is to investigate the effects of the 
phase shift and Hartmann number on the pumping characteristics of peristaltic flow 
in a two-dimensional asymmetric channel under the assumptions of long wavelength 
and low Reynolds number in a wave frame of reference with heat transfer. 

2. Mathematical Formulation and Solution 

We consider the peristaltic transport of a heat-conducting fluid in an asymmetric 
channel with flexible walls and asymmetry being generated by the propagation of 
waves on the channel walls traveling with same speed c but with different amplitudes 
and phases. We assume that a uniform magnetic field strength 0B  is applied in the 

transverse direction to the direction of the flow (i.e., along the direction of the y-axis) 
and the induced magnetic field is assumed to be negligible. Figure 3.1 shows the 
physical model of the asymmetric channel. 
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The channel walls are given by 

( ) ( ),2cos, 111 ctXbatXHY −
λ
π+==  (upper wall) (3.1a) 

( ) ( ) ,2cos, 222 ⎟
⎠
⎞⎜

⎝
⎛ θ+−
λ
π−−== ctXbatXHY  (lower wall) (3.1b) 

where ,1b  2b  are amplitudes of the waves, λ is the wavelength, 21 aa +  is the width 

of the channel, θ is the phase difference ( )π≤θ≤0  and t is the time. 

We introduce a wave frame of reference ( )yx,  moving with velocity c in which 

the motion becomes independent of time when the channel length is an integral 
multiple of the wavelength and the pressure difference at the ends of the channel is a 
constant (Shapiro et al. [8]). The transformation from the fixed frame of reference 
( )YX ,  to the wave frame of reference ( )yx,  is given by ,ctXx −=  ,Yy =  =u  

,cU −  Vv =  and ( ) ( ),, tXPxp =  where ( )vu,  and ( )VU ,  are the velocity 

components, p and P are pressures in the wave and fixed frames of reference, 
respectively. 

 

Figure 3.1. Physical model. 
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The equations governing the flow in wave frame of reference are given by 
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and the equation of energy is 
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where eσ  is the electrical conductivity of the fluid, ρ is the density, T is the 

temperature, pc  is the specific heat constant, k is the thermal conductivity and μ is 

the viscosity of the fluid. 

Introducing the following non-dimensional variables 
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where 0T  is the ambient temperature, in the governing equations (3.1)-(3.5), and 

dropping the bars, we get 

 ( ),2cos,2cos1 2211 θ+πφ−−=πφ+= xdhxh  (3.6) 
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and 
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where 
μ

ρ
=

caRe 1  is the Reynolds number, 
μ
σ

= eaBM 10  is the Hartmann number, 

( )02

2

TTc
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p −
=  is the Eckert number and k

c
Pr pμ

=  is the Prandtl number. 

Using long wavelength ( )1.,e.i δ  and negligible inertia ( )0Re.,e.i →  

approximations, we have 
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where .
dx
dpP =  

The corresponding non-dimensional boundary conditions are given as 

1−=u    at   1hy =    and   ,2hy =  (3.13) 

 RTT =    at   1hy =    and   1=T    at   .2hy =  (3.14) 

Solving equation (3.11) using the boundary conditions (3.13), we get 
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and 
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Solving equation (3.12) by using equation (3.15) and the boundary conditions 
(3.14), we get 
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The volume flow rate in the wave frame is given as 
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From (3.12), we have 
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The instantaneous flux at any axial station is given by 
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1

2
.1, 21

h

h
hhqdyutxQ  (3.19) 

The average volume flow rate over one wave period ( )cT λ=  of the peristaltic 

wave is defined as 
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The pressure rise over one wave length of the peristaltic wave is given by 
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The equation (3.21) can be rewritten as 
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1
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I

IpQ −Δ=  (3.22) 

3. Discussion of the Results 

The variation of axial velocity u with y at 25.0=x  is calculated for different 
values of Hartmann number M and pressure gradient P with fixed ,7.01 =φ  ,2.12 =φ  

,2=d  0=θ  in different cases (i) ,75.0−=P  (ii) 0=P  and (iii) 75.0=P  as depicted 

in Figure 3.2. The velocity profiles are parabolas. The maximum/minimum velocity 
occurs at the centre of the channel and increases as M increases. This is due to 
peristalsis. It is found that for positive values ‘P’, the reverse flow occurs when 

1<M  and the opposite behaviour of the velocity is observed for .1>M  
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Figure 3.3 shows the variation of axial velocity u with y for different values of 

Hartmann number M with ,7.01 =φ  ,2.12 =φ  ,2=d  6
π=θ  and for (i) ,75.0−=P  

(ii) 0=P  and (iii) .75.0=P  For a given Hartmann number M, the maximum 
velocity decreases with the change in the values of pressure gradient P from negative 
to positive. 

For a given pressure gradient P, the increase in the Hartmann number M, raises 
the velocity. 

The variation of time averaged volume flow rate Q  with pressure rise pΔ  for 

different phase shifts with ,7.01 =φ  ,2.12 =φ  2=d  and for (i) 5.0=M  and (ii) 

1=M  as shown in Figure 3.4. It is observed that in the pumping region and free 
pumping region as phase shift θ increases the time averaged flow rate as well as 
pressure rise both decrease. An interesting observation here is that in co-pumping 

region Q  increases with phase shift θ for an appropriately chosen ( ).0<Δp  Further, 

time averaged volume flow rate increases increase in the Hartmann number M. 

Using equation (3.16), we have plotted the variation of temperature T with y for 
different values of Hartmann number M with ,7.01 =φ  ,2.12 =φ  ,2=d  ,0=θ  

,5.0=RT  2=N  and for (i) ,75.0−=P  (ii) 0=P  and (iii) 25.0=P  and is shown 

in Figure 3.5. It is observed that the temperature T increases with the increasing y 
and attains the maximum value nearer to the lower wall of the asymmetric     
channel. Moreover, as Hartmann number M increases, the temperature will increase 
throughout the width of the channel. The similar behaviour is observed for 6π=θ  

is shown in Figure 3.6. Further, as phase shift θ increases, the temperature decreases. 

The variation of temperature T with y for different values of Hartmann number 
M with ,7.01 =φ  ,2.12 =φ  ,2=d  ,0=θ  ,5.1=RT  2=N  and for (i) ,75.0−=P  

(ii) 0=P  and (iii) 25.0=P  and is shown in Figure 3.7. The temperature profiles 
are parabolas for 5.0>M  when ,0≥P  the temperature profiles a straight line for 

.5.0=M  Figure 3.8 is drawn for variation of temperature with phase shift .6π=θ  

It is observed that the temperature shows the same behaviour as that of .0=θ  
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Figure 3.2 (i). The variation of velocity u with y for different values of M with 
,7.01 =φ  ,2.12 =φ  ,2=d  0=θ  and 25.0=x  for .75.0−=P  
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Figure 3.2 (ii). The variation of velocity u with y for different values of M with 

,7.01 =φ  ,2.12 =φ  ,2=d  0=θ  and 25.0=x  for .0=P  

 
Figure 3.2 (iii). The variation of velocity u with y for different values of M with 

,7.01 =φ  ,2.12 =φ  ,2=d  0=θ  and 25.0=x  for .75.0=P  

 
Figure 3.3 (i). The variation of velocity u with y for different values of M with 

,7.01 =φ  ,2.12 =φ  ,2=d  25.0=x  and 6π=θ  for .75.0−=P  
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Figure 3.3 (ii). The variation of velocity u with y for different values of M with 
,7.01 =φ  ,2.12 =φ  ,2=d  25.0=x  and 6π=θ  for .0=P  

 

Figure 3.3 (iii). The variation of velocity u with y for different values of M with 
,7.01 =φ  ,2.12 =φ  ,2=d  25.0=x  and 6π=θ  for .75.0=P  
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Figure 3.4 (i). The variation of pressure rise pΔ  with time-averaged volume flow 

rate Q  for different phase shifts with 2.1,7.0,2 21 =φ=φ=d  and .5.0=M  

 

Figure 3.4 (ii). The variation of pressure rise pΔ  with time-averaged volume flow 

rate Q  for different phase shifts with 2.1,7.0,2 21 =φ=φ=d  and .1=M  
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Figure 3.5 (i). The variation of temperature T with y for different values of Hartmann 
number M with ,2=d  ,7.01 =φ  ,2.12 =φ  ,25.0=x  ,0=θ  5.0=RT  and 2=N  

for .75.0−=P  

 

Figure 3.5 (ii). The variation of temperature T with y for different values of 
Hartmann number M with ,2=d  ,7.01 =φ  ,2.12 =φ  ,25.0=x  ,0=θ  5.0=RT  

and 2=N  for .0=P  
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Figure 3.5 (iii). The variation of temperature T with y for different values of 
Hartmann number M with ,2=d  ,7.01 =φ  ,2.12 =φ  ,25.0=x  ,0=θ  5.0=RT  

and 2=N  for .25.0=P  

 

Figure 3.6 (i). The variation of temperature T with y for different values of Hartmann 
number M with ,2=d  ,7.01 =φ  ,2.12 =φ  ,25.0=x  ,6π=θ  5.0=RT  and 2=N  

for .75.0−=P  
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Figure 3.6 (ii). The variation of temperature T with y for different values of 
Hartmann number M with ,2=d  ,7.01 =φ  ,2.12 =φ  ,25.0=x  ,6π=θ  5.0=RT  

and 2=N  for .0=P  

 
Figure 3.6 (iii). The variation of temperature T with y for different values of 
Hartmann number M with ,2=d  ,7.01 =φ  ,2.12 =φ  ,25.0=x  ,6π=θ  5.0=RT  

and 2=N  for .25.0=P  
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Figure 3.7 (i). The variation of temperature T with y for different values of Hartmann 
number M with ,2=d  ,7.01 =φ  ,2.12 =φ  ,25.0=x  ,0=θ  5.1=RT  and 2=N  

for .75.0−=P  

 

Figure 3.7 (ii). The variation of temperature T with y for different values of 
Hartmann number M with ,2=d  ,7.01 =φ  ,2.12 =φ  ,25.0=x  ,0=θ  5.1=RT  

and 2=N  for .0=P  
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Figure 3.7 (iii). The variation of temperature T with y for different values of 
Hartmann number M with ,2=d  ,7.01 =φ  ,2.12 =φ  ,25.0=x  ,0=θ  5.1=RT  

and 2=N  for .25.0=P  

 

Figure 3.8 (i). The variation of temperature T with y for different values of Hartmann 
number M with ,2=d  ,7.01 =φ  ,2.12 =φ  ,25.0=x  ,6π=θ  5.1=RT  and 2=N  

for .75.0−=P  
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Figure 3.8 (ii). The variation of temperature T with y for different values of 
Hartmann number M with ,2=d  ,7.01 =φ  ,2.12 =φ  ,25.0=x  ,6π=θ  5.1=RT  

and 2=N  for .0=P  

 

Figure 3.8 (iii). The variation of temperature T with y for different values of 
Hartmann number M with ,2=d  ,7.01 =φ  ,2.12 =φ  ,25.0=x  ,6π=θ  5.1=RT  

and 2=N  for .25.0=P  


