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Abstract 

Wavelets on the interval are important in many applications. In this paper, 
we make certain observations related to the spline wavelets on the interval 
[0, 1]. In particular, we are interested in knots of splines, smoothness and 
stability of spline wavelets. 

1. Introduction 

In many applications such as numerical solutions of differential equations and 
image processing, wavelets on the interval are required. Meyer constructed a family 
of orthogonal wavelets on the interval [0, 1] in [7]. Cohen et al. gave a different 
construction which has certain advantages over Meyer’s construction in [5]. But 
the dual scaling spaces have no polynomial exactness. In order to avoid that 

disadvantage and to have d
~

 vanishing moments of the wavelets, Dahmen et al. gave 
a general method to construct scaling function space and wavelets on the interval 
[0, 1], where the method is based on the factorization of the refinable matrix in [6]. 
Following the approach of Chui and Quak [3], Jia constructed a class of wavelets on 

the interval [0, 1] which is also a stable basis in the Sobolev space ( )1,0μH  for a 

certain range of μ. 
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By the investigation of the biorthogonal wavelets in [4], Bittner constructed a 
new class of wavelets with Schoenberg spline as the scaling function in [2]. As 
usual, he still uses the wavelets in [4] as the inner wavelets and constructs three 
types of boundary wavelets. Since the wavelets have zero boundary values, it will be 
useful in the numerical solution of PDE’s with homogenous boundary conditions. 
Unfortunately, the Riesz basis property or stability of the wavelets is still needed 
to  prove theoretically. In this paper, we make some notes of the wavelets on the 
interval [0, 1]. 

2. Biorthogonal Wavelets on R  

The biorthogonal wavelets on R  were first introduced by Cohen et al. in [4]. 
They choose B-spline as the scaling function, i.e., 
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Bittner gave a new view on biorthogonal spline wavelets in [1]. Explicitly, he 
shows an expression of the spline wavelets in the following theorem. 

Theorem 2.1 [1]. Let ψ be a spline wavelet with support in [ ],,0 r  N∈r  

which satisfies 

( ) ( ) ( )( )∑
∈

−− −ψ+−=−
Zk

kdkd kxdkxNcxN 222  (2.1) 
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with finitely supported sequences c and d. Then ψ is a spline with knots 
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This theorem tells us that all the spline wavelets with (2.1) are splines with one 
and only one half integer knot. But we find a fault about this theorem. Since ψ is a 
spline wavelet and ,1V∈ψ  we have 
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But ( )kxNd −  has only integer knots, so we can write (2.1) as 
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with some coefficients kβ  which depend on c and d. On the other hand, we know 
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By comparison of coefficients in (2.3) and (2.4) with ,0=  Bittner concludes that 
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for all .Z∈k  In fact, (2.5) holds only for k that is odd. 

Furthermore, we can take semi-orthogonal wavelets as an example. Let 
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Then the semi-orthogonal wavelet is given as ( ) ( )( ) .2: 12 −Ψ=ψ mm xx  Since 
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 denotes the binomial coefficient when ,0 mk ≤≤  zero otherwise. 
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positive number for all .240 −≤≤ m  Thus, the semi-orthogonal wavelets ψ will 
not have the form as Theorem 2.1 except .1=m  

Specially, we take ,2=m  then 
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Obviously, one will not find an s which satisfies the condition of Theorem 2.1. 

Although this is not right for all spline wavelets, but it is right for the CDF 

wavelets .
~

, ddψ  That is ( )xCdd ψ=ψ
~

,  with some 0≠C  and 
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where ,
2
1γ  ,0≠γk  ( ) .2
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ddn +=  By this observation, Bittner gives three types 

of boundary wavelets on the interval [0, 1]. We will just write out the first type while 

one can get the other details in [2]. Let left boundary wavelets ( ),:
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dL
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d  derivative of a B-spline of order 2n with knots 
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kj,ψ  has d
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}1−n  as the right boundary wavelets, then the wavelets space is { ,span L
jjW Ψ=  

}., R
j

I
j ΨΨ  Furthermore, take Schoenberg spline as the scaling function space ,jV  

then .1 jjj WVV ⊕=+  One can find that the wavelets have zero boundary values. 

This ensures that it will be useful in the numerical solution of PDE’s with 
homogenous boundary conditions. 

3. Smoothness of Boundary Wavelets 

From the definition of the boundary wavelets, one can find that the multiple of 
the knots is important for the smoothness and vanishing moment of the boundary 
wavelets. In this section, we discuss the smoothness of the boundary wavelets. 

Lemma 3.1. Given knots ( ),...,,...,,...,,0 nlmm tttt +=τ  where 1+= mm tt  

{ } { }1...,,...,,0,, 1 −+∈<== ++ lmmnittt iilm  and ,nl ≤  the divided 

difference 
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Proof. We prove it by induction. It is trivial for .1=n  Suppose (3.1) holds for 
,1≥= rn  we shall show for any ,1+≤ rl  (3.1) holds for .1+= rn  If ,1+= rl  
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Theorem 3.1. Given knots τ as in Lemma 3.1, let ( ) [ ] ( )....,,: 0 xfttxg n −⋅=  If 

( ),RrCf ∈  then ( ).RlrCg −∈  Additionally, if ( ),p
lr tCf R+∈  ,R∈pt  then 
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Proof. We prove this also by induction. If ,0=l  then 
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Suppose it holds for ,ll ′≤  we show that it also holds for .1+′= ll  By Lemma 3.1, 
we have 
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( ) [ ] ( )
( )

∑
+′−

=
+′+ −⋅=

1

0
1...,,

ln

k
lkkk xfttcxg  

[ ] ( ) [ ] ( )
( )

∑
+′−

=
+′++′+

≠

−⋅+−⋅=
1

0
11 ...,,...,,

ln

k
lmmmlkkk

mk

xfttcxfttc  

[ ] ( )
( )( )
( )

( )

∑
+′−

=

+′

+′+

≠

+′
−

+−⋅=
1

0

1

1 !1...,,
ln

k

m
l

mlkkk

mk

l
xtfcxfttc  

,BA +=  

where  

[ ] ( )
( )∑ +′−

= +′+
≠

−⋅=
1

0 1 ,...,,
ln

k lkkk
mk

xfttcA    
( )( )
( ) .!1

1

+′
−

=
+′

l
xtfcB m

l

m  

If ( ),RrCf ∈  then ( )R1−′−∈ lrCB  and by assumption, ( ).RlrCA ′−∈  So we get  
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Corollary 3.1. Given knots ( ),...,,,,...,,, 1110 nmmm tttttt +−=τ  where <it  
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The corollary shows that the boundary wavelets on the zero point have less 
smoothness than other points. We can add more knots which are different with the 
existing knots in the divided difference to get more smoothness boundary wavelets. 
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4. Stability of Wavelets on the Interval 

If the MRA is constructed by the Schoenberg spline, Bittner proves that 1+jV  

jj WV ⊕=  in [2]. Thus, we have the wavelets .: 11, +Φ=Ψ j
T
jj M  But the stability 

still needs to prove theoretically. According to Proposition 2.5 and Proposition 2.6 in 
[6], we only need to construct the new wavelets by taking linear components of the 
old wavelets. Suppose { },span jjV Φ=  where jΦ  is the Schoenberg spline. Then 

there exists a matrix 0,jM  such that .0,1 j
T
j

T
j M+Φ=Φ  Let .,~ 1

jjjj ΦΦΦ=Φ −  

Then jΦ  and jΦ
~  are biorthogonal scaling functions, i.e., .~, Ijj =ΦΦ  
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the dual side, i.e., .~~~
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T
j

T
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( ) .~: 0,0,
new

j
T
jjj MMI Ψ−=Ψ  

By using Proposition 2.6, we know that the new wavelets are uniformly stable. Since 
the new wavelets are the linear components of the old wavelets, they still have the 

zero boundary values and d
~

 vanishing moments. 

In practice, one can find the new wavelets generated by the dual jΦ
~  are not 

good for applications. We need to find a suitable dual such that the support of the 
new wavelets is locally finite. Furthermore, we know the Schoenberg spline does not 
have zero boundary values. And this may produce a relatively bigger error when we 
project the space [ ]( ) ( ) ( ){ }010:1,02 ==∈ ffLf  into .jV  Thus, it leads us that 

we must also change the primal scaling function .jΦ  All the two problems will be 

discussed in our next paper. 
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