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Abstract

Wavelets on the interval are important in many applications. In this paper,
we make certain observations related to the spline wavelets on the interval
[0, 1]. In particular, we are interested in knots of splines, smoothness and
stability of spline wavelets.

1. Introduction

In many applications such as numerical solutions of differential equations and
image processing, wavelets on the interval are required. Meyer constructed a family
of orthogonal wavelets on the interval [0, 1] in [7]. Cohen et al. gave a different
construction which has certain advantages over Meyer’s construction in [5]. But
the dual scaling spaces have no polynomial exactness. In order to avoid that

disadvantage and to have d vanishing moments of the wavelets, Dahmen et al. gave
a general method to construct scaling function space and wavelets on the interval
[0, 1], where the method is based on the factorization of the refinable matrix in [6].
Following the approach of Chui and Quak [3], Jia constructed a class of wavelets on

the interval [0, 1] which is also a stable basis in the Sobolev space H*(0, 1) for a

certain range of p.
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By the investigation of the biorthogonal wavelets in [4], Bittner constructed a
new class of wavelets with Schoenberg spline as the scaling function in [2]. As
usual, he still uses the wavelets in [4] as the inner wavelets and constructs three
types of boundary wavelets. Since the wavelets have zero boundary values, it will be
useful in the numerical solution of PDE’s with homogenous boundary conditions.
Unfortunately, the Riesz basis property or stability of the wavelets is still needed
to prove theoretically. In this paper, we make some notes of the wavelets on the
interval [0, 1].

2. Biorthogonal Wavelets on R

The biorthogonal wavelets on R were first introduced by Cohen et al. in [4].
They choose B-spline as the scaling function, i.e.,

09(x) = d[0, 1, ..., d](-—x)¢ 7,
with the refinable relation ¢¢ (x) = “/EZi:o hk<|>0I (2x — k). Then they construct the

dual scaling function $d'd of ¢d with the parameter d >d. And $d'd is also
refinable, i.e.,

N [ _
5300 -2 Y R (21 k),

k=4

where Zl =—d - |d/2]+1, ?2 =d+ [d/27]-1. Now the wavelets are defined by

- -4
v =2 ) bd(x k)
k=1-/,

with by = (~1)%hy_y.

Bittner gave a new view on biorthogonal spline wavelets in [1]. Explicitly, he
shows an expression of the spline wavelets in the following theorem.

Theorem 2.1 [1]. Let v be a spline wavelet with support in [0, r], r e N

which satisfies

Ng(2x =€) = >~ (c—akNa (x = K) + d/_piw(x — k) (2.1)
keZ
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with finitely supported sequences ¢ and d. Then v is a spline with knots

K, if k=0 .. 5L
t, = k—%, if k = s;
k -1, if K=s+1,..,r+1,

forsome se Z, 1<s<r.

This theorem tells us that all the spline wavelets with (2.1) are splines with one
and only one half integer knot. But we find a fault about this theorem. Since y is a
spline wavelet and v e Vy, we have

y(x) = iak(x - %) . (2.2)
k=0 +

But Ng(x — k) has only integer knots, so we can write (2.1) as

R
- +

keZ

r d-1
_ 1
= E Br(x— k)2 + E E d£+2(nfk)a2nfl(x —k+ 5) (2.3)
Kk +

keZ n=1
with some coefficients B, which depend on c and d. On the other hand, we know
d+/ d-1

Ny (2x - (d2 _i)IZ( 1)k ‘(k zj( —%) . 2.4)

+
By comparison of coefficients in (2.3) and (2.4) with ¢ = 0, Bittner concludes that
od-1 r
@ ( j( 1) nz;dzn—k—lazn—l (2.5)
for all k € Z. In fact, (2.5) holds only for k that is odd.

Furthermore, we can take semi-orthogonal wavelets as an example. Let

2m-2

P(x) = Z(—l)k N (K + 1) Nopy (2 — ).

k=0
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Then the semi-orthogonal wavelet is given as y(x) = ‘I’(m)(x)/zzm‘l. Since

) = gy D0 o

we have
1 2m-2 ) om // o .
V0= gy X (Mo 07 f2x k-0
" k=0 —
2m-2 2m+k
B ﬁ kZ:(; ; (1) N (k +1)(£2_“‘kj(2x _ et
4m-2 2m-2
- m ; é (—1)[ Nom(k + 1)(;—mkj (2x - ()im—l

+

G SNV o 2 2m-1
- ﬁ ﬂz{; (—Dﬂ[ kz(; Nom (K +1)(€ _mkj](x _9 ,

m . . L .
where (kj denotes the binomial coefficient when 0 < k < m, zero otherwise.

_ 2m - _o2m-2 2m
Since Ny, (k +1)(£ B kj > 0, the coefficient ¢, = > Nom(k +1)(€ B kj a

positive number for all 0 < / < 4m — 2. Thus, the semi-orthogonal wavelets y will
not have the form as Theorem 2.1 except m = 1.

Specially, we take m = 2, then

w(x) = %(X+ ~ 8(x ~ %L +23(x=1), - 32()( - %)+

1 23(x-2), - s(x - gl F(x— 3)+).

Obviously, one will not find an s which satisfies the condition of Theorem 2.1.
Although this is not right for all spline wavelets, but it is right for the CDF

wavelets w9 9. Thatis y&9 = Cy(x) with some C = 0 and
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) d
V0= BE) 1 nys (X +N-D)
1 d-1 2n-1
=y1(§—x) +Zyk(k—n+l—x)f’1, (2.6)
2 + k=0

where yq, vk 20, n=(d + 5)/2. By this observation, Bittner gives three types
2

of boundary wavelets on the interval [0, 1]. We will just write out the first type while

one can get the other details in [2]. Let left boundary wavelets \Pk" = B(g),
T

0<k <n-2 asthe dth derivative of a B-spline of order 2n with knots

(0 n 0, K K+ 2, k41 o 2n—1), k=0, .,n—d -1,
0 0 2
= d
0, 0, o K, k+%, K+l .,n+k), k=n—d, ..n—2
n-k

One can find le',k has d vanish moments. Take ‘If]! = {\y?"ﬁ, n-1<k<
21 _n} as the inner wavelets, ¥R := span {szLk(x) = \VJLYk(l—x), 1<k <

n —1} as the right boundary wavelets, then the wavelets space is Wj = span {\P!—,

‘PJ! , ‘IJJ-R}. Furthermore, take Schoenberg spline as the scaling function space V;,
then Vi1 =V; ®Wj. One can find that the wavelets have zero boundary values.

This ensures that it will be useful in the numerical solution of PDE’s with
homogenous boundary conditions.

3. Smoothness of Boundary Wavelets

From the definition of the boundary wavelets, one can find that the multiple of
the knots is important for the smoothness and vanishing moment of the boundary
wavelets. In this section, we discuss the smoothness of the boundary wavelets.

Lemma 3.1. Given knots t = (tg, ..\ tyyeoes tmags oo tn), Where toy, = tpi
= =t G <ty ie{0,.,n}/{m ..,m+1-1 and |<n, the divided

difference
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LT L TR R T LA
t, — 1o

1)
fn—ft()), |f tO =tn,

has the form

n—I|

to, ey Ck tk, . tk+|
=0

=~

where ¢, € R.

(3.1)

Proof. We prove it by induction. It is trivial for n = 1. Suppose (3.1) holds for
n=r>1 weshall showforany | <r+1 (3.1)holdsfor n=r+1. If | =r +1,

then the divided difference [tg, ..., t,1] f itself has the form as (3.1). If | < r +1,

i.e., | <r, then we have

o, o teag) £ ~lto, o tr]f
tri—To

[to, s tria] f =

By the assumption,

n—I

n—|
1
[to, - tha] f = —— ch[tkﬂv oo el = ch[tkv o g ]
n+l = 0 k=0 k=0

(n+1)-1

= Yl e bl

k=0

Theorem 3.1. Given knots t as in Lemma 3.1, let g(x) = [tg, ...,

ty] (- —x). If

f € C"(R), then g e C"'(R). Additionally, if f ¢ C"™"'(R/t,), t, R, then

g € C'(R/(tm —tp)).

Proof. We prove this also by induction. If | = 0, then

90x) = D oltd (=)= D ot —x)<C.
k k

Suppose it holds for | < I', we show that it also holds for | = 1" + 1. By Lemma 3.1,

we have
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9(x) = Z Ciltics o sl TG = %)
k=0

Ciltis s taraa ]l TG = %) + Cltmy s tmsra] £ = %)

f(|'+l) t —
Ckltkr - teprrsal FO = %) + ey W

I
>
+
o

where
n—(I'+1) f (¢, - x)
A= E o Skl bl FC = %), B =cp ?”1]),

K=m
If feC'(R), then B e C""}(R) and by assumption, A< C""(R). So we get
g(x)= A+BeCU"V(R). Additionally, if feC™"(R/t,), then Be
C"(R/(tm —t,)) and by assumption A e C"(R/(ty, —t,)). So we get g(x)= A+ B
e C"(R/(ty —tp)).

Corollary 3.1. Given knots t = (tg, t, -, ty_1s tm» tmats - L), Where t; <

tiyg, and © = (tg, t, o tygs tmo o tms tmats oo ty), then B.(x) e C""2(R) and
1+1

B.(x) € C™2(R/ty) N C"2(R).

Proof. Since B.(X)=(t, —t9)[ty, - ty] F(-—x) with f(x)= (x)ﬂ_1 €
C"2(R), using Theorem 3.1, we obtain B_(x) € C""2(R). Analogously, B (x)
= (ty —to)[tg, - ta 1 £/(- — %) with £/(x)=(x)""Tec™?2(R/0)NC™2(R).

+

Again, using Theorem 3.1, we have B, e C"™~2(R/t,,) N C"2(R).

The corollary shows that the boundary wavelets on the zero point have less
smoothness than other points. We can add more knots which are different with the
existing knots in the divided difference to get more smoothness boundary wavelets.
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4. Stability of Wavelets on the Interval

If the MRA is constructed by the Schoenberg spline, Bittner proves that V;_;

=V; ®W;j in [2]. Thus, we have the wavelets ¥; = MJT11®j+1. But the stability

still needs to prove theoretically. According to Proposition 2.5 and Proposition 2.6 in
[6], we only need to construct the new wavelets by taking linear components of the
old wavelets. Suppose V; = span{cbj}, where @ ; is the Schoenberg spline. Then

. . T _ 4T ) o . Al .
there exists a matrix M o such that @; = @; M o. Let @; = (D}, @) D;.
Then @; and cf)j are biorthogonal scaling functions, ie., (®j, cf>j) =1.

Furthermore, we have
= -1
®f = T M o(), @))
_ 4T ) oL ) ) ) -1
- (DJ+1<(DJ+1! (Dj+l> <(Dj+l’ CDJ+1>M J,O(cDJ! (DJ>
=0\ (D, @ IM; g(@;, D )T
J+l< j+1 j+1> J,O( N J> :

Let M 5,0 =(P@ji, D)Mo @j, cDj>_1. Then we have the refinable relation in

the dual side, i.e., @] = ®%,;M; (. Now, define
. il
P = (1 =M oM o) ¥

By using Proposition 2.6, we know that the new wavelets are uniformly stable. Since
the new wavelets are the linear components of the old wavelets, they still have the

zero boundary values and d vanishing moments.

In practice, one can find the new wavelets generated by the dual E)j are not

good for applications. We need to find a suitable dual such that the support of the
new wavelets is locally finite. Furthermore, we know the Schoenberg spline does not
have zero boundary values. And this may produce a relatively bigger error when we
project the space {f e L,([0,1]): f(0) = f(1) = O} into V;. Thus, it leads us that

we must also change the primal scaling function @ ;. All the two problems will be

discussed in our next paper.
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