
 

Current Development in Theory and Applications of Wavelets
Volume 3, Issue 2, 2009, Pages 97-106 
Published Online: November 18, 2009 
This paper is available online at http://www.pphmj.com 
© 2009 Pushpa Publishing House 

 

 :phrases and Keywords discrete wavelet transform, shift-invariance, multirate signal processing, 

fractional delay filters. 

This work is supported by the National Technology Agency of Finland (TEKES). 

Received March 18, 2009 

SHIFT-INVARIANT COMPLEX CQF WAVELETS 

H. OLKKONEN and J. T. OLKKONEN 

Department of Physics 
University of Kuopio 
P. O. Box 1627, 70211 Kuopio, Finland 
e-mail: hannu.olkkonen@uku.fi 

VTT Technical Research Centre of Finland 
Tietotie 3, PL 1000, 02044 VTT, Finland 
e-mail: juuso.olkkonen@vtt.fi 

Abstract 

This work introduces a framework for the shift-invariant complex 
conjugate quadrature filter (CQF) wavelet transform. The shift-invariance 
of the CQF wavelets is attained by a half-sample delay operator. The real 
and imaginary parts of the CQF wavelet sequences form Hilbert pairs, 
which yields analytic transform coefficients. The present method can be 
adapted to all existing orthogonal real-valued CQF wavelet filter banks. 

1. Introduction 

In many areas in research and industry, the discrete wavelet transform (DWT) 
[1, 7, 12, 14] has a well assisted position in processing of signals and images. One of 
the main difficulties in DWT analysis is the dependence of the total energy of the 
wavelet coefficients in different scales on the fractional shifts of the analysed signal. 
For example, in the time-shifted signal [ ],τ−nx  where [ ],1,0∈τ  there may appear 

significant differences in the energy of the wavelet coefficients as a function of the 
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time-shift. Kingsbury [4] suggested that a nearly shift-invariant method was the real 
and imaginary parts of the complex wavelet coefficients are approximately a Hilbert 
transform pair. The energy (absolute value) of the wavelet coefficients equals the 
envelope, which provides smoothness and approximate shift-invariance. Selesnick 
[13] observed that using two parallel DWT filter banks, which are constructed so 
that the impulse responses of the scaling filters have half-sample delayed versions of 
each other: [ ]nh0  and [ ],5.00 −nh  the corresponding wavelets are a Hilbert transform 

pair. Selesnick [13] proposed a spectral factorization method based on the half delay 
all-pass Thiran filters. As a disadvantage the constructed scaling filters do not have 
coefficient symmetry and the nonlinearity interferes with the spatial timing in 
different scales and prevents accurate statistical correlations. Gopinath [2] generalized 
the idea for N parallel filter banks, which are phase shifted versions of each other. 
Gopinath showed that increasing N, the shift-invariance of the wavelet transform 
improves. However, the greatest advantage comes from the change 1=N  to 2. 

In our previous works, we have used computationally expensive FFT based 
methods for construction of the shift-invariant analytic wavelet transform [8], [9]. In 
this work, we show that the shift-invariance of the conjugate quadrature filter (CQF) 
wavelets is obtained by a half-sample delay operator. The real and imaginary parts of 
the CQF wavelets form a Hilbert pair, which yields analytic transform coefficients. 

2. Theoretical Considerations 

A. CQF wavelet filter bank 

The CQF DWT filter bank consists of the ( )zH0  and ( )zH1  analysis filters and 

( )zG0  and ( )zG1  synthesis filters for N odd [12], 

 ( ) ( ) ( ),1 1
0 zPzzH K−+=  

( ) ( ),1
01

−− −= zHzzH N  

( ) ( ),10 zHzG −=  

( ) ( ),01 zHzG −−=  (1) 

where ( )zP  is a polynomial in .1−z  The filters are related via the perfect 

reconstruction (PR) condition 
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( ) ( ) ( ) ( ) ,21100
kzzGzHzGzH −=+  

( ) ( ) ( ) ( ) ,01100 =−+− zGzHzGzH  (2) 

where .Nk∈  The tree structured implementation of the real-valued CQF filter bank 
is described in Figure 1. Let us denote the frequency response of the z-transform 
filter as 

( ) ( )∑ ∑ ω−− =ω⇒=
n n

nj
n

n
n ehHzhzH .  (3) 

 

Figure 1. The real-valued CQF wavelet transform. 

Correspondingly, we have the relations 

 ( ) ( ),π−ω⇒− HzH  

( ) ( ),1 π−ω⇒− ∗− HzH  (4) 

where * denotes complex conjugation. In M-stage CQF tree, the frequency response 
of the wavelet is 

 ( ) ( ) ( )∏
=

ωω=ωψ
M

k

k
M HH

2
01 .22  (5) 

B. Complex CQF filter bank 

We consider the design of a phase shifted CQF filter bank consisting of the 
scaling filter ( )zH0  and the wavelet filter ( ).1 zH  Let us suppose that the scaling 

filters in parallel CQF trees are related as 

 ( ) ( ) ( ),00 ω=ω ωφ− HeH j  (6) 

where ( )ωφ  is a 2π periodic phase function. Then the corresponding CQF wavelet 

filters are related as 
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 ( ) ( )π−ω=ω ∗ω−
01 HeH Nj  

and 

 ( ) ( )π−ω=ω ∗ω−
01 HeH Nj  

( ) ( )π−ω= ∗π−ωφω−
0Hee jNj  

( ) ( ).1 ω= π−ωφ He j  (7) 

We may easily verify that the phase shifted CQF bank (6, 7) obeys the PR condition 
(2). Correspondingly, the frequency response of the M-stage CQF wavelet sequence 
is 

( ) ( ) ( )∏
=

ωω=ωψ
M

k

k
M HH

2
01 22  

 ( ) ( ) ( ) ( )∏
=

ωφ−π−ωφ ωω=
M

k

kjj HeHe
k

2
0

2
1

2 22  

( ) ( ) ( )
( )

∏
=

ωφ−
π−ωφ

∑
=ωω=

M

k

j
kj

M

k

k

eHHe
2

2

01
2 222  

( ),ωψ= θ
M

je  (8) 

where the phase function is 

 ( ) ( )∑
=

ωφ−π−ωφ=θ
M

k

k

2

.22  (9) 

The wavelet sequences yielded by the CQF bank (1) and the phase shifted CQF bank 
(6) and (7) can be interpreted as real and imaginary parts of the complex wavelet 

 ( ) ( ) ( ).ωψ+ωψ=ωψ MMMC j  (10) 

The requirement for the shift-invariance comes from 

 ( ) ( ){ },ωψ=ωψ MM H  (11) 
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where H  denotes the Hilbert transform. The frequency response of the Hilbert 
transform operator is defined as 

 ( ) ( ),sgn ω−=ω jH  (12) 

where the sign function is defined as 

 ( )
⎩
⎨
⎧

<ω−
≥ω

=ω
.0for1
,0for1

sgn  (13) 

In this work, we apply the Hilbert transform operator in the form 

 ( ) ( ).sgn2 ω=ω π− jeH  (14) 

If we select the phase function ( )ωφ  in (9) as 

( ) ,2ω=ωφ  (15) 

then the scaling filters (6) are half-sample delayed versions of each other. By inserting 
(15) in (9), we have 

∑
=

++
ω+π−=ω−π−ω=θ

M

k
Mk

2
11 .

222
1

2
2  (16) 

 

Figure 2. Two equivalents for realization of the phase function. 

To evaluate the frequency response of the phase shifted CQF tree we move the phase 
functions in front of the CQF tree using the equivalence described in Figure 2. All 
the phase functions are reduced to a single phase function 

 ( ) ( ) ( )∑
−

=

−− ωφ−π−ωφ=ωΦ
1

1

11 22
M

k

kM  (17) 

and the parallel M-stage wavelet sequences are related as 

 ( ) ( ) ( ).ωψ=ωψ ωΦ
M

j
M e  (18) 

If we suppose that the scaling filters (6) of the parallel trees are related via the half-
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sample delay relation (15), then the phase function (17) can be written as 

 ( ) .22 π−ω=ωΦ  (19) 

We may note that the result does not depend on the number of stages M in the CQF 
tree. The elimination of the first term 2ω  in the phase function can be made by 

prefiltering the analyzed signal by the half-sample delay operator ( ) ,21−= zzD  

which has the frequency response ( ) .2ω−=ω jeD  The total phase function is then 

for ,π≤ω≤π−  

 ( ) ( ) 2π−=ω∠+ωΦ D  (20) 

which warrants that M-stage wavelets are Hilbert transform pairs. 

C. Design of the half-delay filter 

Our approach is to construct a half-delaying prefilter ( ) ,21−= zzD  which has a 

precisely linear phase. We have previously described the fractional delay (FD) filter 
based on the B-spline transform interpolation and decimation procedure for 
implementation of the fractional delays MN=τ  ( )Z∈MN ,  [6]. The FD filter 

has the following representation 

( ) ( ) [ ( ) ( )] ,1,, Mp
N

p
zFzzzzMND ↓

− β
β

=  (21) 

where ( )zpβ  is the discrete B-spline and polynomial 

( ) ∑
−

=

−
−−

−

− =
−
−=

1

0
111 .1

1
11

M

k

k
p

M

p z
Mz

z
M

zF  (22) 

The half-sample delay operator ( ) 21−= zzD  is yielded by inserting 1=N  and 

2=M  in (21). We have 

( ) ( )
( )
( ) ,,2,1 z
zR

zDzD
p

p
β

==  (23) 

where ( )zRp  is a polynomial in .1−z  For the discrete B-spline order ,4=p  we 

obtain 

 ( ) 6
41 21

4
−− ++=β zzz  (24) 
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and 

 ( ) .48
23231 321

4
−−− +++= zzzzR  (25) 

The phase of the half-delay operator is exactly linear in the frequency range 
.π≤ω≤π−  

D. Complex CQF wavelets 

In many real-time applications, the IIR-type prefilter (24) is difficult to 
implement, since one of the roots of the denominator is outside the unit circle and 
the computation needs the time-reversed convolution procedure [6]. The key idea in 
this work is based on the fact that only the relative time-shift of the wavelet 
coefficients is essential for shift-invariance. Hence, the half-sample shift operator 
can be divided between the real and imaginary parts of the wavelet sequences via the 
prefilters ( )zpβ  and ( ),zRp  

 ( ) [ ( ) ( )] ( ).zzjRzz MppMC ψ+β=ψ  (26) 

This warrants that the real and imaginary parts of the M-stage wavelets are Hilbert 
transform pairs. 

The present result implies a considerable simplification in the computation of 
the shift-invariant CQF wavelet transform. Instead of the design of the two parallel 
CQF trees, we only need to design one real-valued CQF wavelet tree. The real and 
imaginary parts of the complex shift-invariant CQF wavelets are then obtained by 
the prefilters (26) in front of the real-valued CQF tree. 

The theoretical considerations in previous section are valid only if the phase 
function ( )ωφ  obeys the half-sample delay relation (15) in the frequency range 

.π≤ω≤π−  It appears that for any number of vanishing moments K in (1), the 

scaling filters ( )zH0  and ( )zH0  yielded by the spectral factorization method [13] 

do not have an exactly linear phase relationship. On the other hand, the equivalence 
in Figure 2 cannot be used for deduction of the half-delay prefilter relation (19) for 
such filters. 

3. Discussion 

In this work, we analysed the shift-invariance property of the M-stage CQF 
wavelets. The key observation is that if the scaling filters are half-sample delayed 
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versions of each other, the corresponding wavelets are not precisely Hilbert 
transform pairs, but there occurs a phase error (16). The error term depends on the 
frequency and the number of stages M. In previous works, the half-sample relation 
has been deduced from the infinite product formula for wavelet bases [13]. 
However, in many applications such as image processing and multi-scale analysis, 
the number of stages in the CQF tree is limited and we should consider the shift-
invariance of the M-stage wavelet sequences. 

We introduced a new way to analyse the phase dependence of the CQF tree by 
using the equivalence described in Figure 2. By moving the phase functions in front 
of the tree structure a surprisingly simple phase condition (19) was observed. The 
result suggests that to obtain the Hilbert transform relation the phase error can be 
compensated by prefiltering the signal by a single half-sample delay operator 

( ) .21−= zzD  Many types of fractional delay filters are suitable for that purpose [3, 

5, 10, 11, 15]. In data acquisition devices, the half-sample delayed signal can be 
obtained by increasing the sampling rate by two. 

In this work, the half-sample delaying prefilter ( )zD  was constructed by the B-
spline transform interpolation and decimation procedure [6]. The method yields a 
half-sample delay filter, which has a precisely linear phase. Some competing FD 
design methods, such as Thiran filters and Taylor series expansions produce phase 
distortion [5]. To avoid the implementation of the IIR-type prefilter, we divided the 
half-sample delay operator into two FIR-type prefilters (26). This idea yields shift-
invariant complex wavelets, whose real and imaginary parts are Hilbert pairs. In 
VLSI applications, the need of the design of only one real-valued CQF tree means a 
significant advantage. 

In this work, we applied a single scaling function ( )zH0  for the construction of 

the complex CQF tree. However, the present results can be generalized to include 
the CQF trees consisting of a sequence of different scaling filters and the 
corresponding wavelet filters obeying the PR condition (2). For example, we may 
apply the time-reversed CQF filter bank having the impulse response 

 [ ] [ ].~
00 nNhnh −=  (27) 

In z-transform domain, we have 

 ( ) ( ),~
10 zHzH −=  

( ) ( )zHzH −= 01
~  (28) 
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which are the quadrature mirror filters (QMFs) in respect to the original CQF bank. 
A drawback in complex CQF filter banks comes from the asymmetric energy 
distribution of the wavelets (skewed envelope), which may arise unwanted blurring 
in image processing and destroys the precise statistical processing of signals in 
multi-scale analysis [9]. By altering the scaling functions in the CQF tree the 
nonlinear phase effects can be highly reduced. 
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