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Abstract 

Watson [18] used boundary layer theory and a constant velocity profile to 
study the radial spread of a liquid jet over a horizontal plane. In this work, 
we also use boundary layer approach but with the incorporation of Lamb’s 
velocity profile to study two-dimensional motion of laminar flow of a 
liquid with circular hydraulic jump. Based on this model, a new relation is 
obtained for the following parameters: displacement thickness, momentum 
thickness and the position of the jump. Comparison of the approximate 
values obtained based on Karman-Pohlhausen [14] method with the exact 
values due to Blasius [2] shows that the error in the shear rate relation on 
the plane is only about 1.5% while the error in the thickness ratio is about 
2.6%. These percentages, which are smaller than those of Watson [18], 
show remarkable improvement of our work upon that of Watson. Besides, 
our values also compare rather favourably with the exact values [2]. 
Finally, our analysis reveals that the depth of the fluid on the plane is 
dependent on the velocity profile used. 
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1. Introduction 

When a vertical jet is directed upon a horizontal plate, it spreads out radially in a 
thin layer bounded by a circular hydraulic jump, on the inside where the depth is 
smaller and on the outside where the depth is greater (Watson [18]). Watson [18] 
studied the motion in the thin layer by means of boundary layer theory but with the 
inclusion of a constant velocity profile. He observed that the depth of the flow was 
much greater on the outside of the jump than on the inside, and hence the condition 
at the jump might be simplified. The formation of the thin layer and the circular 
jump was first noticed by Rayleigh [17] who derived the properties of bores and 
jumps. 

Bohr et al. [3] extended the work on circular hydraulic jump using the shallow 
water approach. They showed that circular hydraulic jump could be qualitatively 
understood using simplified equations of the shallow water type which included 
viscosity. They also concluded that it was not possible to determine the position of 
the jump from ideal theory. Craik et al. [5] also contributed to the study of circular 
hydraulic jump using experimental approach. They described new observations of 
this phenomenon. In addition, they examined a previously unreported instability of 
the jump and showed this to arise when the local Reynolds number jR  just ahead of 

the jump exceeded a critical value of 147. Other contributors include, notably, 
Belanger [1], Bouhadef [4], Felice [6], Felice and Francesco [7], Glauert [8], Groves 
[9], Huguera [10], Kundu and Cohen [11], Lamb [12], Olsson and Turkdogan [13], 
Rainville and Pinkel [15], Rajput [16], etc. 

In this paper, we discuss circular hydraulic jump by means of boundary layer 
theory but with the inclusion of a velocity profile due to Lamb [12]. Our results 
agree reasonably with the exact values. Our work shows an improvement upon that 
of Watson. For convenience, we consider the following regions of flow: 

i. The region .0 0xx <<  Here the speed at the edge of the boundary layer is 

taken as the constant .0U  When ,0xx <  we have h<δ  and ( ) .0UxU =  

Here also an approximation to the Blasius type of solution will be derived. 

ii. The region .0xx >  Here, there is a similarity resolution with h=δ  and 

( ) .0UxU <  
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iii. The region .0xx =  Here h=δ  and the whole flow is of the boundary 

layer type. 

Note that 0x  is given by the condition ,h=δ  so that the whole flow passes through 

the boundary layer. 

2. Ideal Theory 

The treatment of the problem of two-dimensional flow here applies only to 
laminar flow in which viscosity is completely neglected. The flow here might be 
realized by a two-dimensional jet striking a horizontal plane, or by the flow of water 
under a sluice gate, Glauert [8]. If the flow was realized physically by one of the 
methods above, 0U  would be the speed of the impinging jet, or the speed attained 

by the flow under the sluice gate a short distance downstream of the gate. 

The ideal or inviscid flow has the uniform depth, a, given by 

 .
0u

Qa =  (2.1) 

The characteristic Reynolds number is 

 .0
υ

=
υ

= QaUR  (2.2) 

Here Q is the volume flux and υ is the kinematic viscosity. The condition to be 
applied at the jump (Belanger [1]) is that the thrust of the pressure is equal to the rate 
at which momentum is destroyed. If d is the depth outside the jump and h is the 
depth inside it, then the thrust of the pressure per unit length of wave (jump) is 

( ),2
1 22 hdg −ρ  

where ρ is the density and g is the gravitational acceleration. 

The speed of flow inside the jump is 0U  and outside it is ,1U  where 

 .1 d
QU =  (2.3) 
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The rate of destruction of momentum per unit length of wave is therefore 

( ).2
1

2
0 dUhU −ρ  

Thus 

 ( ) ( ).2
1 2

1
2
0

22 dUhUhdg −ρ=−ρ  (2.4) 

Using (2.1) and (2.3) in (2.4) leads to 

 ( ) .1
2
1

2
222

⎥⎦
⎤

⎢⎣
⎡ −=− da

hQhdg  (2.5) 

When ,dh <<  (2.5) reduces to (by neglecting 2h  and )1
d  

 2

2
2

2
1

a
hQgd =  (2.6) 

which becomes, when ,ah =  

 .2

22

a
QQd =  (2.7) 

A better approximation is to neglect only 
d
h  in (2.5), so that the pressure thrust 

inside the wave is ignored but the momentum outside it is included. Thus, from 
(2.5), we get 

 .112
1

22

2

2

2
⎟
⎠
⎞

⎜
⎝
⎛ −=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
− dd

h
a
Q

d
hg  (2.8) 

Neglecting 2

2

d
h  and setting ah =  in (2.8) and then using (2.7) yield after 

multiplying the resulting equation by ,2

2

Q
ad  

 .11
2 2

2
=⎟

⎠
⎞⎜

⎝
⎛ + d

a
Q

Qad  (2.9) 
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Since ,dh <<  (2.5) becomes (by neglecting )2h  

 .2 3

2

22

2

d
Q

da
hQg −=  (2.10) 

Putting ah =  in (2.10) and multiplying the result by 2

2

Q
ad  leads to 

 .1
2 2

2
=+

d
a

Q
gad  (2.11) 

Thus, when the depth h is regarded as constant and equal to a, the ideal or inviscid 
theory, identical with the theory of Rayleigh [17], leaves the position of the jump 
indeterminate as in [3] but gives the result (2.9), or if the pressure thrust ahead of the 
wave is neglected, it leads to (2.11). 

3. Blasius Solution of Two-dimensional Laminar Boundary Layer Equations 

Let x, y be the rectangular coordinates with y vertically upwards and u, v the 
corresponding velocity components, then the equations for laminar flow are 

,0=+
∂
∂

dy
dv

x
u  (3.1) 

,2

2

y
u

y
uvx

uu
∂

∂υ=
∂
∂+

∂
∂  (3.2) 

0== vu   at  ,0=y  (3.3) 

0=
∂
∂
y
u   at  ( ),xhy =  (3.4) 

( )

∫ =
xh

Qudy
0

,  (3.5) 

where Q is the volume flux in the positive x-direction. The total flow from the two-
dimensional jet would be 2Q, and the flow under the sluice gate is Q. 

A solution of these equations can be found based on Blasius type of velocity 
profile given by 
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 ( ) ,, 2
1

0
10 yx

UfUu ⎥⎦
⎤

⎢⎣
⎡
υ

=ηη′=  (3.6) 

and 

( )∞<η<=′′′+′′ 002 111 fff  (3.7) 

is the Blasius equation with boundary conditions 

 .
at1

0at0

1

11

⎭
⎬
⎫

∞=η=′

=η=′=

f

ff
 (3.8) 

[Here ′ denotes differentiation with respect to η.] 

Thus the velocity distribution has the Blasius flat-plate profile, and the boundary 

layer thickness is .
0 ⎥⎦
⎤

⎢⎣
⎡ υ
U

x  Before considering the approximate solution, we shall first 

find the exact solution of the boundary layer equations (3.1)-(3.5). 

Thus following Blasius [2], it follows that 

  (i) ( ) .332.001
00

2
1

0
=′′=⎟

⎠
⎞⎜

⎝
⎛
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛ υ

=
fy

u
UU

x
y

 (3.9) 

 (ii) The displacement thickness 1δ  is 

 .7208.1 2
1

0
1 ⎟

⎠
⎞

⎜
⎝
⎛ υ=δ U

x  (3.10) 

(iii) The momentum thickness 2δ  is 

 .664.0 2
1

0
2 ⎟

⎠
⎞

⎜
⎝
⎛ υ=δ U

x  (3.11) 

From (3.10) and (3.11), we find 

 21 5915.2 δ=δ  (3.12) 

so that the thickness ratio ∗H  becomes 

 .5915.2
2
1 =
δ
δ

=∗H  (3.13) 
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Thus the value of ( )01f ′′  in (3.9) and the value of ∗H  in (3.13) constitute the exact 

solution. 

4. Similarity Solution of the Boundary Layer Equations (3.1)-(3.2) 

In this section, a similarity solution will be derived by direct assumption of the 
velocity profile due to Lamb [12] given by 

 ( ) ( ) ( ) ,, xh
yfxUu =ηη=  (4.la) 

where 

 ( ) ⎟
⎠
⎞⎜

⎝
⎛ ηπ=η 2sinf  (4.1b) 

is the similarity-profile function. 

When the boundary layer finally absorbs the whole flow, the velocity profile 
changes as x increases from the Blasius profile (3.6) to the similarity profile (Lamb’s 
profile) (4.la)-(4.lb). Here ( )xU  is the speed at the free surface ( )xhy =  and ( )xh  

is the depth of the fluid on the plane. Using the boundary conditions (3.3) and (3.4), 
we find 

 

( ) ( )

( ) ( )

( ) ( )

.

,02cos21

,12sin1

0,00sin0

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

==ππ=′

==π=

===

xhyf

xhyf

yf

 (4.2) 

From (3.5), 

 ∫ η⎟
⎠
⎞⎜

⎝
⎛ ηπ=

1

0
.2sin dUhQ  (4.3) 

Thus Uh is a constant, and (3.1) then leads to 

 ( )ηη′=υ fhU  (4.4) 

or 

 .2sin ⎟
⎠
⎞⎜

⎝
⎛ ηπη′=υ hU  (4.5) 
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Using (4.la) and (4.4) equation of motion (3.2) reduces to 

 ( ) ( ),22 η′=η′′υ fUhf  (4.6) 

i.e., 

,2sin2sin4
222

2
⎟
⎠
⎞⎜

⎝
⎛ ηπ′=⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛ ηππ−υ Uh  

i.e., 

 ⎟
⎠
⎞⎜

⎝
⎛ ηπ′

π
=⎥⎦

⎤
⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ ηπ−υ 2sin4

2sin 22
2 Uh  (4.7) 

from which it follows that 2

24
π

′Uh  is a constant. 

Also, ,02sin ≤⎟
⎠
⎞⎜

⎝
⎛ ηπ−  since the shearing stress 

y
u
∂
∂μ=τ  is greatest at the plate. 

Thus, it is convenient to write 

 ,2
34 22

2 υα
−

=′
π

Uh  (4.8) 

where α is a number. Using (4.8) in (4.7), we find 

⎟
⎠
⎞⎜

⎝
⎛ ηπυα

−
=⎥⎦

⎤
⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ ηπ−υ 2sin2

3
2sin 22  

or 

 .2sin32sin2 22 ⎟
⎠
⎞⎜

⎝
⎛ ηπα−=⎥⎦

⎤
⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ ηπ−  (4.9) 

Multiplying (4.9) by ,2cos2 ⎟
⎠
⎞⎜

⎝
⎛ ηππ=′f  we find 

⎟
⎠
⎞⎜

⎝
⎛ ηππ⋅⎟

⎠
⎞⎜

⎝
⎛ ηπα−=⎟

⎠
⎞⎜

⎝
⎛ ηππ⋅⎥⎦

⎤
⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ ηπ− 2cos22sin32cos22sin2 22  

or 

 .2sin2cos 32
⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ ηπ

η∂
∂α−=⎥⎦

⎤
⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ ηπ

η∂
∂  (4.10) 
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Integrating (4.10), we have 

 ( ).const2sin2cos 32 =+⎟
⎠
⎞⎜

⎝
⎛ ηπα−=⎟

⎠
⎞⎜

⎝
⎛ ηπ AA  (4.11) 

Using the last two conditions of (4.2) in (4.11), we have 

 2α=A  (4.12) 

so that (4.11) becomes 

 .2sin12cos 322
⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ ηπ−α=⎟

⎠
⎞⎜

⎝
⎛ ηπ  (4.13) 

Since ,02cos ≥⎟
⎠
⎞⎜

⎝
⎛ ηπ  we have from (4.13), 

 .

2sin1

2cos

2
1

3
⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ ηπ−

⎟
⎠
⎞⎜

⎝
⎛ ηπ

=α  (4.14) 

Let .2sin ⎟
⎠
⎞⎜

⎝
⎛ ηπ=′t  Then .2cos2 ⎟

⎠
⎞⎜

⎝
⎛ ηππ=

η
′

d
td  

Substituting these in (4.14), we find 

 [ ] .12 2
1

3 −
′−

η
′

π
=α td

td  (4.14)′ 

Separating variables and integrating (4.14)′ becomes 

 [ ]∫
⎟
⎠
⎞⎜

⎝
⎛ ηπ −

′′−
π

=αη 2sin

0
2
1

3 .12 tdt  (4.15) 

Applying the condition ( ) 11 =f  of (4.2), we find 

 [ ] .12 1

0
2
1

3∫ ′′−
π

=α
−

tdt  (4.16) 

Using change of variables ,3 st =′  (4.16) becomes 

 ( )∫
−−

−⋅
π

=α
1

0
2
1

3
2

.13
12 dsss  (4.17) 
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Equation (4.17) is a well known integral whose solution is written in the form 

 ,

6
5

3
1

2
1

3
12

⎟
⎠
⎞⎜

⎝
⎛Γ

⎟
⎠
⎞⎜

⎝
⎛Γ⎟

⎠
⎞⎜

⎝
⎛Γ

⋅
π

=α  (4.18) 

where ( )nΓ  is the gamma function. 

Now, (4.14) can also be written as 

2
1

3
2sin1

2sin2

⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ ηπ−

⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ ηπ

η
⋅

π=α d
d

 

or 

.2sin2sin12 2
1

3
⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ ηπ

η
⋅⎥⎦

⎤
⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ ηπ−⋅

π
=α

−

d
d  

Multiplying both sides of this expression by ,2sin ⎟
⎠
⎞⎜

⎝
⎛ ηπ  we find 

.2sin2sin12sin2
2sin 2

1
3

⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ ηπ

η
⋅⎥⎦

⎤
⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ ηπ−⋅⎟

⎠
⎞⎜

⎝
⎛ ηπ⋅

π
=⎟

⎠
⎞⎜

⎝
⎛ ηπα

−

d
d  (4.18)′ 

Separating variables and integrating from 0=η  to 1, (4.18)′ becomes 

∫ ∫ ⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ ηπ⋅⎥⎦

⎤
⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ ηπ−⋅⎟

⎠
⎞⎜

⎝
⎛ ηπα⋅

π
=η⎟

⎠
⎞⎜

⎝
⎛ ηπ

−
−

1

0

1

0

2
1

31 .2sin2sin12sin2
2sin dd  (4.19) 

Again, using change of variables λ=⎟
⎠
⎞⎜

⎝
⎛ ηπ2sin3  in the RHS of (4.19), we find 

( ) ( ),12
2sin

1

0

1

0
3
1

2
1

3
1

1∫ ∫ λλ−λα⋅
π

=η⎟
⎠
⎞⎜

⎝
⎛ ηπ

−− dd  

i.e., 

 ( )∫ ∫ λλ−λα⋅
π

=η⎟
⎠
⎞⎜

⎝
⎛ ηπ

−−−
1

0

1

0
2
1

3
1

1 .13
12

2sin dd  (4.19)′ 
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Simplifying the RHS of (4.19)′, we obtain 

 ∫ α
=

α

π⋅
π

=
⎟
⎠
⎞⎜

⎝
⎛Γ

⎟
⎠
⎞⎜

⎝
⎛Γ⎟

⎠
⎞⎜

⎝
⎛Γ

α
⋅

π
=η⎟

⎠
⎞⎜

⎝
⎛ ηπ

1

0 22 .
33
4

33
22

6
5

2
1

3
2

3
12

2sin d  (4.20) 

But 

 ∫ π
=η⎟

⎠
⎞⎜

⎝
⎛ ηπ

1

0
.2

2sin d  (4.21) 

Therefore, from (4.20) and (4.21), we have 

π
=

α

2
33
4

2  

whence 

 .09963.1=α  (4.22) 

Substituting (4.20) into (4.3), we find 

 .4
33 2 QUh ⋅α=  (4.23) 

We now solve for ( )xU  and ( )xh  for the similarity solution using (4.8) and 

(4.23). From (4.8), we have 

.4
1

2
3 2

2
2 π⋅⋅υα

−
=′

h
U  

Using (4.23) in this last expression, we find after simplification 

 .
27
4

2
3

22

22

Q
U

dx
dUU

α

π⋅υ⋅
−

==′  (4.24) 

Separating variables and integrating (4.24) gives 

 const.
9
21

22

2
+

α

υπ=
Q

x
U  (4.25) 

Putting the 22

2

9
2.const

Qα

υπ=  in (4.25) leads to 

( )
22

2

9
21

Q
x

U
+υ

α

π=  
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or 

 ( ) ( ) .
2
9 2

2

2

+υπ

α= x
QxU  (4.26) 

Here  is an arbitrary constant whose presence merely indicates that a shift of origin 

is possible. Accordingly, substituting (4.26) into (4.23) and simplifying we find 

 ( ) ( ) .
32

2

Q
xxh +υπ=  (4.27) 

Equation (4.26) shows that ( )xU  varies inversely as x while (4.27) shows that ( )xh  

grows in direct proportion to x. This is possible within the vicinity of the jump. 

5. Approximate Solution using Karman-Pohlhausen Method with 
Lamb’s Profile 

Karman-Pohlhausen momentum integral equation for two-dimensional laminar 
flow (see [13]) is given by 

 ( )∫
δ

=
⎟
⎠
⎞⎜

⎝
⎛
∂
∂υ=−

∂
∂

0 0

2
0

yy
udyuuUx  (5.1) 

with Lamb’s velocity profile (4.1a)-(4.1b) becoming 

 ( ) .,2sin0 x
yUu

δ
=η⎟

⎠
⎞⎜

⎝
⎛ ηπ=  (5.2) 

Here δ is the boundary-layer thickness. From (5.2), we find 

 ( ) ( ) ( ) .20cos2 00
0 xUxUy

u
y δ

π=
δ
π=⎟

⎠
⎞⎜

⎝
⎛
∂
∂

=
 (5.3) 

From (5.1), 

( ) ( )∫ ∫
δ

α
⋅δ=η⎟

⎠
⎞⎜

⎝
⎛ ηπδ=

0

1

0 2
2
0

2
00

33
4

2sin xUdxUudyU    (using (4.20)) (5.4) 

and 

 ( ) ( )∫ ∫
δ δ

=η⎟
⎠
⎞⎜

⎝
⎛ ηπδ=

0

1

0

2
022

0
2 .22sin xUdxUdyu  (5.5) 
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Substituting (5.3), (5.4) and (5.5) into the momentum integral equation (5.1), we 
obtain 

 ( ) ( ) .236
338

0
2
02

2

xUxdx
dU

δ
π⋅υ=δ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

α

α−  (5.6) 

Integrating (5.6) and simplifying, we find 

 ( )[ ]
( )

,
338

36
02

2
2 CU

xx +υ⋅
α−

πα=δ  (5.7) 

where C is a constant. If (5.7) were to remain valid as ,0→x  then ;0=C  or when 
ax >>  (where a is the uniform depth of the ideal or inviscid flow), then C could be 

neglected. 

Consequently, when ,0xxa <<<  

 ( )[ ]
( ) 02

2
2

338
36

U
xx υ⋅

α−

πα=δ  (5.8) 

or 

 ( )[ ]
( ) Q

xax υ⋅
α−

πα=δ 2

2
2

338
36    (using (2.1)). (5.9) 

From (5.8), 

 ( ) .
338

36 2
1

2

22
1

0
⎥
⎦

⎤
⎢
⎣

⎡

α−

πα
⎥⎦
⎤

⎢⎣
⎡ υ=δ U

xx  (5.10) 

Hence 

 .
338

36
2
1 2

1

2

2

0

2
1

0
⎥
⎦

⎤
⎢
⎣

⎡

α−

παυ
⎥⎦
⎤

⎢⎣
⎡ υ=δ −

UU
x

dx
d  (5.11) 

Comparing (5.11) and (5.6), we have 

( ) ,
338

36
2
1

338
361

2
2
1

2

2

0

2
1

02

2

2
0

0 ⎥
⎦

⎤
⎢
⎣

⎡

α−

παυ
⎥⎦
⎤

⎢⎣
⎡ υ=⎥

⎦

⎤
⎢
⎣

⎡

α−

α⋅
δ
π⋅υ

−

UU
x

UxU  
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which on simplification yields 

 ( )0
36

338
2

1 2
1

2

2

00

2
1

0
fy

u
UU

x
y

′′=⎥
⎦

⎤
⎢
⎣

⎡

πα

α−π=⎥⎦
⎤

⎢⎣
⎡
∂
∂

⎥⎦
⎤

⎢⎣
⎡ υ

=
 (5.12) 

(by virtue of (3.9)). 

Substituting (4.22) into (5.12), we find 

 ( ) .327.001
00

2
1

0
=′′=⎥⎦

⎤
⎢⎣
⎡
∂
∂

⎥⎦
⎤

⎢⎣
⎡ υ

=
fy

u
UU

x
y

 (5.13) 

Substituting Lamb’s velocity profile (5.2) into the displacement thickness 

 ,1
0 0

1 ∫
δ

⎥⎦
⎤

⎢⎣
⎡ −=δ dyU

u  (5.14) 

we find 

∫ ⎥⎦
⎤

⎢⎣
⎡

α
−δ=η⎥⎦

⎤
⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ ηπ−δ=δ

1

0 21
33
412sin1 d  

or 

 .
33

433
2

2
1 ⎥

⎦

⎤
⎢
⎣

⎡

α

−αδ=δ  (5.15) 

Similarly, substituting (5.2) into the momentum thickness 

 ,1
0 00

2 ∫
δ

⎥⎦
⎤

⎢⎣
⎡ −=δ dyU

u
U
u  (5.16) 

we have 

∫ ⎥⎦
⎤

⎢⎣
⎡ −

α
δ=η⎥⎦

⎤
⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ ηπ−⎟

⎠
⎞⎜

⎝
⎛ ηπδ=δ

1

0 2
2

2 2
1

33
4

2sin2sin d  

or 

 .
36

338
2

2
2 ⎥

⎦

⎤
⎢
⎣

⎡

α

α−δ=δ  (5.17) 
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Consequently, the thickness ratio ∗H  is 

 .6596.2
338

836
2

2

2
1 =

α−

−α=
δ
δ

=∗H  (5.18) 

Comparison of the approximate values (5.13) and (5.18) with the accurate values 
(3.9) and (3.13) shows that the error in the shear rate relation ( )0f ′′  is about 1.5% 

while the error in the thickness ratio ∗H  is about 2.6%. The boundary layer just 
absorbs the whole flow when .0xx =  

When ,0xx <  the total depth h is given by the volume flux condition 

 ( )∫ =δ−+η⎟
⎠
⎞⎜

⎝
⎛ ηπδ

1

0
00 .2sin QhUdU  (5.19) 

Substituting (4.21) and (2.1) into (5.19) and using the condition ,h=δ  we have 

after simplification 

 ,2
ah π=  (5.20) 

where a is the jet radius. Since h=δ  when ,0xx =  then using this condition 

together with (5.20) and (2.2) in (5.10), we obtain 

 [ ] ,
324

338
2

2

0
α

πα−
=

aRx  (5.21) 

where R given by (2.2) is the characteristic Reynolds number. Now the value of  in 
(4.26) and (4.27) can be estimated as follows. Using ,0xx =  ( ) 0UxU =  when 

h=δ  in (4.26), we find 

 ( )+υπ

α=
0

2

2

2
0

2
9

x
QU  (5.22) 

which gives, on solving for ,  

 .
2

9
02

2

0

2
xQ

U −
υπ

α=  (5.23) 
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Substituting (5.21) into (5.23) and using (2.1) and (2.2), we get after simplification 

 [ ( ) ] .
348

36163216
22

324

πα

πα−−α
=

aR  (5.24) 

6. Jump Condition 

The position 1xx =  of the hydraulic jump is determined by equating the rate of 

loss of momentum to the thrust of the pressure. The condition of the momentum is 
thus 

 ∫ ρ−ρ=ρ
h

dUdyugd
0

2
1

22
2
1  (6.1) 

or using (2.3), 

 ∫=+
h

dyud
Qgd

0
2

2
2 .2

1  (6.2) 

Equation (6.2) is the jump condition. We note that for the case 01 xx <  (see [18]), 

 ( )∫ ∫ δ−+η⎟
⎠
⎞⎜

⎝
⎛ ηπδ=

h
hUdUdyu

0

1

0
2
0

22
0

2 .2sin  (6.3) 

Substituting (6.3) into (6.2), the jump condition for the case 01 xx <  takes the form 

 ( ),2sin2
1 1

0
2
0

22
0

2
2 ∫ δ−+η⎟

⎠
⎞⎜

⎝
⎛ ηπδ=+ hUdUd

Qgd  (6.4) 

i.e., 

 ( ).2
1

2
1 2

0
2
0

2
2 δ−+⋅δ=+ hUUd

Qgd  (6.5) 

Using (5.20) in (6.5) gives 

 .222
1 2

0
2

2
⎥⎦
⎤

⎢⎣
⎡ δ−π=+ aUd

Qgd  (6.6) 
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Substituting (5.10) into (6.6), we find 

 .
338

36
2
1

22
1 2

1

02

2
2
0

2
2

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡ υ

α−

πα−π=+ U
xaUd

Qgd  (6.7) 

Applying (2.1) to (6.7) gives 

 .
338

36
2
1

22

2
1

2

22

2

22

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡ υ

α−

πα−π=+ Q
xaa

d
a

Q
agd  (6.8) 

Substituting (2.2) into the RHS of (6.8) and changing x to ,1x  we have 

 .
338

36
2
1

22

2
1

1
2

22

2

22

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡

α−

πα−π=+ R
axa

d
a

Q
agd  (6.9) 

Solving for ,1x  we obtain 

 
2

2

2

2

2
1 2

36
338

⎥
⎦

⎤
⎢
⎣

⎡
−−π⎥

⎦

⎤
⎢
⎣

⎡

πα

α−= d
a

Q
agd

aR
x    for   .01 xx <  (6.10) 

For the case ,01 xx >  we have 

 ∫ ∫ η⎟
⎠
⎞⎜

⎝
⎛ ηπ=

h
dhUdyu

0

1

0
222 .2sin  (6.11) 

Substituting (6.11) into the jump condition (6.2), we have 

 ∫ ⋅=η⎟
⎠
⎞⎜

⎝
⎛ ηπ=+

1

0
222

2
2 .2

1
2sin2

1 hUdhUd
Qgd  (6.12) 

Using (4.26) and (4.27) in (6.12), we find after simplification 

 ( ) .2
1

16
327

12
2

2

4

3

−

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡

π

α=+υ
d

Qgd
Q
x  (6.13) 
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Using (2.2) in (6.13) leads to 

 ,2
1

16
327

12
2

2

4
2

−

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡

π

α=+ d
QgdRQx  (6.14) 

i.e., 

 .
216

327
1

2

2

2

4
−⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡

π

α=
−

d
a

Q
agd

aR
x  (6.15) 

Finally, substituting (5.24) into (6.15) and changing x to ,1x  we obtain 

[ ( ) ] .
348

36163216
216

327
22

3241

2

2

2

4
1

πα

πα−−α
−⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡

π

α=
−

aR
d
a

Q
agd

aR
x  (6.16) 

7. Discussion and Conclusion 

The two-dimensional inviscid theory, which assumes uniform constant 
velocities 10 , UU  before and after the jump respectively, leads to the result (2.11), 

which shows that it is not possible to determine the position of the jump from the 
inviscid theory [3]. We observe that incorporation of viscous effects (2.2) in (2.11) 
coupled with the use of the principles of momentum and continuity at the jump leads 
to the modified result (6.10) for 01 xx <  or (6.16) for .01 xx >  Thus, the position 

1xx =  of the jump is given by (6.10) for 01 xx <  or (6.16) for .01 xx >  The 

difference between the inviscid result (2.11) and the result (6.10) or (6.16) due to 
viscous effects is that (6.10) or (6.16) shows that if the left hand side of (2.11) is less 
than 1, the flow loses total head by friction over the length 1x  until the jump can 

occur. 

In the present work, we observe that comparison of the approximate value 
(5.13) with the exact value (3.9) shows that our percentage error in the shear rate 
relation ( )0f ′′  on the plate is only about 1.5%. Similarly, the percentage error in the 

thickness ratio ∗H  obtained by comparing the approximate value (5.18) with the 
accurate value (3.13) is about 2.6%. These results are adequate for the present 
purpose since they closely tend to the accurate values [2]. Also, these percentages 
which are less than those of Watson show improvement of our work upon that of 
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Watson [18]. However, the position of the jump (6.10) or (6.16) based on viscous 
effects shows a good correspondence to that of Watson [18], provided the liquid 
flow remains laminar. Our analysis also shows that the total thickness of the layer h 
(5.20) is directly proportional to a, the radius of the impinging jet; that is, h depends 
chiefly on the model (velocity profile) used. Finally, (4.27) shows that ( )xh  depends 

linearly on x, while (4.26) shows that ( )xU  depends inversely on x. The relation 

(4.27) also means that x starts from the leading edge of the boundary layer, whereas 
the parameter  in this relation is the distance from the centre of the impinging jet to 
the leading edge of the boundary layer. Here the boundary layer constitutes an 
obstacle over which the upstream (incident) flow jumps and falls off at the edge of 
the plate. 
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