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Abstract

Let G be a finite abelian group and 1<r <. We prove that every
locally definable C"G manifold admits a unique locally definable C*G

manifold structure up to locally definable C*G diffeomorphism.

1. Introduction

Let G be a finite group and 1 <r < oo. Let M be an o-minimal exponential

expansion (R, +, -, <, €%, ...) of the standard structure R = (R, +, -, <) of the field

R of real numbers admits the C™ cell decomposition and has piecewise controlled
derivatives.

In this paper, we consider existence of locally definable C*G manifold
structures of a locally definable C'G manifold and uniqueness of locally definable

C™G manifold structure up to locally definable C*G diffeomorphism. If G is a
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finite abelian group and 1< s < r < oo, then unique existence of locally definable

C"G manifold structure of a locally definable C°*G manifold is studied in [11].

Let 0 < r < oo. A locally definable C" manifold is a C" manifold admitting a
countable system of charts whose gluing maps are of class definable C”. If this
system is finite, then it is called a definable C" manifold. Definable C"G manifolds
are studied in [5], [6], [7], [8], [9]. A locally definable C” manifold is affine if it can
be imbedded into some R” in a locally definable C” way. We can define locally
definable C"G manifolds and affine locally definable C”'G manifolds in a similar
way of equivariant definable cases. Locally definable C”"G manifolds are
generalizations of definable C”G manifolds and they are studied in [11] when 7 is a
positive integer.

In this paper, everything is considered in M, any map is continuous and every
manifold does not have boundary unless otherwise stated.

Theorem 1.1. Let G be a finite group and 1 < r < . Then every affine locally
definable C"G manifold is locally definably C'G diffeomorphic to some locally
definable C*G manifold.

Theorem 1.2. Let G be a finite group. Then for any two affine locally definable
C*G manifolds, they are c'c diffeomorphic if and only if they are locally
definably C*G diffeomorphic.

If M is polynomially bounded, then Theorem 1.2 is not always true. Even in
the non-equivariant Nash category, there exist two affine Nash manifolds such that
they are not Nash diffeomorphic but C* diffeomorphic [14], and that for any two
affine Nash manifolds, they are locally Nash diffeomorphic if and only if they are
Nash diffeomorphic.

Existence of C®G manifold structures of proper C*G manifolds and
uniqueness of them are studied in [3] and [4], respectively, when G is a C® Lie
group. Moreover if G is a compact C® Lie group, then for any two C®G manifolds,

they are C”G diffeomorphic if and only if they are C®G diffeomorphic [13].
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Theorems 1.1 and 1.2 are locally definable C* versions of [2] and [3], respectively,

when G is a finite group.

The above theorems are locally definable C* versions of results of [10].

In the non-equivariant setting, we have the following.

Theorem 1.3. If 1 < r < oo, then every n-dimensional locally definable C”

manifold X is locally definably C" imbeddable into R*"*!.

The above theorem is the locally definable version of Whitney’s imbedding

theorem (e.g., 2.14 [2]). The definable C” version of Theorem 1.1 is known in [8]

when 7 is a non-negative integer.

If M =R and r = oo, then Theorem 1.3 is not true. The assumption that M

is exponential is necessary.

As a corollary of Theorem 1.3, we have the following.

Theorem 1.4. Let G be a finite abelian group and 1< r < oo. Then every
locally definable C"G manifold is affine.

By Theorems 1.1-1.4, we have the following theorem.

Theorem 1.5. Let G be a finite abelian group and 1< r < . Then every
locally definable C"G manifold admits a unique locally definable C*G manifold

structure up to locally definable C*G diffeomorphism.

2. Locally Definable C"G Manifolds

Let f:U — R be a definable C” function on a definable open subset

U c R". We say that f has controlled derivatives if there exist a definable

continuous function u : U — R, real numbers C;, C,, ... and positive integers
Ey, E,, ... such that | D% f(x) | < C‘(X‘u(x)E\“\ forall x e U and a € (N U {0})",

o]
where D -9 and |a| =0y +---+a,. We say that M has piecewise

axlal cee 8x1°°”

controlled derivatives if for every definable C* function f :U — R defined in a
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definable open subset U of R", there exist definable open sets Uy, ..., Uy c U

such that dim(U — U'_,U;) < n and each f|U, has controlled derivatives.

A subset X of R” is called locally definable if for every x € X there exists a
definable open neighborhood U of x in R” such that X N U is definable in R”".

Clearly every definable set is locally definable. Remark that any open subset of R”
is locally definable and that every compact locally definable set is definable. A more
general setting of locally definable sets is studied in [1].

Let U c R" and ¥ < R™ be locally definable sets. We call a map f :U
— V locally definable if for any x € U there exists a definable open neighborhood
W, ofxin R" suchthat f'|U W, is definable.

Note that for any locally definable map f between locally definable sets X and 7Y,
if X is compact, then f(X) is a definable set and f: X — f(X)(cY) is a
definable map.

Remark that the maps f;, /> : R —> R defined by fi(x)=sinx, f5(x)=
cos x, respectively, are analytic but not definable in any o-minimal expansion of R.
However they are locally definable in R,,. Remark further that the field Q (= R)

of rational numbers is not a locally definable subset of R.

Proposition 2.1 [11]. Let X, Y and Z be locally definable sets and let [ : X
— Y and g:Y — Z be locally definable maps. Then go f : X — Z is locally
definable.

We can define locally definable groups and affine locally definable groups in a
similar way of definable cases. But we do not give their definitions here because we
restrict our attention to finite groups.

A representation map of G is a group homomorphism from G to some O(n). A
representation of G means the representation space of a representation map of G.

Recall the definition of locally definable C"G manifolds [11].

Definition 2.2 [11]. Let 1 < r £ o.

(1) A locally definable C" submanifold of a representation Q of G is called a
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locally definable C"G submanifold of Q if it is G invariant.

(2) A locally definable C"G manifold is a pair (X, 0) consisting of a locally

definable C” manifold X and a group action 0 of G on X' such that 0 : Gx X — X
is a locally definable C” map. For simplicity of notation, we write X instead of

(X, 0). Clearly each definable C"G manifold is a locally definable C”G manifold.

(3) Let X and Y be locally definable C"G manifolds. A locally definable C”
map is called a locally definable C"G map if it is a G map. We say that X and Y are

locally definably C"G diffeomorphic if there exist locally definable C”G maps
f:X—>Yand h:Y — X suchthat foh =id and ho f =id.

(4) A locally definable C"G manifold is said to be affine if it is locally

definably C"G diffeomorphic to a locally definable C"G submanifold of some

representation of G.

Note that we can define locally definable G manifolds for a locally definable
group G, but in this paper we do not use these notions.

Recall existence of definable C"'G tubular neighborhoods.

Theorem 2.3 ([9], [6]). Let r be a non-negative integer, © or ®. Then every

definable C"G submanifold X of a representation Q of G has a definable C'G
tubular neighborhood (U, 0y) of X in Q, namely U is a G invariant definable open

neighborhood of X in Q and Oy : U — X is a definable C"G map with 0y | X

=idy.

Let G ={gj, ..., g} and let fbe a C"G map from a C"G manifold M to a

representation Q of G. Then the averagingmap 4: M — Q is
1 m
N -1,
A(f) () = ZZI &' (g)
1=

By using [7], we have the following lemma.

Proposition 2.4 [7]. (1) A(f) is equivariant, and A(f) = f if fis equivariant.
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(2) If fis a polynomial map, then so is A(f).

(3)If 0 < r < o and flies in the set C" (M, Q) of C" maps from M to Q, then

A(f) e C"(M, Q).

@) 4:C"(M,Q)— C"(M,Q), fr> A(f) (0 <r <o) is continuous in the
C" Whitney topology.

(5) If M is a definable C"G manifold, f'is a definable C" map and 0 < r < w,
then A(f) is a definable C"G map.

(6) If M is a locally definable C"G manifold, f is a locally definable C" map
and 0 < r < o, then A(f) is a locally definable C"G map.

Let K be a subgroup of G. Suppose that S is an affine definable C*K manifold.

Then we know that the twisted product G xg S with the standard action G x
(Gxg S) > Gxg S, (g, g, s]) = [gg', s] is a definable C*G manifold [9].

We need the following proposition to prove Theorem 1.1.

Proposition 2.5. Let X be a locally definable C*”G manifold. Suppose that K is
a subgroup of G and N is an affine definable C*K manifold. If f : N - X isa
locally definable C*K map, then

w(f):Gxg N > X, (g n) = gf(n)

is a locally definable C*G map.

Proof. By the property of quotient manifolds, u(f) is a C*G map. Thus it
suffices to prove that p(f) is locally definable. Let 7 be the orbit map G x N —

G xg N. Then mt is a definable C* map. Take x € Gxx N and y e n ' (x) <
G x N. By the assumption and the definition of the G action on G x N,
(f):Gx N - X, u(f)(g, n) = gf(n) is a locally definable C*G map. Hence
there exist definable open neighborhoods U of y and V of [(f)(y), respectively,

such that TW(f)(U) <V and [(f)|U:U —V is a definable C”* map. In
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particular, u(f)|U : U — V is definable. Hence m(U) is open and definable. Since
the graph of u(f)|n(U): n(U) - V < X is the image of that of u(f)|U by
nxidy, W) mU) is definable. o

Definition 2.6. Let X be a definable C*G manifold.

(1) We say that a K invariant definable C* submanifold S of X is a definable K
slice if GS is open in X, S is affine as a definable C*°K manifold, and
p:Gxg S —> GS(c X), [g, x]— gx

is a definable C*G diffeomorphism.

(2) A definable C*K slice S is called linear if there exist a representation Q of

K and a definable C"K imbedding j : Q — X such that j(Q) = S.

(3) We say that a definable C*K slice (resp., a linear definable C*K slice) S
is a definable C* slice (resp., a linear definable C* slice) at x in X if K = G, and
xeS (resp, K =G,, xe§ and j(0) = x).

Recall existence of definable C* slices [9] to prove Theorem 1.2.

Theorem 2.7 [9]. Let X be an affine definable C*G manifold, x € X. Then

there exists a linear definable C*G slice at x in X.
3. Proof of Theorem 1.1

The following lemma is obtained by 2.2.8 [2] and Proposition 2.4.

Lemma 3.1. Let K be a finite group. Suppose that f is a definable C*K map
between definable C*K manifolds M and N. Suppose further that V is an open K
invariant subset of M and that P is a K invariant definable C* submanifold of N
with f(V) < P. Then there exist an open neighborhood N of f|V in the set
Defg (V, P) of definable C*K maps from V to P such that for any h € N, the
map E(h): M — N,

h(x), xeV,

E(h)(x):{f(x) xeM-V
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is a definable C*K map and E : U — Defg (M, N), h > E(h) is continuous in

the C* Whitney topology.

Proposition 3.2. Let X be a locally definable C*G manifold and Y be an affine
definable C*G manifold in a representation Q of G. Then every C*G map f : X
— Y is approximated by a locally definable C*G map h: X — Y in the C*
Whitney topology.

In the Nash case, if 1< 7 < oo, then locally C” Nash diffeomorphisms are
essentially different from C” Nash diffeomorphisms because there exist two affine
Nash manifolds such that they are C* diffeomorphic but not Nash diffeomorphic
[14], and that every C" Nash diffeomorphism between affine Nash manifolds is
approximated by a Nash diffeomorphism [15].

Proposition 3.3 [12]. Every affine definable C*G manifold is definably C*G

diffeomorphic to a definable C*G submanifold closed in some representation Q of
G.

For the proof of Proposition 3.3, we need the condition that M is exponential,
admits the C* cell decomposition and has piecewise controlled derivatives.

Proof of Proposition 3.2. By Proposition 3.3, replacing Q if necessary, we may
assume that Y is a definable C*G submanifold closed in Q. By a way similar to find
a C” partition of unity of C* manifold, we have a locally definable C* partition
of unity {¢; }le subordinates to some locally finite definable open cover {X }le
of X such that X = Uf;-’zlsupp ¢; and X_j is compact. For any j, take an open
neighborhood U; of supp¢; in X such that U_] is compact. Applying the
polynomial approximation theorem, we have a locally definable C* map & iU

— € which approximates f* |U ;. By Theorem 2.3, one can find a definable C *G

tubular neighborhood (U, p) of Y in Q. If our approximation is sufficiently close,

then po ij: | ¢ jh; is a (non-equivariant) C® approximation of f. Since G is a
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finite group, applying Proposition 2.4, we have the required locally definable C*G
map 4 as a C* Whitney approximation of £, |

Proof of Theorem 1.1. Using Lemma 3.1 and Proposition 3.2, a similar proof
of 1.1 [11] proves Theorem 1.1. o

4. Proof of Theorem 1.2

In this section, we prove the following theorem.

Theorem 4.1. Let G be a finite group and let v be a positive integer. Suppose
that Y and Z are affine locally definable C*G manifolds and there exists a C'G
diffeomorphism f Y — Z. Then there exists a locally C*G diffeomorphism
h:Y — Z which is G homotopic to f.

Theorem 1.2 follows from Theorem 4.1.

Let K be a subgroup of G and let X be an affine definable C*°G manifold. By
Theorem 2.7, there exists a linear definable C*K slice S, namely there exists a

definable C*K diffeomorphism i from some representation Q of K to S such that
GS is open in X, and that u:Gxxg Q = GS(c X), w(i)(g, x]) = gi(x) is a

definable C*G diffeomorphism.

For simplicity, we use the following notations. Set B = {x € Q|| x|| < s},
B, ={x e Q]| x||<s}, s>0, B:=Bj, and B° := B, and let denote Dy, Dy,
D and D° by i(By), i(B;), i(B), and i(B°), respectively. Let GD (resp., GD)
denote the closed unit tube (resp., the open unit tube) and let GD; (resp., GDy)
stand for the closed tube (resp., the open tube) of radius s.

To prove Theorem 4.1, we prepare two preliminary results.

Lemma 4.2. Let QO and E be representations of G and let M (vesp., N) be a
definable C*G submanifold of Q (resp., Z). Suppose that F is a G invariant
definable subset of M and that o.: M — N is a C*G map such that o|F :

F — N is definable. Let N be a neighborhood of o in the set C5(M, N) of



112 TOMOHIRO KAWAKAMI

C*G maps from M to N and let V| and V, be compact G invariant definable
subsets of M such that Vi is properly contained in the interior IntVy of V,. Then

there exists x € N such that:
(@ x|FUW : FUV, > N is definable.
(b) x =0 on M — IntV,.

(c) x is G homotopic to o relative to M — Int V.

Proof. Take a non-negative definable C® function f : M — R such that
f=0 on Vj and f=1 on M —IntV,. Notice that if M 1is polynomially

bounded, then such an f'does not necessarily exist. Since G is a finite group and by
Proposition 2.4, we may assume that f'is G invariant.

We approximate o by a polynomial G map B on V, using the polynomial
approximation theorem and Proposition 2.4. By Theorem 2.3, one can find a
definable C*G tubular neighborhood (U, p) of N in E. If the approximation is
sufficiently close, then one can define «: M — N, «(x)= p(f(x)a(x)+
(1= f(x))B(x)). Thenxisa C*G map, and k satisfies Properties (a) and (b). If this

approximation is sufficiently close, then k € 91 because x and a coincide with

outside of a compact set V5.
The map H : M x[0,1] - N defined by H(x, t) = p((1 - ¢) a(x) + tx(x))
gives a G homotopy relative to M — IntV, from o to k. i
Proposition 4.3. Let QQ and E be representations of G. Let M — Q, N c E be
affine locally definable C*G manifolds and A be a closed G invariant locally

definable subset of M. Suppose that f : M — N is a C*G diffeomorphism such
that f|A: A — N is locally definable, and that x € M. Suppose further that

j: Q' — S is alinear definable C* slice at x in Q. If GDyy (\ M is compact, then
there exists a C*G diffeomorphism h: M — N such that:
(1) h|AU(GDNM): AU(GDN M) — N is locally definable.

2 h=fonM-GD;, N M.
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(3) & is G homotopic to frelative to M — GD; N M.

The condition that GDyo (1 M is compact is not essential. By Theorem 2.7, one

can find a linear definable C” slice Sat x € M in Q. Since S is a linear definable

C” slice in Q, there exists a definable C*K diffeomorphism j from some

representation Q' of G, onto S such that j(0) = x, GS is open in Q, and that
W) G xg, O - GS(C =),
(/) (g, x]) = gi(x)

is a definable C”G diffeomorphism. Notice that M is locally compact. Thus
replacing smaller S, if necessary, GD;o (1M is compact because M is locally

compact.

Proof of Proposition 4.3. Since GDj, (1 M is compact and 4 is closed in M,
AN GDyy (= AN(GDyy N M)) is a compact G invariant locally definable subset
of GS N M. Thus A1) GDyq is a G invariant definable subset of Q. Hence

~N—1
E = n(j) (4N GDy)
is a G invariant definable subset of G x; Q. Let L = i N(Djy N M). The map
o= fou()lGxg L:Gxg L—>E

isa C*G diffeomorphism onto an open G invariant subset V = f(GDjy M) of
N. Since 4 GDyq is compact and f'| 4 is locally definable, f|(A N GDyy): AN
GDyg - f(ANGDyy) = N < E is definable. The map o (£ N (G xg, L)): ENN
(Gxg, L) — E is definable because u(j) and f (4N GDyg): ANGDyy — E

are definable. Since V is contained in a G invariant compact set f(GDjo, N M), and

since N is a locally definable C*G submanifold of =, there exists a G invariant

definable set /¥ of = such that ¥ < W < N and that ¥ is open in N. Notice that W

is an affine definable C*G manifold. Since G G, L is contained in a G invariant

compact subset of G xg_ N Dy N M), G xg, L is an affine definable C*G
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manifold. Applying Lemma 4.2 to o :Gxg L — W, there exists a C*G map

B:G g, L —>W asaC * Whitney approximation of a such that:

@ BI(Gxg, (' (ANDi)U(BNL)): Gxg, (' (4N D) U(BNL)) -
W(< N) is definable.

(b) B=o on Gxg_ (L-B;NL).
(c) B is G homotopic to a relative to G x¢_ (L-B,NL).

Then the map 4 : M — N defined by

h(x) = {B on(j) '(x), x e GDs N M,
f(x), XGM—MﬂGDg

is well-defined, and it is a C*”G diffeomorphism if our approximation is sufficiently
close. Since /|(4 N GDs) and h|(GD N\ M) are definable, and since h|(4 N (M

-GDsNM)) (= f1(AN(M — GDs N M))) is locally definable, 2| AU(GDNM)

is locally definable by Proposition 2.1. By the construction of A, & satisfies
Properties (2) and (3). o

Proof of Theorem 4.1. Using Proposition 4.3, a similar proof of 4.1 [11] proves
Theorem 4.1. o

5. Proofs of Theorems 1.3 and 1.4
Proof of Theorem 1.3. By Whitney’s imbedding Theorem (e.g., 2.14 [2]), there
exists a C” imbedding f :X — R*"*!. By Proposition 3.2 and since C*
imbeddings from X to R*"*! are open in the set C*(X, R?"*1) of C* maps from
Xto R2”+1, we have the required locally definable C* imbedding 4 : X — R o
Proof of Theorem 1.4. Let G = {g|, ..., g,,} and X be a locally definable

C*G manifold of dimension n. By Theorem 1.3, there exists a locally definable

C” imbedding 1 : X — R Let Q be the representation of G whose underlying
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@nl)m _ p2ntl o R2 and its action is defined by the permutation

of coordinates (x, ..., X, ) > (Xg(1)s s Xo(mn)) induced from (ggy, ..., ggy) =

(€5(1)s -+ &o(m))- Then F : X — Q, F(x) = (f(g1x), ..., f(gyx)) is the required

locally definable C*G imbedding. O
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