Far East Journal of Mathematical Sciences (FJMS)

Volume 35, Number 1, 2009, Pages 103-116 Published Online: November 7, 2009

This paper is available online at http://www.pphmj.com

© 2009 Pushpa Publishing House

LOCALLY DEFINABLE $C^{\infty}G$ MANIFOLD STRUCTURES OF LOCALLY DEFINABLE C^rG MANIFOLDS

TOMOHIRO KAWAKAMI

Department of Mathematics Faculty of Education Wakayama University Sakaedani Wakayama 640-8510, Japan e-mail: kawa@center.wakayama-u.ac.jp

Abstract

Let G be a finite abelian group and $1 \le r < \infty$. We prove that every locally definable C^rG manifold admits a unique locally definable $C^{\infty}G$ manifold structure up to locally definable $C^{\infty}G$ diffeomorphism.

1. Introduction

Let G be a finite group and $1 \le r < \infty$. Let M be an o-minimal exponential expansion $(\mathbb{R}, +, \cdot, <, e^x, ...)$ of the standard structure $\mathcal{R} = (\mathbb{R}, +, \cdot, <)$ of the field \mathbb{R} of real numbers admits the C^{∞} cell decomposition and has piecewise controlled derivatives.

In this paper, we consider existence of locally definable $C^{\infty}G$ manifold structures of a locally definable C^rG manifold and uniqueness of locally definable $C^{\infty}G$ manifold structure up to locally definable $C^{\infty}G$ diffeomorphism. If G is a 2000 Mathematics Subject Classification: 14P10, 14P20, 57S05, 57S15, 58A05, 58A07, 03C64. Keywords and phrases: o-minimal, locally definable $C^{\infty}G$ manifolds, locally definable $C^{r}G$

manifolds, definable C^rG manifolds, finite groups, exponential.

Received July 31, 2009

finite abelian group and $1 \le s < r < \infty$, then unique existence of locally definable C^rG manifold structure of a locally definable C^sG manifold is studied in [11].

Let $0 \le r \le \infty$. A locally definable C^r manifold is a C^r manifold admitting a countable system of charts whose gluing maps are of class definable C^r . If this system is finite, then it is called a definable C^r manifold. Definable C^rG manifolds are studied in [5], [6], [7], [8], [9]. A locally definable C^r manifold is affine if it can be imbedded into some \mathbb{R}^n in a locally definable C^r way. We can define locally definable C^rG manifolds and affine locally definable C^rG manifolds in a similar way of equivariant definable cases. Locally definable C^rG manifolds are generalizations of definable C^rG manifolds and they are studied in [11] when r is a positive integer.

In this paper, everything is considered in \mathcal{M} , any map is continuous and every manifold does not have boundary unless otherwise stated.

Theorem 1.1. Let G be a finite group and $1 \le r < \infty$. Then every affine locally definable C^rG manifold is locally definably C^rG diffeomorphic to some locally definable $C^{\infty}G$ manifold.

Theorem 1.2. Let G be a finite group. Then for any two affine locally definable $C^{\infty}G$ manifolds, they are $C^{1}G$ diffeomorphic if and only if they are locally definably $C^{\infty}G$ diffeomorphic.

If \mathcal{M} is polynomially bounded, then Theorem 1.2 is not always true. Even in the non-equivariant Nash category, there exist two affine Nash manifolds such that they are not Nash diffeomorphic but C^{∞} diffeomorphic [14], and that for any two affine Nash manifolds, they are locally Nash diffeomorphic if and only if they are Nash diffeomorphic.

Existence of $C^{\omega}G$ manifold structures of proper $C^{\infty}G$ manifolds and uniqueness of them are studied in [3] and [4], respectively, when G is a C^{ω} Lie group. Moreover if G is a compact C^{ω} Lie group, then for any two $C^{\omega}G$ manifolds, they are $C^{\infty}G$ diffeomorphic if and only if they are $C^{\omega}G$ diffeomorphic [13].

Theorems 1.1 and 1.2 are locally definable C^{∞} versions of [2] and [3], respectively, when G is a finite group.

The above theorems are locally definable C^{∞} versions of results of [10].

In the non-equivariant setting, we have the following.

Theorem 1.3. If $1 \le r \le \infty$, then every n-dimensional locally definable C^r manifold X is locally definably C^r imbeddable into \mathbb{R}^{2n+1} .

The above theorem is the locally definable version of Whitney's imbedding theorem (e.g., 2.14 [2]). The definable C^r version of Theorem 1.1 is known in [8] when r is a non-negative integer.

If $\mathcal{M} = \mathcal{R}$ and $r = \infty$, then Theorem 1.3 is not true. The assumption that \mathcal{M} is exponential is necessary.

As a corollary of Theorem 1.3, we have the following.

Theorem 1.4. Let G be a finite abelian group and $1 \le r \le \infty$. Then every locally definable C^rG manifold is affine.

By Theorems 1.1-1.4, we have the following theorem.

Theorem 1.5. Let G be a finite abelian group and $1 \le r < \infty$. Then every locally definable C^rG manifold admits a unique locally definable $C^{\infty}G$ manifold structure up to locally definable $C^{\infty}G$ diffeomorphism.

2. Locally Definable C^rG Manifolds

Let $f:U\to\mathbb{R}$ be a definable C^∞ function on a definable open subset $U\subset\mathbb{R}^n$. We say that f has controlled derivatives if there exist a definable continuous function $u:U\to\mathbb{R}$, real numbers $C_1,C_2,...$ and positive integers $E_1,E_2,...$ such that $|D^\alpha f(x)|\leq C_{|\alpha|}u(x)^{E_{|\alpha|}}$ for all $x\in U$ and $\alpha\in(\mathbb{N}\cup\{0\})^n$, where $D^\alpha=\frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1}\cdots\partial x_1^{\alpha_n}}$ and $|\alpha|=\alpha_1+\cdots+\alpha_n$. We say that \mathcal{M} has piecewise controlled derivatives if for every definable C^∞ function $f:U\to\mathbb{R}$ defined in a

definable open subset U of \mathbb{R}^n , there exist definable open sets $U_1, ..., U_l \subset U$ such that $\dim(U - \bigcup_{i=1}^l U_i) < n$ and each $f | U_i$ has controlled derivatives.

A subset X of \mathbb{R}^n is called *locally definable* if for every $x \in X$ there exists a definable open neighborhood U of x in \mathbb{R}^n such that $X \cap U$ is definable in \mathbb{R}^n . Clearly every definable set is locally definable. Remark that any open subset of \mathbb{R}^n is locally definable and that every compact locally definable set is definable. A more general setting of locally definable sets is studied in [1].

Let $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^m$ be locally definable sets. We call a map $f: U \to V$ locally definable if for any $x \in U$ there exists a definable open neighborhood W_x of x in \mathbb{R}^n such that $f \mid U \cap W_x$ is definable.

Note that for any locally definable map f between locally definable sets X and Y, if X is compact, then f(X) is a definable set and $f: X \to f(X) \subset Y$ is a definable map.

Remark that the maps $f_1, f_2 : \mathbb{R} \to \mathbb{R}$ defined by $f_1(x) = \sin x$, $f_2(x) = \cos x$, respectively, are analytic but not definable in any o-minimal expansion of \mathcal{R} . However they are locally definable in \mathbf{R}_{an} . Remark further that the field \mathbb{Q} ($\subset \mathbb{R}$) of rational numbers is not a locally definable subset of \mathbb{R} .

Proposition 2.1 [11]. Let X, Y and Z be locally definable sets and let $f: X \to Y$ and $g: Y \to Z$ be locally definable maps. Then $g \circ f: X \to Z$ is locally definable.

We can define locally definable groups and affine locally definable groups in a similar way of definable cases. But we do not give their definitions here because we restrict our attention to finite groups.

A representation map of G is a group homomorphism from G to some O(n). A representation of G means the representation space of a representation map of G. Recall the definition of locally definable C^rG manifolds [11].

Definition 2.2 [11]. Let
$$1 \le r \le \omega$$
.

(1) A locally definable C^r submanifold of a representation Ω of G is called a

locally definable C^rG submanifold of Ω if it is G invariant.

- (2) A locally definable C^rG manifold is a pair (X, θ) consisting of a locally definable C^r manifold X and a group action θ of G on X such that $\theta: G \times X \to X$ is a locally definable C^r map. For simplicity of notation, we write X instead of (X, θ) . Clearly each definable C^rG manifold is a locally definable C^rG manifold.
- (3) Let X and Y be locally definable C^rG manifolds. A locally definable C^r map is called a *locally definable* C^rG map if it is a G map. We say that X and Y are *locally definably* C^rG diffeomorphic if there exist locally definable C^rG maps $f: X \to Y$ and $h: Y \to X$ such that $f \circ h = id$ and $h \circ f = id$.
- (4) A locally definable C^rG manifold is said to be *affine* if it is locally definably C^rG diffeomorphic to a locally definable C^rG submanifold of some representation of G.

Note that we can define locally definable G manifolds for a locally definable group G, but in this paper we do not use these notions.

Recall existence of definable C^rG tubular neighborhoods.

Theorem 2.3 ([9], [6]). Let r be a non-negative integer, ∞ or ω . Then every definable C^rG submanifold X of a representation Ω of G has a definable C^rG tubular neighborhood (U, θ_X) of X in Ω , namely U is a G invariant definable open neighborhood of X in Ω and $\theta_X: U \to X$ is a definable C^rG map with $\theta_X | X = id_X$.

Let $G = \{g_1, ..., g_m\}$ and let f be a C^rG map from a C^rG manifold M to a representation Ω of G. Then the averaging map $A: M \to \Omega$ is

$$A(f)(x) = \frac{1}{m} \sum_{i=1}^{m} g_i^{-1} f(g_i x).$$

By using [7], we have the following lemma.

Proposition 2.4 [7]. (1) A(f) is equivariant, and A(f) = f if f is equivariant.

- (2) If f is a polynomial map, then so is A(f).
- (3) If $0 \le r \le \infty$ and f lies in the set $C^r(M, \Omega)$ of C^r maps from M to Ω , then $A(f) \in C^r(M, \Omega)$.
- (4) $A: C^r(M, \Omega) \to C^r(M, \Omega), f \mapsto A(f) (0 \le r \le \infty)$ is continuous in the C^r Whitney topology.
- (5) If M is a definable C^rG manifold, f is a definable C^r map and $0 \le r \le \omega$, then A(f) is a definable C^rG map.
- (6) If M is a locally definable C^rG manifold, f is a locally definable C^r map and $0 \le r \le \omega$, then A(f) is a locally definable C^rG map.

Let K be a subgroup of G. Suppose that S is an affine definable $C^{\infty}K$ manifold. Then we know that the twisted product $G \times_K S$ with the standard action $G \times (G \times_K S) \to G \times_K S$, $(g, [g', s]) \mapsto [gg', s]$ is a definable $C^{\infty}G$ manifold [9].

We need the following proposition to prove Theorem 1.1.

Proposition 2.5. Let X be a locally definable $C^{\infty}G$ manifold. Suppose that K is a subgroup of G and N is an affine definable $C^{\infty}K$ manifold. If $f: N \to X$ is a locally definable $C^{\infty}K$ map, then

$$\mu(f): G \times_K N \to X, \quad \mu([g, n]) = gf(n)$$

is a locally definable $C^{\infty}G$ map.

Proof. By the property of quotient manifolds, $\mu(f)$ is a $C^{\infty}G$ map. Thus it suffices to prove that $\mu(f)$ is locally definable. Let π be the orbit map $G \times N \to G \times_K N$. Then π is a definable C^{∞} map. Take $x \in G \times_K N$ and $y \in \pi^{-1}(x) \subset G \times N$. By the assumption and the definition of the G action on $G \times N$, $\overline{\mu}(f): G \times N \to X$, $\overline{\mu}(f)(g, n) = gf(n)$ is a locally definable $C^{\infty}G$ map. Hence there exist definable open neighborhoods U of y and V of $\overline{\mu}(f)(y)$, respectively, such that $\overline{\mu}(f)(U) \subset V$ and $\overline{\mu}(f)|U:U \to V$ is a definable C^{∞} map. In

particular, $\overline{\mu}(f)|U:U\to V$ is definable. Hence $\pi(U)$ is open and definable. Since the graph of $\mu(f)|\pi(U):\pi(U)\to V\subset X$ is the image of that of $\overline{\mu}(f)|U$ by $\pi\times id_V$, $\mu(f)|\pi(U)$ is definable.

Definition 2.6. Let X be a definable $C^{\infty}G$ manifold.

(1) We say that a K invariant definable C^{∞} submanifold S of X is a *definable* K *slice* if GS is open in X, S is affine as a definable $C^{\infty}K$ manifold, and

$$\mu: G \times_K S \to GS (\subset X), [g, x] \mapsto gx$$

is a definable $C^{\infty}G$ diffeomorphism.

- (2) A definable $C^{\infty}K$ slice S is called *linear* if there exist a representation Ω of K and a definable $C^{r}K$ imbedding $j:\Omega\to X$ such that $j(\Omega)=S$.
- (3) We say that a definable $C^{\infty}K$ slice (resp., a linear definable $C^{\infty}K$ slice) S is a definable C^{∞} slice (resp., a linear definable C^{∞} slice) at x in X if $K = G_x$ and $x \in S$ (resp., $K = G_x$, $x \in S$ and y(0) = x).

Recall existence of definable C^{∞} slices [9] to prove Theorem 1.2.

Theorem 2.7 [9]. Let X be an affine definable $C^{\infty}G$ manifold, $x \in X$. Then there exists a linear definable $C^{\infty}G$ slice at x in X.

3. Proof of Theorem 1.1

The following lemma is obtained by 2.2.8 [2] and Proposition 2.4.

Lemma 3.1. Let K be a finite group. Suppose that f is a definable $C^{\infty}K$ map between definable $C^{\infty}K$ manifolds M and N. Suppose further that V is an open K invariant subset of M and that P is a K invariant definable C^{∞} submanifold of N with $f(V) \subset P$. Then there exist an open neighborhood \mathfrak{N} of $f \mid V$ in the set $Def_K^{\infty}(V,P)$ of definable $C^{\infty}K$ maps from V to P such that for any $h \in \mathfrak{N}$, the map $E(h): M \to N$,

$$E(h)(x) = \begin{cases} h(x), & x \in V, \\ f(x), & x \in M - V \end{cases}$$

is a definable $C^{\infty}K$ map and $E: \mathfrak{N} \to Def_K^{\infty}(M, N), h \mapsto E(h)$ is continuous in the C^{∞} Whitney topology.

Proposition 3.2. Let X be a locally definable $C^{\infty}G$ manifold and Y be an affine definable $C^{\infty}G$ manifold in a representation Ω of G. Then every $C^{\infty}G$ map $f: X \to Y$ is approximated by a locally definable $C^{\infty}G$ map $h: X \to Y$ in the C^{∞} Whitney topology.

In the Nash case, if $1 \le r < \infty$, then locally C^r Nash diffeomorphisms are essentially different from C^r Nash diffeomorphisms because there exist two affine Nash manifolds such that they are C^∞ diffeomorphic but not Nash diffeomorphic [14], and that every C^r Nash diffeomorphism between affine Nash manifolds is approximated by a Nash diffeomorphism [15].

Proposition 3.3 [12]. Every affine definable $C^{\infty}G$ manifold is definably $C^{\infty}G$ diffeomorphic to a definable $C^{\infty}G$ submanifold closed in some representation Ω of G.

For the proof of Proposition 3.3, we need the condition that \mathcal{M} is exponential, admits the C^{∞} cell decomposition and has piecewise controlled derivatives.

Proof of Proposition 3.2. By Proposition 3.3, replacing Ω if necessary, we may assume that Y is a definable $C^{\infty}G$ submanifold closed in Ω . By a way similar to find a C^{∞} partition of unity of C^{∞} manifold, we have a locally definable C^{∞} partition of unity $\{\phi_j\}_{j=1}^{\infty}$ subordinates to some locally finite definable open cover $\{X_j\}_{j=1}^{\infty}$ of X such that $X = \bigcup_{j=1}^{\infty} \operatorname{supp} \phi_j$ and $\overline{X_j}$ is compact. For any j, take an open neighborhood U_j of $\operatorname{supp} \phi_j$ in X such that $\overline{U_j}$ is compact. Applying the polynomial approximation theorem, we have a locally definable C^{∞} map $h_j:U_j \to \Omega$ which approximates $f \mid U_j$. By Theorem 2.3, one can find a definable $C^{\infty}G$ tubular neighborhood (U, p) of Y in Ω . If our approximation is sufficiently close, then $p \circ \sum_{j=1}^{\infty} \phi_j h_j$ is a (non-equivariant) C^{∞} approximation of f. Since G is a

finite group, applying Proposition 2.4, we have the required locally definable $C^{\infty}G$ map h as a C^{∞} Whitney approximation of f.

Proof of Theorem 1.1. Using Lemma 3.1 and Proposition 3.2, a similar proof of 1.1 [11] proves Theorem 1.1.

4. Proof of Theorem 1.2

In this section, we prove the following theorem.

Theorem 4.1. Let G be a finite group and let r be a positive integer. Suppose that Y and Z are affine locally definable $C^{\infty}G$ manifolds and there exists a $C^{r}G$ diffeomorphism $f: Y \to Z$. Then there exists a locally $C^{\infty}G$ diffeomorphism $h: Y \to Z$ which is G homotopic to f.

Theorem 1.2 follows from Theorem 4.1.

Let K be a subgroup of G and let X be an affine definable $C^{\infty}G$ manifold. By Theorem 2.7, there exists a linear definable $C^{\infty}K$ slice S, namely there exists a definable $C^{\infty}K$ diffeomorphism i from some representation Ω of K to S such that GS is open in X, and that $\mu: G\times_K\Omega \to GS (\subset X), \quad \mu(i)([g,x])=gi(x)$ is a definable $C^{\infty}G$ diffeomorphism.

For simplicity, we use the following notations. Set $B_s := \{x \in \Omega | \|x\| \le s\}$, $B_s^{\circ} := \{x \in \Omega | \|x\| < s\}$, s > 0, $B := B_1$, and $B^{\circ} := B_1^{\circ}$, and let denote D_s , D_s° , D_s° and D° by $i(B_s)$, $i(B_s^{\circ})$, i(B), and $i(B^{\circ})$, respectively. Let GD (resp., GD_s°) denote the closed unit tube (resp., the open unit tube) and let GD_s (resp., GD_s°) stand for the closed tube (resp., the open tube) of radius s.

To prove Theorem 4.1, we prepare two preliminary results.

Lemma 4.2. Let Ω and Ξ be representations of G and let M (resp., N) be a definable $C^{\infty}G$ submanifold of Ω (resp., Ξ). Suppose that F is a G invariant definable subset of M and that $\alpha: M \to N$ is a $C^{\infty}G$ map such that $\alpha|F$: $F \to N$ is definable. Let \mathfrak{N} be a neighborhood of α in the set $C_G^{\infty}(M, N)$ of

 $C^{\infty}G$ maps from M to N and let V_1 and V_2 be compact G invariant definable subsets of M such that V_1 is properly contained in the interior $IntV_2$ of V_2 . Then there exists $\kappa \in \mathfrak{N}$ such that:

- (a) $\kappa | F \cup V_1 : F \cup V_1 \to N$ is definable.
- (b) $\kappa = \alpha$ on $M Int V_2$.
- (c) κ is G homotopic to α relative to $M Int V_2$.

Proof. Take a non-negative definable C^{∞} function $f: M \to \mathbb{R}$ such that f = 0 on V_1 and f = 1 on $M - Int V_2$. Notice that if \mathcal{M} is polynomially bounded, then such an f does not necessarily exist. Since G is a finite group and by Proposition 2.4, we may assume that f is G invariant.

We approximate α by a polynomial G map β on V_2 using the polynomial approximation theorem and Proposition 2.4. By Theorem 2.3, one can find a definable $C^{\infty}G$ tubular neighborhood (U, p) of N in Ξ . If the approximation is sufficiently close, then one can define $\kappa: M \to N$, $\kappa(x) = p(f(x)\alpha(x) + (1-f(x))\beta(x))$. Then κ is a $C^{\infty}G$ map, and κ satisfies Properties (a) and (b). If this approximation is sufficiently close, then $\kappa \in \mathfrak{N}$ because κ and α coincide with outside of a compact set V_2 .

The map $H: M \times [0, 1] \to N$ defined by $H(x, t) = p((1 - t)\alpha(x) + t\kappa(x))$ gives a G homotopy relative to M – Int V_2 from α to κ .

Proposition 4.3. Let Ω and Ξ be representations of G. Let $M \subset \Omega$, $N \subset \Xi$ be affine locally definable $C^{\infty}G$ manifolds and A be a closed G invariant locally definable subset of M. Suppose that $f: M \to N$ is a $C^{\infty}G$ diffeomorphism such that $f \mid A: A \to N$ is locally definable, and that $x \in M$. Suppose further that $f: \Omega' \to S$ is a linear definable C^{∞} slice at x in Ω . If $GD_{10} \cap M$ is compact, then there exists a $C^{\infty}G$ diffeomorphism $h: M \to N$ such that:

- (1) $h \mid A \cup (GD \cap M) : A \cup (GD \cap M) \to N$ is locally definable.
- (2) h = f on $M GD_2^{\circ} \cap M$.

(3) h is G homotopic to f relative to $M - GD_2^{\circ} \cap M$.

The condition that $GD_{10} \cap M$ is compact is not essential. By Theorem 2.7, one can find a linear definable C^r slice S at $x \in M$ in Ω . Since S is a linear definable C^{∞} slice in Ω , there exists a definable $C^{\infty}K$ diffeomorphism j from some representation Ω' of G_x onto S such that j(0) = x, GS is open in Ω , and that

$$\mu(j): G\times_{G_{\mathcal{X}}}\Omega'\to GS(\subset\Xi),$$

$$\mu(j)([g, x]) = gj(x)$$

is a definable $C^{\infty}G$ diffeomorphism. Notice that M is locally compact. Thus replacing smaller S, if necessary, $GD_{10} \cap M$ is compact because M is locally compact.

Proof of Proposition 4.3. Since $GD_{10} \cap M$ is compact and A is closed in M, $A \cap GD_{10} (= A \cap (GD_{10} \cap M))$ is a compact G invariant locally definable subset of $GS \cap M$. Thus $A \cap GD_{10}$ is a G invariant definable subset of Ω . Hence

$$E := \mu(j)^{-1}(A \cap GD_{10})$$

is a G invariant definable subset of $G \times_{G_x} \Omega'$. Let $L = j^{-1}(D_{10}^{\circ} \cap M)$. The map

$$\alpha := f \circ \mu(j) | G \times_{G_{\mathbf{r}}} L : G \times_{G_{\mathbf{r}}} L \to \Xi$$

is a $C^{\infty}G$ diffeomorphism onto an open G invariant subset $V:=f(GD_{10}^{\circ}\cap M)$ of N. Since $A\cap GD_{10}$ is compact and $f\mid A$ is locally definable, $f\mid (A\cap GD_{10}):A\cap GD_{10}\to f(A\cap GD_{10})\subset N\subset \Xi$ is definable. The map $\alpha\mid (E\cap (G\times_{G_x}L)):E\cap (G\times_{G_x}L)\to \Xi$ is definable because $\mu(j)$ and $f\mid (A\cap GD_{10}):A\cap GD_{10}\to \Xi$ are definable. Since V is contained in a G invariant compact set $f(GD_{10}\cap M)$, and since N is a locally definable $C^{\infty}G$ submanifold of Ξ , there exists a G invariant definable set G of G manifold. Since $G\times_{G_x}L$ is contained in a G invariant compact subset of $G\times_{G_x}J^{-1}(D_{20}\cap M)$, $G\times_{G_x}L$ is an affine definable $C^{\infty}G$

manifold. Applying Lemma 4.2 to $\alpha: G \times_{G_x} L \to W$, there exists a $C^{\infty}G$ map $\beta: G \times_{G_x} L \to W$ as a C^{∞} Whitney approximation of α such that:

(a)
$$\beta | (G \times_{G_x} (j^{-1}(A \cap D_{10}^{\circ}) \cup (B \cap L))) : G \times_{G_x} (j^{-1}(A \cap D_{10}^{\circ}) \cup (B \cap L))) \rightarrow W(\subset N)$$
 is definable.

(b)
$$\beta = \alpha$$
 on $G \times_{G_r} (L - B_2^{\circ} \cap L)$.

(c) β is G homotopic to α relative to $G \times_{G_r} (L - B_2^{\circ} \cap L)$.

Then the map $h: M \to N$ defined by

$$h(x) = \begin{cases} \beta \circ \mu(j)^{-1}(x), & x \in GD_5 \cap M, \\ f(x), & x \in M - M \cap GD_5^{\circ} \end{cases}$$

is well-defined, and it is a $C^{\infty}G$ diffeomorphism if our approximation is sufficiently close. Since $h|(A\cap GD_5)$ and $h|(GD\cap M)$ are definable, and since $h|(A\cap (M-GD_5\cap M))$ (= $f|(A\cap (M-GD_5\cap M))$) is locally definable, $h|A\cup (GD\cap M)$ is locally definable by Proposition 2.1. By the construction of h, h satisfies Properties (2) and (3).

Proof of Theorem 4.1. Using Proposition 4.3, a similar proof of 4.1 [11] proves Theorem 4.1.

5. Proofs of Theorems 1.3 and 1.4

Proof of Theorem 1.3. By Whitney's imbedding Theorem (e.g., 2.14 [2]), there exists a C^{∞} imbedding $f: X \to \mathbb{R}^{2n+1}$. By Proposition 3.2 and since C^{∞} imbeddings from X to \mathbb{R}^{2n+1} are open in the set $C^{\infty}(X, \mathbb{R}^{2n+1})$ of C^{∞} maps from X to \mathbb{R}^{2n+1} , we have the required locally definable C^{∞} imbedding $h: X \to \mathbb{R}^{2n+1}$. \square

Proof of Theorem 1.4. Let $G = \{g_1, ..., g_m\}$ and X be a locally definable $C^{\infty}G$ manifold of dimension n. By Theorem 1.3, there exists a locally definable C^{∞} imbedding $f: X \to \mathbb{R}^{2n+1}$. Let Ω be the representation of G whose underlying

space is $\mathbb{R}^{(2n+1)m} = \mathbb{R}^{2n+1} \times \cdots \times \mathbb{R}^{2n+1}$ and its action is defined by the permutation of coordinates $(x_1,...,x_m) \mapsto (x_{\sigma(1)},...,x_{\sigma(m)})$ induced from $(gg_1,...,gg_m) = (g_{\sigma(1)},...,g_{\sigma(m)})$. Then $F: X \to \Omega$, $F(x) = (f(g_1x),...,f(g_mx))$ is the required locally definable $C^{\infty}G$ imbedding.

References

- [1] E. Baro and M. Otero, Locally definable homotopy, preprint.
- [2] M. W. Hirsch, Differential Topology, Springer-Verlag, 1976.
- [3] S. Illman, Every proper smooth actions of a Lie group is equivalent to a real analytic action: a contribution to Hilbert's fifth problem, Ann. of Math. Stud. 138 (1995), 189-220.
- [4] S. Illman, Smoothly equivalent real analytic proper *G* manifolds are subanalytically equivalent, Math. Ann. 306 (1996), 647-673.
- [5] T. Kawakami, Affineness of definable C^r manifolds and its applications, Bull. Korean Math. Soc. 40 (2003), 149-157.
- [6] T. Kawakami, Equivariant definable C^r approximation theorem, definable C^rG triviality of definable C^rG maps and Nash G compactifications, Bull. Fac. Ed. Wakayama Univ. Natur. Sci. 55 (2005), 1-14.
- [7] T. Kawakami, Equivariant differential topology in an o-minimal expansion of the field of real numbers, Topology Appl. 123 (2002), 323-349.
- [8] T. Kawakami, Every definable C^r manifold is affine, Bull. Korean Math. Soc. 42 (2005), 165-167.
- [9] T. Kawakami, Imbedding of manifolds defined on an o-minimal structures on $(\mathbb{R}, +, \cdot, <)$, Bull. Korean Math. Soc. 36 (1999), 183-201.
- [10] T. Kawakami, Nash G manifold structures of compact or compactifiable $C^{\infty}G$ manifolds, J. Math. Soc. Japan 48 (1996), 321-331.
- [11] T. Kawakami, Locally definable C^sG manifold structures of locally C^rG manifolds, Bull. Fac. Ed. Wakayama Univ. Natur. Sci. 56 (2006), 1-12.
- [12] T. Kawakami, Relative definable C^rG triviality of G invariant proper definable C^r functions (to appear).

- [13] F. Kutzschebauch, On the uniqueness of the real analytic *G*-structure on a smooth proper *G*-manifold for *G* a Lie group, Manuscripta Math. 90 (1996), 17-22.
- [14] M. Shiota, Abstract Nash manifolds, Proc. Amer. Math. Soc. 96 (1986), 155-162.
- [15] M. Shiota, Approximation theorems for Nash mappings and Nash manifolds, Trans. Amer. Math. Soc. 293 (1986), 319-337.