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Abstract 

Let G be a finite abelian group and .1 ∞<≤ r  We prove that every 

locally definable GCr  manifold admits a unique locally definable GC∞  

manifold structure up to locally definable GC∞  diffeomorphism. 

1. Introduction 

Let G be a finite group and .1 ∞<≤ r  Let M  be an o-minimal exponential 

expansion ( )...,,,,, xe<⋅+R  of the standard structure ( )<⋅+= ,,,RR  of the field 

R  of real numbers admits the ∞C  cell decomposition and has piecewise controlled 
derivatives. 

In this paper, we consider existence of locally definable GC∞  manifold 

structures of a locally definable GCr  manifold and uniqueness of locally definable 

GC∞  manifold structure up to locally definable GC∞  diffeomorphism. If G is a 
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finite abelian group and ,1 ∞<<≤ rs  then unique existence of locally definable 

GCr  manifold structure of a locally definable GC s  manifold is studied in [11]. 

Let .0 ∞≤≤ r  A locally definable rC  manifold is a rC  manifold admitting a 

countable system of charts whose gluing maps are of class definable .rC  If this 

system is finite, then it is called a definable rC  manifold. Definable GCr  manifolds 

are studied in [5], [6], [7], [8], [9]. A locally definable rC  manifold is affine if it can 

be imbedded into some nR  in a locally definable rC  way. We can define locally 

definable GCr  manifolds and affine locally definable GCr  manifolds in a similar 

way of equivariant definable cases. Locally definable GCr  manifolds are 

generalizations of definable GCr  manifolds and they are studied in [11] when r is a 
positive integer. 

In this paper, everything is considered in ,M  any map is continuous and every 

manifold does not have boundary unless otherwise stated. 

Theorem 1.1. Let G be a finite group and .1 ∞<≤ r  Then every affine locally 

definable GCr  manifold is locally definably GCr  diffeomorphic to some locally 

definable GC∞  manifold. 

Theorem 1.2. Let G be a finite group. Then for any two affine locally definable 

GC∞  manifolds, they are GC1  diffeomorphic if and only if they are locally 

definably GC∞  diffeomorphic. 

If M  is polynomially bounded, then Theorem 1.2 is not always true. Even in 
the non-equivariant Nash category, there exist two affine Nash manifolds such that 

they are not Nash diffeomorphic but ∞C  diffeomorphic [14], and that for any two 
affine Nash manifolds, they are locally Nash diffeomorphic if and only if they are 
Nash diffeomorphic. 

Existence of GCω  manifold structures of proper GC∞  manifolds and 

uniqueness of them are studied in [3] and [4], respectively, when G is a ωC  Lie 

group. Moreover if G is a compact ωC  Lie group, then for any two GCω  manifolds, 

they are GC∞  diffeomorphic if and only if they are GCω  diffeomorphic [13]. 
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Theorems 1.1 and 1.2 are locally definable ∞C  versions of [2] and [3], respectively, 
when G is a finite group. 

The above theorems are locally definable ∞C  versions of results of [10]. 

In the non-equivariant setting, we have the following. 

Theorem 1.3. If ,1 ∞≤≤ r  then every n-dimensional locally definable rC  

manifold X is locally definably rC  imbeddable into .12 +nR  

The above theorem is the locally definable version of Whitney’s imbedding 

theorem (e.g., 2.14 [2]). The definable rC  version of Theorem 1.1 is known in [8] 
when r is a non-negative integer. 

If RM =  and ,∞=r  then Theorem 1.3 is not true. The assumption that M  
is exponential is necessary. 

As a corollary of Theorem 1.3, we have the following. 

Theorem 1.4. Let G be a finite abelian group and .1 ∞≤≤ r  Then every 

locally definable GCr  manifold is affine. 

By Theorems 1.1-1.4, we have the following theorem. 

Theorem 1.5. Let G be a finite abelian group and .1 ∞<≤ r  Then every 

locally definable GCr  manifold admits a unique locally definable GC∞  manifold 

structure up to locally definable GC∞  diffeomorphism. 

2. Locally Definable GCr  Manifolds 

Let R→Uf :  be a definable ∞C  function on a definable open subset 

.nU R⊂  We say that f has controlled derivatives if there exist a definable 
continuous function ,: R→Uu  real numbers ...,, 21 CC  and positive integers 

...,, 21 EE  such that ( ) ( ) α
α

α ≤ ExuCxfD  for all Ux ∈  and { }( ) ,0 n∪N∈α  

where 
nxx

D
αα

α
α

∂∂

∂=
11 1"

 and .1 nα++α=α "  We say that M  has piecewise 

controlled derivatives if for every definable ∞C  function R→Uf :  defined in a 
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definable open subset U of ,nR  there exist definable open sets UUU l ⊂...,,1  

such that ( ) nUU i
l
i <− =1dim ∪  and each iUf |  has controlled derivatives. 

A subset X of nR  is called locally definable if for every Xx ∈  there exists a 

definable open neighborhood U of x in nR  such that UX ∩  is definable in .nR  

Clearly every definable set is locally definable. Remark that any open subset of nR  
is locally definable and that every compact locally definable set is definable. A more 
general setting of locally definable sets is studied in [1]. 

Let nU R⊂  and mV R⊂  be locally definable sets. We call a map Uf :  

V→  locally definable if for any Ux ∈  there exists a definable open neighborhood 

xW  of x in nR  such that xWUf ∩|  is definable. 

Note that for any locally definable map f between locally definable sets X and Y, 
if X is compact, then ( )Xf  is a definable set and ( ) ( )YXfXf ⊂→:  is a 

definable map. 

Remark that the maps RR →:, 21 ff  defined by ( ) ,sin1 xxf =  ( ) =xf2  

,cos x  respectively, are analytic but not definable in any o-minimal expansion of .R  

However they are locally definable in .anR  Remark further that the field ( )RQ ⊂  

of rational numbers is not a locally definable subset of .R  

Proposition 2.1 [11]. Let X, Y and Z be locally definable sets and let Xf :  

Y→  and ZYg →:  be locally definable maps. Then ZXfg →:D  is locally 

definable. 

We can define locally definable groups and affine locally definable groups in a 
similar way of definable cases. But we do not give their definitions here because we 
restrict our attention to finite groups. 

A representation map of G is a group homomorphism from G to some ( ).nO  A 

representation of G means the representation space of a representation map of G. 

Recall the definition of locally definable GCr  manifolds [11]. 

Definition 2.2 [11]. Let .1 ω≤≤ r  

(1) A locally definable rC  submanifold of a representation Ω of G is called a 
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locally definable GCr  submanifold of Ω if it is G invariant. 

(2) A locally definable GCr  manifold is a pair ( )θ,X  consisting of a locally 

definable rC  manifold X and a group action θ of G on X such that XXG →×θ :  

is a locally definable rC  map. For simplicity of notation, we write X instead of 

( )., θX  Clearly each definable GCr  manifold is a locally definable GCr  manifold. 

(3) Let X and Y be locally definable GCr  manifolds. A locally definable rC  

map is called a locally definable GCr  map if it is a G map. We say that X and Y are 

locally definably GCr  diffeomorphic if there exist locally definable GCr  maps 
YXf →:  and XYh →:  such that idhf =D  and .idfh =D  

(4) A locally definable GCr  manifold is said to be affine if it is locally 

definably GCr  diffeomorphic to a locally definable GCr  submanifold of some 
representation of G. 

Note that we can define locally definable G manifolds for a locally definable 
group G, but in this paper we do not use these notions. 

Recall existence of definable GCr  tubular neighborhoods. 

Theorem 2.3 ([9], [6]). Let r be a non-negative integer, ∞ or ω. Then every 

definable GCr  submanifold X of a representation Ω of G has a definable GCr  
tubular neighborhood ( )XU θ,  of X in Ω, namely U is a G invariant definable open 

neighborhood of X in Ω and XUX →θ :  is a definable GCr  map with XX |θ  

.Xid=  

Let { }mggG ...,,1=  and let f be a GCr  map from a GCr  manifold M to a 

representation Ω of G. Then the averaging map Ω→MA :  is 

( ) ( ) ( )∑
=

−=
m

i
ii xgfg

m
xfA

1

1 .1  

By using [7], we have the following lemma. 

Proposition 2.4 [7]. (1) ( )fA  is equivariant, and ( ) ffA =  if f is equivariant. 
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(2) If f is a polynomial map, then so is ( ).fA  

(3) If ∞≤≤ r0  and f lies in the set ( )Ω,MCr  of rC  maps from M to Ω, then 

( ) ( )., Ω∈ MCfA r  

(4) ( ) ( ) ,,,: Ω→Ω MCMCA rr  ( ) ( )∞≤≤ rfAf 06  is continuous in the 
rC  Whitney topology. 

(5) If M is a definable GCr  manifold, f is a definable rC  map and ,0 ω≤≤ r  

then ( )fA  is a definable GCr  map. 

(6) If M is a locally definable GCr  manifold, f is a locally definable rC  map 

and ,0 ω≤≤ r  then ( )fA  is a locally definable GCr  map. 

Let K be a subgroup of G. Suppose that S is an affine definable KC∞  manifold. 
Then we know that the twisted product SG K×  with the standard action ×G  

( ) ,SGSG KK ×→×  [ ]( ) [ ]sggsgg ,,, ′′ 6  is a definable GC∞  manifold [9]. 

We need the following proposition to prove Theorem 1.1. 

Proposition 2.5. Let X be a locally definable GC∞  manifold. Suppose that K is 

a subgroup of G and N is an affine definable KC∞  manifold. If XNf →:  is a 

locally definable KC∞  map, then 

( ) [ ]( ) ( )nfgngXNGf K =µ→×µ ,,:  

is a locally definable GC∞  map. 

Proof. By the property of quotient manifolds, ( )fµ  is a GC∞  map. Thus it 

suffices to prove that ( )fµ  is locally definable. Let π be the orbit map →× NG  

.NG K×  Then π is a definable ∞C  map. Take NGx K×∈  and ( ) ⊂π∈ − xy 1  

.NG ×  By the assumption and the definition of the G action on ,NG ×  

( ) ,: XNGf →×µ  ( ) ( ) ( )nfgngf =µ ,  is a locally definable GC∞  map. Hence 

there exist definable open neighborhoods U of y and V of ( ) ( ),yfµ  respectively, 

such that ( ) ( ) VUf ⊂µ  and ( ) VUUf →|µ :  is a definable ∞C  map. In 
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particular, ( ) VUUf →|µ :  is definable. Hence ( )Uπ  is open and definable. Since 

the graph of ( ) ( ) ( ) XVUUf ⊂→ππ|µ :  is the image of that of ( ) Uf |µ  by 

,Vid×π  ( ) ( )Uf π|µ  is definable. □ 

Definition 2.6. Let X be a definable GC∞  manifold. 

(1) We say that a K invariant definable ∞C  submanifold S of X is a definable K 

slice if GS is open in X, S is affine as a definable KC∞  manifold, and 

( ),: XGSSG K ⊂→×µ   [ ] gxxg 6,  

is a definable GC∞  diffeomorphism. 

(2) A definable KC∞  slice S is called linear if there exist a representation Ω of 

K and a definable KCr  imbedding Xj →Ω:  such that ( ) .Sj =Ω  

(3) We say that a definable KC∞  slice (resp., a linear definable KC∞  slice) S 

is a definable ∞C  slice (resp., a linear definable ∞C  slice) at x in X if xGK =  and 

Sx ∈  ( ,.,resp xGK =  Sx ∈  and ( ) ).0 xj =  

Recall existence of definable ∞C  slices [9] to prove Theorem 1.2. 

Theorem 2.7 [9]. Let X be an affine definable GC∞  manifold, .Xx ∈  Then 

there exists a linear definable GC∞  slice at x in X. 

3. Proof of Theorem 1.1 

The following lemma is obtained by 2.2.8 [2] and Proposition 2.4. 

Lemma 3.1. Let K be a finite group. Suppose that f is a definable KC∞  map 

between definable KC∞  manifolds M and N. Suppose further that V is an open K 

invariant subset of M and that P is a K invariant definable ∞C  submanifold of N 
with ( ) .PVf ⊂  Then there exist an open neighborhood N  of Vf |  in the set 

( )PVDefK ,∞  of definable KC∞  maps from V to P such that for any ,N∈h  the 

map ( ) ,: NMhE →  

( ) ( )
( )
( )




−∈
∈

=
VMxxf

Vxxh
xhE

,
,,
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is a definable KC∞  map and ( ) ,,: NMDefE K
∞→N  ( )hEh 6  is continuous in 

the ∞C  Whitney topology. 

Proposition 3.2. Let X be a locally definable GC∞  manifold and Y be an affine 

definable GC∞  manifold in a representation Ω of G. Then every GC∞  map Xf :  

Y→  is approximated by a locally definable GC∞  map YXh →:  in the ∞C  
Whitney topology. 

In the Nash case, if ,1 ∞<≤ r  then locally rC  Nash diffeomorphisms are 

essentially different from rC  Nash diffeomorphisms because there exist two affine 

Nash manifolds such that they are ∞C  diffeomorphic but not Nash diffeomorphic 

[14], and that every rC  Nash diffeomorphism between affine Nash manifolds is 
approximated by a Nash diffeomorphism [15]. 

Proposition 3.3 [12]. Every affine definable GC∞  manifold is definably GC∞  

diffeomorphic to a definable GC∞  submanifold closed in some representation Ω of 
G. 

For the proof of Proposition 3.3, we need the condition that M  is exponential, 

admits the ∞C  cell decomposition and has piecewise controlled derivatives. 

Proof of Proposition 3.2. By Proposition 3.3, replacing Ω if necessary, we may 

assume that Y is a definable GC∞  submanifold closed in Ω. By a way similar to find 

a ∞C  partition of unity of ∞C  manifold, we have a locally definable ∞C  partition 

of unity { }∞=φ 1jj  subordinates to some locally finite definable open cover { }∞=1jjX  

of X such that jjX φ= ∞
= supp1∪  and jX  is compact. For any j, take an open 

neighborhood jU  of supp jφ  in X such that jU  is compact. Applying the 

polynomial approximation theorem, we have a locally definable ∞C  map jj Uh :  

Ω→  which approximates .jUf |  By Theorem 2.3, one can find a definable GC∞  

tubular neighborhood ( )pU ,  of Y in Ω. If our approximation is sufficiently close, 

then ∑∞
=
φ1j jjhp D  is a (non-equivariant) ∞C  approximation of f. Since G is a 
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finite group, applying Proposition 2.4, we have the required locally definable GC∞  

map h as a ∞C  Whitney approximation of f. □ 

Proof of Theorem 1.1. Using Lemma 3.1 and Proposition 3.2, a similar proof 
of 1.1 [11] proves Theorem 1.1. □ 

4. Proof of Theorem 1.2 

In this section, we prove the following theorem. 

Theorem 4.1. Let G be a finite group and let r be a positive integer. Suppose 

that Y and Z are affine locally definable GC∞  manifolds and there exists a GCr  

diffeomorphism .: ZYf →  Then there exists a locally GC∞  diffeomorphism 

ZYh →:  which is G homotopic to f. 

Theorem 1.2 follows from Theorem 4.1. 

Let K be a subgroup of G and let X be an affine definable GC∞  manifold. By 

Theorem 2.7, there exists a linear definable KC∞  slice S, namely there exists a 

definable KC∞  diffeomorphism i from some representation Ω of K to S such that 
GS is open in X, and that ( ),: XGSG K ⊂→Ω×µ  ( ) [ ]( ) ( )xgixgi =µ ,  is a 

definable GC∞  diffeomorphism. 

For simplicity, we use the following notations. Set { },: sxxBs ≤|Ω∈=  

{ },: sxxBs <|Ω∈=D  ,0>s  ,: 1BB =  and ,: 1
DD BB =  and let denote ,, D

ss DD  

D and DD  by ( ),sBi  ( ),D
sBi  ( ),Bi  and ( ),DBi  respectively. Let GD ( )DGD.,resp  

denote the closed unit tube (resp., the open unit tube) and let sGD  ( )DsGD.,resp  

stand for the closed tube (resp., the open tube) of radius s. 

To prove Theorem 4.1, we prepare two preliminary results. 

Lemma 4.2. Let Ω and Ξ be representations of G and let M (resp., N) be a 

definable GC∞  submanifold of Ω (resp., Ξ). Suppose that F is a G invariant 

definable subset of M and that NM →α :  is a GC∞  map such that :F|α  

NF →  is definable. Let N  be a neighborhood of α in the set ( )NMCG ,∞  of 



TOMOHIRO KAWAKAMI 112 

GC∞  maps from M to N and let 1V  and 2V  be compact G invariant definable 

subsets of M such that 1V  is properly contained in the interior Int 2V  of .2V  Then 

there exists N∈κ  such that: 

(a) NVFVF →|κ 11 : ∪∪  is definable. 

(b) α=κ  on .2VIntM −  

(c) κ is G homotopic to α relative to .2VIntM −  

Proof. Take a non-negative definable ∞C  function R→Mf :  such that 

0=f  on 1V  and 1=f  on .2VIntM −  Notice that if M  is polynomially 

bounded, then such an f does not necessarily exist. Since G is a finite group and by 
Proposition 2.4, we may assume that f is G invariant. 

We approximate α by a polynomial G map β on 2V  using the polynomial 

approximation theorem and Proposition 2.4. By Theorem 2.3, one can find a 

definable GC∞  tubular neighborhood ( )pU ,  of N in Ξ. If the approximation is 

sufficiently close, then one can define ,: NM →κ  ( ) ( ( ) ( ) +α=κ xxfpx  

( )( ) ( )).1 xxf β−  Then κ is a GC∞  map, and κ satisfies Properties (a) and (b). If this 

approximation is sufficiently close, then N∈κ  because κ and α coincide with 
outside of a compact set .2V  

The map [ ] NMH →× 1,0:  defined by ( ) ( ) ( ) ( )( )xtxtptxH κ+α−= 1,  

gives a G homotopy relative to 2IntVM −  from α to κ. □ 

Proposition 4.3. Let Ω and Ξ be representations of G. Let ,Ω⊂M  Ξ⊂N  be 

affine locally definable GC∞  manifolds and A be a closed G invariant locally 

definable subset of M. Suppose that NMf →:  is a GC∞  diffeomorphism such 

that NAAf →| :  is locally definable, and that .Mx ∈  Suppose further that 

Sj →Ω′:  is a linear definable ∞C  slice at x in Ω. If MGD ∩10  is compact, then 

there exists a GC∞  diffeomorphism NMh →:  such that: 

(1) ( ) ( ) NMGDAMGDAh →| ∩∪∩∪ :  is locally definable. 

(2) fh =  on .2 MGDM ∩D−  
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(3) h is G homotopic to f relative to .2 MGDM ∩D−  

The condition that MGD ∩10  is compact is not essential. By Theorem 2.7, one 

can find a linear definable rC  slice S at Mx ∈  in Ω. Since S is a linear definable 
∞C  slice in Ω, there exists a definable KC∞  diffeomorphism j from some 

representation Ω′  of xG  onto S such that ( ) ,0 xj =  GS is open in Ω, and that 

( ) ( ),: Ξ⊂→Ω′×µ GSGj xG  

( ) [ ]( ) ( )xgjxgj =µ ,  

is a definable GC∞  diffeomorphism. Notice that M is locally compact. Thus 
replacing smaller S, if necessary, MGD ∩10  is compact because M is locally 

compact. 

Proof of Proposition 4.3. Since MGD ∩10  is compact and A is closed in M, 

( )( )MGDAGDA ∩∩∩ 1010 =  is a compact G invariant locally definable subset 

of .MGS ∩  Thus 10GDA ∩  is a G invariant definable subset of Ω. Hence 

( ) ( )10
1: GDAjE ∩−µ=  

is a G invariant definable subset of .Ω′× xGG  Let ( ).10
1 MDjL ∩D−=  The map 

( ) Ξ→××|µ=α LGLGjf xx GG :: D  

is a GC∞  diffeomorphism onto an open G invariant subset ( )MGDfV ∩D
10:=  of 

N. Since 10GDA ∩  is compact and Af |  is locally definable, ( ) ∩∩ AGDAf :10|  

( ) Ξ⊂⊂→ NGDAfGD 1010 ∩  is definable. The map ( ( )) ∩∩ ELGE xG :×|α  

( ) Ξ→× LG xG  is definable because ( )jµ  and ( ) Ξ→| 1010 : GDAGDAf ∩∩  

are definable. Since V is contained in a G invariant compact set ( ),10 MGDf ∩  and 

since N is a locally definable GC∞  submanifold of Ξ, there exists a G invariant 
definable set W of Ξ such that NWV ⊂⊂  and that W is open in N. Notice that W 

is an affine definable GC∞  manifold. Since LG xG×  is contained in a G invariant 

compact subset of ( ),20
1 MDjG xG ∩−×  LG xG×  is an affine definable GC∞  
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manifold. Applying Lemma 4.2 to ,: WLG xG →×α  there exists a GC∞  map 

WLG xG →×β :  as a ∞C  Whitney approximation of α such that: 

(a) ( ( ( ) ( ))) ( ( ) ( ))) →××|β −− LBDAjGLBDAjG xx GG ∩∪∩∩∪∩ DD
10

1
10

1 :  

( )NW ⊂  is definable. 

(b) α=β  on ( ).2 LBLG xG ∩D−×  

(c) β is G homotopic to α relative to ( ).2 LBLG xG ∩D−×  

Then the map NMh →:  defined by 

( ) ( ) ( )
( )




−∈
∈µβ=

−

D∩
∩D

5

5
1

,
,,
GDMMxxf

MGDxxjxh  

is well-defined, and it is a GC∞  diffeomorphism if our approximation is sufficiently 
close. Since ( )5GDAh ∩|  and ( )MGDh ∩|  are definable, and since ( (MAh ∩|  

))MGD ∩5− ( )( )( )MGDMAf ∩∩ 5−|=  is locally definable, ( )MGDAh ∩∪|  

is locally definable by Proposition 2.1. By the construction of h, h satisfies 
Properties (2) and (3). □ 

Proof of Theorem 4.1. Using Proposition 4.3, a similar proof of 4.1 [11] proves 
Theorem 4.1. □ 

5. Proofs of Theorems 1.3 and 1.4 

Proof of Theorem 1.3. By Whitney’s imbedding Theorem (e.g., 2.14 [2]), there 

exists a ∞C  imbedding .: 12 +→ nXf R  By Proposition 3.2 and since ∞C  

imbeddings from X to 12 +nR  are open in the set ( )12, +∞ nXC R  of ∞C  maps from 

X to ,12 +nR  we have the required locally definable ∞C  imbedding →Xh : .12 +nR □ 

Proof of Theorem 1.4. Let { }mggG ...,,1=  and X be a locally definable 

GC∞  manifold of dimension n. By Theorem 1.3, there exists a locally definable 
∞C  imbedding .: 12 +→ nXf R  Let Ω be the representation of G whose underlying 
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space is ( ) 121212 +++ ××= nnmn RRR "  and its action is defined by the permutation 
of coordinates ( ) ( ( ) ( ) )mm xxxx σσ ...,,...,, 11 6  induced from ( ) =mgggg ...,,1  

( ( ) ( ) )....,,1 mgg σσ  Then ,: Ω→XF  ( ) ( ) ( )( )xgfxgfxF m...,,1=  is the required 

locally definable GC∞  imbedding. □ 
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