Far East Journal of Mathematical Sciences (FJMS)

Volume 35, Number 1, 2009, Pages 71-76

Published Online: November 19, 2009

This paper is available online at http://www.pphmj.com

© 2009 Pushpa Publishing House

φ-b-GENERAL ORTHOGONALITY IN LINEAR φ-2-NORMED SPACES

MEHMET AÇIKGÖZ and HAMİYET MERKEPÇİ

Department of Mathematics Faculty of Science and Literature University of Gaziantep 27310 Gaziantep, Turkey

e-mail: acikgoz@gantep.edu.tr

hamiyetmerkepci@hotmail.com

Abstract

The purpose of this paper is to introduce the definition of ϕ -function and linear φ – 2-normed spaces given by Golet [5] and extend these to bgeneral orthogonality given by Kamali and Mazaheri [6] and obtain some results on φ – *b*-general orthogonality.

1. Introduction, Definitions, Notations and Preliminaries

The concept of linear 2-normed spaces has been investigated by S. Gahler and has been developed extensively in different subjects by many authors [1].

A real linear 2-normed space is a real linear space X equipped with a 2-norm $\|\cdot,\cdot\|:X\times X\to\mathbb{R}$ satisfying the four conditions:

1.1. $||x, y|| \ge 0$, for every $x, y \in X$; ||x, y|| = 0 if and only if x and y are linearly dependent;

2000 Mathematics Subject Classification: Primary 44B20; Secondary 46C05.

Keywords and phrases: b-orthogonality, b-general orthogonality, ϕ -function, ϕ – 2-normed spaces, φ – *b*-general orthogonality.

Received June 26, 2009

- 1.2. ||x, y|| = ||y, x||, for every $x, y \in X$;
- 1.3. $||x, \alpha y|| = |\alpha| ||x, y||$, for every $x, y \in X$ and $\alpha \in \mathbb{R}$;
- 1.4. $||x, y + z|| \le ||x, y|| + ||x, z||$, for every $x, y, z \in X$.

Some of the basic properties of 2-norms that they are non-negative and $||x, y + \alpha x|| = ||x, y||$, for all $x, y \in X$ and $\alpha \in \mathbb{R}$.

Let $(X, \|\cdot, \cdot\|)$ be a 2-normed space and W_1 and W_2 be two subspaces of X. A map $f: W_1 \times W_2 \to \mathbb{R}$ is called a *bilinear 2-functional* on $W_1 \times W_2$ whenever for all $x_1, x_2 \in W_1, y_1, y_2 \in W_2$ and $\lambda_1, \lambda_2 \in \mathbb{R}$.

(i)
$$f(x_1 + x_2, y_1 + y_2) = f(x_1, y_1) + f(x_1, y_2) + f(x_2, y_1) + f(x_2, y_2)$$
;

(ii)
$$f(\lambda_1 x_1, \lambda_2 y_1) = \lambda_1 \lambda_2 f(x_1, y_1)$$
.

A bilinear 2-functional $f: W_1 \times W_2 \to \mathbb{R}$ is called *bounded* if there exists a non-negative real number M (called a *lipschitz constant* for f) such that $|f(x, y)| \le M \|x, y\|$, for all $x \in W_1$ and all $y \in W_2$. For a 2-normed space $(X, \|\cdot, \cdot\|)$ and $0 \ne b \in X$, we denote by X_b^* , the Banach space of all bounded bilinear 2-functionals on $X \times \langle b \rangle$, where $\langle b \rangle$ is the subspace of X generated by X.

Definition 1 [10]. Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space, and $x, y \in X$. If there exists $b \in X$ such that $\|x, b\| \neq 0$ and $\|x, b\| \leq \|x + \alpha y, b\|$ for all scalars $\alpha \in \mathbb{R}$, then x is b-orthogonal to y and denoted by $x \perp^b y$.

If W_1 and W_2 are subsets of X, there exists $b \in X$ such that for all $y_1 \in W_1$, $y_2 \in W_2$, $y_1 \perp^b y_2$, then we say $W_1 \perp^b W_2$.

Definition 2 [6]. Let X be a linear 2-normed space and x, y, $b \in X$. x is called b-general orthogonal to y and write $x \perp_G^b y$, if and only if there exists a unique $\phi_x \in X_b^*$ such that

$$\phi_x(x, b) = ||x, b||^2, ||\phi_x|| = ||x, b|| \text{ and } \phi(y, b) = 0.$$

Definition 3 [5]. Let φ be a function defined on the real field \mathbb{R} into itself with

 ϕ – b -GENERAL ORTHOGONALITY IN LINEAR ϕ – 2 -NORMED ... 73 the following properties:

- $(a_1) \varphi(-t) = \varphi(t)$, for every $t \in \mathbb{R}$;
- $(a_2) \varphi(1) = 1;$
- (a₃) φ is strict increasing and continuous on $(0, \infty)$;
- (a₄) $\lim_{\alpha \to 0} \varphi(\alpha) = 0$ and $\lim_{\alpha \to \infty} \varphi(\alpha) = \infty$.

Based on this definition of ϕ function, we define linear ϕ – 2-normed spaces as follows:

Definition 4 [5]. Let X be a linear space over the field \mathbb{R} of dimension greater than one and let $\|\cdot, \cdot\|$ be a mapping defined on $X \times X$ with real valued into the field \mathbb{R} satisfying the following conditions:

- (1) ||x, y|| = 0, if and only if x and y are linearly dependent;
- (2) ||x, y|| = ||y, x||, for all $x, y \in X$;
- (3) $\|\alpha x, y\| = |\varphi(\alpha)| \|x, y\|$, for every $x, y \in X$ and all $\alpha \in \mathbb{R}$;
- (4) $||x + y, z|| \le ||x, z|| + ||y, z||$, for every $x, y, z \in X$.

If $\varphi(\alpha) = |\alpha|$, then one obtains the linear 2-normed spaces [4].

If $\varphi(\alpha) = |\alpha|^p$, $p \in (0, 1]$, then one obtains the p-2-normed spaces as a generalization of 2-normed spaces. In this study, we assume $\varphi(\alpha) = |\alpha|$ and apply this to b-general orthogonality and its results.

2. Main Results

In this section, we state and prove some characterizations of the φ – *b*-general orthogonality in linear φ – 2-normed spaces.

Definition 5. Let $(X, \|\cdot, \cdot\|)$ be $\varphi - 2$ -normed space and $x, y \in X$. If there exists $b \in X$ such that $\|x, b\| \neq 0$ and $\|x, b\| \leq \|x + \varphi(\alpha)y, b\|$ $(\alpha \in \mathbb{R})$. Then x is $\varphi - b$ -orthogonal to y and denoted by $x \perp_{\varphi}^{b} y$.

Theorem 1. Let X be a linear φ – 2-normed space, $b \in X$, $y \in X$ and $x \in X$

 $X \setminus (\langle b \rangle)$. Then the following statements are equivalent:

- (1) $x \perp_{0}^{b} y$;
- (2) There exists X_b^* such that f(y, b) = 0, f(x, b) = ||x, b|| and ||f|| = 1.

Proof. (2) \rightarrow (1) First suppose there exists $f \in X_b^*$ such that f(y, b) = 0. Then

$$||x, b|| = f(x, b) = f(x + \varphi(\alpha)y, b) \le ||f|| \cdot ||x + \varphi(\alpha)y, b||$$

 $\le ||x + \varphi(\alpha)y, b||.$

Therefore, $x \perp_{\phi}^{b} y$.

(1) \rightarrow (2) Suppose $x \perp_{\varphi}^{b} y$ and $W = \langle y \rangle$ is the subspace of X generated by b. Then

$$\inf\{||x - \varphi(\alpha)y, b|| : \varphi(\alpha)y \in W\} \ge ||x, b|| > 0.$$

Then there exists $f \in X_b^*$ such that g(y, b) = 0, g(x, b) = 1 and $||g|| = 1/\delta$. Put $f = \delta g$, then f(y, b) = 0, f(x, b) = ||x, b|| and ||f|| = 1.

Definition 6. Let X be a linear $\varphi - 2$ -normed space and $x, y, b \in X$. x is called $\varphi - b$ -general orthogonal to y and write $x \perp_{\varphi G}^{b} y$ if and only if there exists a unique $\varphi_x \in X_b^*$ such that $\varphi_x(x, b) = \|x, b\|^2$, $\|\varphi_x\| = \|x, b\|$ and $\varphi(y, b) = 0$.

Theorem 2. Let X be a linear φ – 2-normed space. If $x, y \in X$, and $x \perp_G^b y$, then $x \perp_{\varphi}^b y$.

Proof. Suppose $x, y \in X$ and $x \perp_G^b y$, then

$$\|x, b\|^2 = \phi_x(x, b)$$

$$= \phi_x(x + \varphi(\alpha)y, b)$$

$$= \|\phi_x\| \cdot \|x + \varphi(\alpha)y, b\|.$$

Therefore, $||x, b|| \le ||x + \varphi(x)y, b||$. That is $x \perp_{\varphi}^{b} y$.

Theorem 3. Let X be a linear ϕ – 2-normed space. Then the following statements are true.

- (a) For all $x \in X$ and all $\varphi(\alpha) > 0$, $\varphi_{\varphi(\alpha)x} = \varphi(\alpha)\varphi_x$.
- (b) For all $x, y \in X$ and all $\alpha > 0$, if $x \perp_{\phi G}^{b} y$, then $\phi(\alpha)x \perp_{\phi G}^{b} y$.
- (c) For all $x \in X$, if $x \perp_{\phi G}^{b} x$, then x = 0.
- (d) For all $x, y \in X$, if $x \perp_{0}^{b} y$ and $x \neq 0$, then $\langle x \rangle \cap \langle y \rangle = \{0\}$.
- (e) For all $x \in X$, $0 \perp_{\phi G}^{b} y$ and $x \perp_{\phi G}^{b} 0$.

Proof. (a) Suppose $x \in X$ and $\varphi(x) > 0$. Then

$$\phi_{\varphi(x)x}(\varphi(\alpha)x, b) = \|\varphi(\alpha)x, b\|^2 = \varphi^2(\alpha) \cdot \|x, b\|^2$$
$$= \varphi^2(\alpha)\phi_x(x, b)$$

by using the linearity of ϕ_x , we have

$$\varphi(\alpha)\phi_{\varphi(\alpha)x}(x, b) = \varphi^2(\alpha)\cdot\phi_x(x, b)$$

and

$$\phi_{\varphi(\alpha)x}(x, b) = \varphi(\alpha) \cdot \phi_x(x, b).$$

Then we obtain $\phi_{\varphi(\alpha)x} = \varphi(\alpha)\phi_x$.

(b) Suppose $x, y \in X$, $\beta \in \mathbb{R}$ and $\varphi(\alpha) > 0$. Then

$$\phi^{2}(\alpha) \cdot \| x, b \|^{2} = \phi^{2}(\alpha) \cdot \| x + \beta y, b \|^{2}$$

$$= \| \phi(\alpha)(x + \beta y), b \|^{2}$$

$$= \| \phi(\alpha)x, b \|^{2} + \| \phi(\alpha)\beta y, b \|^{2}$$

$$= \| \phi(\alpha)x, b \|^{2}.$$

Since $\phi(y, b) = 0$, $\phi^2(\alpha) \cdot \beta^2 ||y, b||^2 = 0$. Therefore, $\phi(\alpha) x \perp_{\phi G}^b y$.

(c) For all $x \in X$, if $x \perp_{\phi G}^{b} x$, then $\phi_{\phi(\alpha)x}(\phi(\alpha)x, b) = 0$ and $\phi_{\phi(\alpha)x}(\phi(\alpha)x, b) = \|\phi(\alpha)x, b\|^2$. Since $\phi(\alpha) > 0$ and $b \in X$, then x = 0.

(d) If $z \in \langle x \rangle \cap \langle y \rangle$ and since $\lim_{\alpha \to 0} \varphi(\alpha) = 0$, choose x_n and y_n such that $z = c_1 x_n = c_2 y_n$ for scalars c_1 , c_2 . Hence $\varphi_{\varphi(\alpha)}(z, b) = 0$, it follows that

$$\phi_{\varphi(c_1)x}(\varphi(c_1)x_n, b) = \|\varphi(c_1)x_n, b\|^2 = \varphi^2(c_1)\|x_n, b\|^2$$

 $||x_n, b|| \to 0$, as $n \to \infty$. Therefore, $\varphi(c_1) \to 0$, thus $c_1 \to 0$.

(e) It is trivial.

References

- [1] Y. J. Cho, P. C. S. Lin, S. S. Kim and A. Misiak, Theory of 2-inner Product Spaces, Nova Science Publishes, Inc., New York, 2001.
- [2] Y. J. Cho, M. Matic and J. E. Pecaric, On Gram's determinant in 2-inner product spaces, J. Korean Math. Soc. 38(6) (2001), 1125-1156.
- [3] S. S. Dragomir, Y. J. Cho, S. S. Kim and A. Sofo, Some Boas-Bellman type inequalities in 2-inner product spaces, JIPAM, J. Inequal. Pure Appl. Math. 6(2) (2005), Article 55, pp. 13.
- [4] S. Gahler, Lineare 2-nomierte Raume, Math. Nachr. 28 (1964), 1-43.
- [5] I. Golet, On generalized fuzzy normed spaces, Int. Math. Forum 4(25) (2009), 1237-1242.
- [6] H. R. Kamali and H. Mazaheri, *b*-general orthogonality in 2-normed spaces, Appl. Math. Sci. 2(16) (2008), 775-780.
- [7] Z. Lewandowska, Linear operators on generalized 2-normed spaces, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 42(90) (1999), no. 4, 353-368.
- [8] Z. Lewandowska, Generalized 2-normed spaces, Supskie Space Matemayczno Fizyczne 1 (2001), 33-40.
- [9] Z. Lewandowska, On 2-normed sets, Glas. Mat. Ser. III 38(58), (2003), no. 1, 99-110.
- [10] H. Mazahari and S. Golestani Nezhad, Some results on *b*-orthogonality in 2-normed linear spaces, Int. J. Math. Anal. 1(14) (2007), 681-687.