$\varphi-b$-GENERAL ORTHOGONALITY IN LINEAR φ - 2-NORMED SPACES

MEHMET AÇIKGÖZ and HAMİYET MERKEPÇi
Department of Mathematics
Faculty of Science and Literature
University of Gaziantep
27310 Gaziantep, Turkey
e-mail: acikgoz@gantep.edu.tr
hamiyetmerkepci@hotmail.com

Abstract

The purpose of this paper is to introduce the definition of φ-function and linear φ - 2-normed spaces given by Golet [5] and extend these to b general orthogonality given by Kamali and Mazaheri [6] and obtain some results on $\varphi-b$-general orthogonality.

1. Introduction, Definitions, Notations and Preliminaries

The concept of linear 2-normed spaces has been investigated by S. Gahler and has been developed extensively in different subjects by many authors [1].

A real linear 2-normed space is a real linear space X equipped with a 2-norm $\|\cdot, \cdot\|: X \times X \rightarrow \mathbb{R}$ satisfying the four conditions:
1.1. $\|x, y\| \geq 0$, for every $x, y \in X ;\|x, y\|=0$ if and only if x and y are linearly dependent;

2000 Mathematics Subject Classification: Primary 44B20; Secondary 46C05.
Keywords and phrases: b-orthogonality, b-general orthogonality, φ-function, φ - 2 -normed spaces, φ - b-general orthogonality.
1.2. $\|x, y\|=\|y, x\|$, for every $x, y \in X$;
1.3. $\|x, \alpha y\|=|\alpha|\|x, y\|$, for every $x, y \in X$ and $\alpha \in \mathbb{R}$;
1.4. $\|x, y+z\| \leq\|x, y\|+\|x, z\|$, for every $x, y, z \in X$.

Some of the basic properties of 2-norms that they are non-negative and $\|x, y+\alpha x\|=\|x, y\|$, for all $x, y \in X$ and $\alpha \in \mathbb{R}$.

Let $(X,\|\cdot, \cdot\|)$ be a 2-normed space and W_{1} and W_{2} be two subspaces of X. A map $f: W_{1} \times W_{2} \rightarrow \mathbb{R}$ is called a bilinear 2-functional on $W_{1} \times W_{2}$ whenever for all $x_{1}, x_{2} \in W_{1}, y_{1}, y_{2} \in W_{2}$ and $\lambda_{1}, \lambda_{2} \in \mathbb{R}$.
(i) $f\left(x_{1}+x_{2}, y_{1}+y_{2}\right)=f\left(x_{1}, y_{1}\right)+f\left(x_{1}, y_{2}\right)+f\left(x_{2}, y_{1}\right)+f\left(x_{2}, y_{2}\right)$;
(ii) $f\left(\lambda_{1} x_{1}, \lambda_{2} y_{1}\right)=\lambda_{1} \lambda_{2} f\left(x_{1}, y_{1}\right)$.

A bilinear 2-functional $f: W_{1} \times W_{2} \rightarrow \mathbb{R}$ is called bounded if there exists a non-negative real number M (called a lipschitz constant for f) such that $|f(x, y)|$ $\leq M\|x, y\|$, for all $x \in W_{1}$ and all $y \in W_{2}$. For a 2 -normed space $(X,\|\cdot, \cdot\|)$ and $0 \neq b \in X$, we denote by X_{b}^{*}, the Banach space of all bounded bilinear 2functionals on $X \times\langle b\rangle$, where $\langle b\rangle$ is the subspace of X generated by b.

Definition 1 [10]. Let $(X,\|\cdot, \cdot\|)$ be a linear 2-normed space, and $x, y \in X$. If there exists $b \in X$ such that $\|x, b\| \neq 0$ and $\|x, b\| \leq\|x+\alpha y, b\|$ for all scalars $\alpha \in \mathbb{R}$, then x is b-orthogonal to y and denoted by $x \perp^{b} y$.

If W_{1} and W_{2} are subsets of X, there exists $b \in X$ such that for all $y_{1} \in W_{1}$, $y_{2} \in W_{2}, y_{1} \perp^{b} y_{2}$, then we say $W_{1} \perp^{b} W_{2}$.

Definition 2 [6]. Let X be a linear 2-normed space and $x, y, b \in X . x$ is called b-general orthogonal to y and write $x \perp_{G}^{b} y$, if and only if there exists a unique $\phi_{x} \in X_{b}^{*}$ such that

$$
\phi_{x}(x, b)=\|x, b\|^{2}, \quad\left\|\phi_{x}\right\|=\|x, b\| \text { and } \phi(y, b)=0
$$

Definition 3 [5]. Let φ be a function defined on the real field \mathbb{R} into itself with
the following properties:
$\left(\mathrm{a}_{1}\right) \varphi(-t)=\varphi(t)$, for every $t \in \mathbb{R} ;$
$\left(\mathrm{a}_{2}\right) \varphi(1)=1$;
$\left(a_{3}\right) \varphi$ is strict increasing and continuous on $(0, \infty)$;
$\left(a_{4}\right) \lim _{\alpha \rightarrow 0} \varphi(\alpha)=0$ and $\lim _{\alpha \rightarrow \infty} \varphi(\alpha)=\infty$.
Based on this definition of φ function, we define linear φ - 2-normed spaces as follows:

Definition 4 [5]. Let X be a linear space over the field \mathbb{R} of dimension greater than one and let $\|\cdot, \cdot\|$ be a mapping defined on $X \times X$ with real valued into the field \mathbb{R} satisfying the following conditions:
(1) $\|x, y\|=0$, if and only if x and y are linearly dependent;
(2) $\|x, y\|=\|y, x\|$, for all $x, y \in X$;
(3) $\|\alpha x, y\|=|\varphi(\alpha)|\|x, y\|$, for every $x, y \in X$ and all $\alpha \in \mathbb{R}$;
(4) $\|x+y, z\| \leq\|x, z\|+\|y, z\|$, for every $x, y, z \in X$.

If $\varphi(\alpha)=|\alpha|$, then one obtains the linear 2-normed spaces [4].

If $\varphi(\alpha)=|\alpha|^{p}, p \in(0,1]$, then one obtains the $p-2$-normed spaces as a generalization of 2-normed spaces. In this study, we assume $\varphi(\alpha)=|\alpha|$ and apply this to b-general orthogonality and its results.

2. Main Results

In this section, we state and prove some characterizations of the φ-b-general orthogonality in linear φ - 2-normed spaces.

Definition 5. Let $(X,\|\cdot, \cdot\|)$ be $\varphi-2$-normed space and $x, y \in X$. If there exists $b \in X$ such that $\|x, b\| \neq 0$ and $\|x, b\| \leq\|x+\varphi(\alpha) y, b\|(\alpha \in \mathbb{R})$. Then x is φ-b-orthogonal to y and denoted by $x \perp_{\varphi}^{b} y$.

Theorem 1. Let X be a linear φ-2-normed space, $b \in X, y \in X$ and $x \in$
$X \backslash(\langle b\rangle)$. Then the following statements are equivalent:
(1) $x \perp_{\varphi}^{b} y$;
(2) There exists X_{b}^{*} such that $f(y, b)=0, f(x, b)=\|x, b\|$ and $\|f\|=1$.

Proof. (2) \rightarrow (1) First suppose there exists $f \in X_{b}^{*}$ such that $f(y, b)=0$.
Then

$$
\begin{aligned}
\|x, b\|=f(x, b) & =f(x+\varphi(\alpha) y, b) \leq\|f\| \cdot\|x+\varphi(\alpha) y, b\| \\
& \leq\|x+\varphi(\alpha) y, b\|
\end{aligned}
$$

Therefore, $x \perp_{\varphi}^{b} y$.
(1) \rightarrow (2) Suppose $x \perp_{\varphi}^{b} y$ and $W=\langle y\rangle$ is the subspace of X generated by b. Then

$$
\inf \{\|x-\varphi(\alpha) y, b\|: \varphi(\alpha) y \in W\} \geq\|x, b\|>0
$$

Then there exists $f \in X_{b}^{*}$ such that $g(y, b)=0, g(x, b)=1$ and $\|g\|=1 / \delta$. Put $f=\delta g$, then $f(y, b)=0, f(x, b)=\|x, b\|$ and $\|f\|=1$.

Definition 6. Let X be a linear φ-2-normed space and $x, y, b \in X . x$ is called φ-b-general orthogonal to y and write $x \perp_{\varphi G}^{b} y$ if and only if there exists a unique $\phi_{x} \in X_{b}^{*}$ such that $\phi_{x}(x, b)=\|x, b\|^{2},\left\|\phi_{x}\right\|=\|x, b\|$ and $\phi(y, b)=0$.

Theorem 2. Let X be a linear φ-2-normed space. If $x, y \in X$, and $x \perp_{G}^{b} y$, then $x \perp_{\varphi}^{b} y$.

Proof. Suppose $x, y \in X$ and $x \perp_{G}^{b} y$, then

$$
\begin{aligned}
\|x, b\|^{2} & =\phi_{x}(x, b) \\
& =\phi_{x}(x+\varphi(\alpha) y, b) \\
& =\left\|\phi_{x}\right\| \cdot\|x+\varphi(\alpha) y, b\|
\end{aligned}
$$

Therefore, $\|x, b\| \leq\|x+\varphi(x) y, b\|$. That is $x \perp_{\varphi}^{b} y$.

Theorem 3. Let X be a linear φ-2-normed space. Then the following statements are true.
(a) For all $x \in X$ and all $\varphi(\alpha)>0, \phi_{\varphi(\alpha) x}=\varphi(\alpha) \phi_{x}$.
(b) For all $x, y \in X$ and all $\alpha>0$, if $x \perp_{\varphi G}^{b} y$, then $\varphi(\alpha) x \perp_{\varphi G}^{b} y$.
(c) For all $x \in X$, if $x \perp_{\varphi G}^{b} x$, then $x=0$.
(d) For all $x, y \in X$, if $x \perp_{\varphi G}^{b} y$ and $x \neq 0$, then $\langle x\rangle \cap\langle y\rangle=\{0\}$.
(e) For all $x \in X, 0 \perp_{\varphi G}^{b} y$ and $x \perp_{\varphi G}^{b} 0$.

Proof. (a) Suppose $x \in X$ and $\varphi(x)>0$. Then

$$
\begin{aligned}
\phi_{\varphi(x) x}(\varphi(\alpha) x, b) & =\|\varphi(\alpha) x, b\|^{2}=\varphi^{2}(\alpha) \cdot\|x, b\|^{2} \\
& =\varphi^{2}(\alpha) \phi_{x}(x, b)
\end{aligned}
$$

by using the linearity of ϕ_{x}, we have

$$
\varphi(\alpha) \phi_{\varphi(\alpha) x}(x, b)=\varphi^{2}(\alpha) \cdot \phi_{x}(x, b)
$$

and

$$
\phi_{\varphi(\alpha) x}(x, b)=\varphi(\alpha) \cdot \phi_{x}(x, b)
$$

Then we obtain $\phi_{\varphi(\alpha) x}=\varphi(\alpha) \phi_{x}$.
(b) Suppose $x, y \in X, \beta \in \mathbb{R}$ and $\varphi(\alpha)>0$. Then

$$
\begin{aligned}
\varphi^{2}(\alpha) \cdot\|x, b\|^{2} & =\varphi^{2}(\alpha) \cdot\|x+\beta y, b\|^{2} \\
& =\|\varphi(\alpha)(x+\beta y), b\|^{2} \\
& =\|\varphi(\alpha) x, b\|^{2}+\|\varphi(\alpha) \beta y, b\|^{2} \\
& =\|\varphi(\alpha) x, b\|^{2}
\end{aligned}
$$

Since $\phi(y, b)=0, \varphi^{2}(\alpha) \cdot \beta^{2}\|y, b\|^{2}=0$. Therefore, $\varphi(\alpha) x \perp_{\varphi G}^{b} y$.
(c) For all $x \in X$, if $x \perp_{\varphi G}^{b} x$, then $\phi_{\varphi(\alpha) x}(\varphi(\alpha) x, b)=0$ and $\phi_{\varphi(\alpha) x}(\varphi(\alpha) x, b)$ $=\|\varphi(\alpha) x, b\|^{2}$. Since $\varphi(\alpha)>0$ and $b \in X$, then $x=0$.
(d) If $z \in\langle x\rangle \cap\langle y\rangle$ and since $\lim _{\alpha \rightarrow 0} \varphi(\alpha)=0$, choose x_{n} and y_{n} such that $z=c_{1} x_{n}=c_{2} y_{n}$ for scalars c_{1}, c_{2}. Hence $\phi_{\varphi(\alpha)}(z, b)=0$, it follows that

$$
\phi_{\varphi\left(c_{1}\right) x}\left(\varphi\left(c_{1}\right) x_{n}, b\right)=\left\|\varphi\left(c_{1}\right) x_{n}, b\right\|^{2}=\varphi^{2}\left(c_{1}\right)\left\|x_{n}, b\right\|^{2}
$$

$\left\|x_{n}, b\right\| \rightarrow 0$, as $n \rightarrow \infty$. Therefore, $\varphi\left(c_{1}\right) \rightarrow 0$, thus $c_{1} \rightarrow 0$.
(e) It is trivial.

References

[1] Y. J. Cho, P. C. S. Lin, S. S. Kim and A. Misiak, Theory of 2-inner Product Spaces, Nova Science Publishes, Inc., New York, 2001.
[2] Y. J. Cho, M. Matic and J. E. Pecaric, On Gram's determinant in 2-inner product spaces, J. Korean Math. Soc. 38(6) (2001), 1125-1156.
[3] S. S. Dragomir, Y. J. Cho, S. S. Kim and A. Sofo, Some Boas-Bellman type inequalities in 2 -inner product spaces, JIPAM, J. Inequal. Pure Appl. Math. 6(2) (2005), Article 55, pp. 13.
[4] S. Gahler, Lineare 2-nomierte Raume, Math. Nachr. 28 (1964), 1-43.
[5] I. Golet, On generalized fuzzy normed spaces, Int. Math. Forum 4(25) (2009), 1237-1242.
[6] H. R. Kamali and H. Mazaheri, b-general orthogonality in 2-normed spaces, Appl. Math. Sci. 2(16) (2008), 775-780.
[7] Z. Lewandowska, Linear operators on generalized 2-normed spaces, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 42(90) (1999), no. 4, 353-368.
[8] Z. Lewandowska, Generalized 2-normed spaces, Supskie Space Matemayczno Fizyczne 1 (2001), 33-40.
[9] Z. Lewandowska, On 2-normed sets, Glas. Mat. Ser. III 38(58), (2003), no. 1, 99-110.
[10] H. Mazahari and S. Golestani Nezhad, Some results on b-orthogonality in 2-normed linear spaces, Int. J. Math. Anal. 1(14) (2007), 681-687.

