

Far East Journal of Mathematical Sciences (FJMS)
Volume 34, Issue 3, 2009, Pages 289-302
Published Online: October 26, 2009
This paper is available online at http://www.pphmj.com
© 2009 Pushpa Publishing House

 :tionClassificajectSubsMathematic2000 03Bxx.

Keywords and phrases: ternary logic, fuzzy logic, binary logic, VLSI circuits.

Received April 28, 2009

FUNDAMENTALS OF TERNARY LOGIC

JORGE PEDRAZA ARPASI

Departamento de Ciências e Engenharias
Universidade Regional Integrada - URI
Frederico Westphalen, RS, Brazil
e-mail: arpasi@gmail.com

Abstract

In this article, we show that ternary logic is a generalization of the binary
(classic) case in the sense of each proposition that is true under the rules
of the binary logic will be true under the rules of the trivalent case. Also,
we show that the tautologies and contradictions are relatively few when
compared with the binary case. Finally, it is shown that ternary logic
cannot have a Boolean structure.

1. Introduction

A ternary logic system was first proposed by the polish mathematician Jan
Łukasiewicz, in 1920, in his celebrated paper O Logice Trójwarkoscioewj, [8], as a
generalization of the classical binary logic. After that, Łukasiewicz proposed a more
generalized logical system: the multivalued logic. In 1965, Lotfi Zadeh introduced
the Fuzzy set theory, in [9], from which was derived the Fuzzy logic. Both,
multivalued and Fuzzy logic have the same rules, the only difference is in their
respective aims [3].

In connection with ternary logic, Donald Knuth assumed that the replacement of
“flip-flop” for “flip-flap-flop” one a “good” day will nevertheless happen [7].
Hence, to move beyond binary logic to circuits based on multivalued logic in which
the information density and processing efficiency of a circuit could theoretically be

JORGE PEDRAZA ARPASI 290

increased substantially without any further expensive “improvements” to the
underlying fabrication technology, is an idea that must be taken into account.
Elementary calculations allow us to say that a 16-bit microcomputer with on-board
memory has access to no more than 65 Kbytes of directly accessible memory, while
that same microcomputer with memory based on ternary logic would have direct
access to 43 Mbytes of memory, that means, one gains more than 656 times of
memory capacity.

In 1956, in the academy of sciences of the former USSR was initiated the
construction of the first ternary digital machine, the Setun. But the officials of the
USSR did not believe in this project and it was stopped by 1965 after producing
about 30 Setun machines. These ternary computers were replaced by binary ones of
the same performance, but more than 2.5 times more expensive [1, 2].

In this work, we will describe some basic facts about binary logic and Boolean
algebra in spite of both issues being widely known, but this description will be a
good basement to introduce and to show the elementary properties of ternary logic.
These properties can be summarized as follows: (a) Ternary logic is a generalization
of binary logic, (b) it has not a structure to be a Boolean algebra, (c) it is based on
more than three basic operations, and (d) its tautologies and contradictions are more
hard-to-find propositions with respect to the binary case. The generalization is in the
sense that if one proposition p is true(false) under the rules of binary logic, then it is
also true(false) under the ternary logic. The lack of Boolean structure, in ternary
logic, is compensated by more powerful tools for inferential analysis [6]. Recently
some researchers are working in the building of one structure called trilean, which
could have some analogous properties from Boolean structure [5].

For the binary case, we will use the values { }1,0 which means true 1= and

false 0,= whereas that for ternary case we will use the values
⎭⎬
⎫

⎩⎨
⎧ 1,2

10, which

means true 1,= false 0,= and “unknown” .2
1= By x we will mean a simple

statement or proposition, whereas by either p or f we will mean a composed
proposition which depends on other simple propositions, hence we also refer them as
functions.

2. Binary Logic (Classical Logic)

We can see the binary logic as a system L whose elements called propositions

FUNDAMENTALS OF TERNARY LOGIC 291

or statements are valued on the set { }1,0 [4]. This set { }1,0 we denote as being

,2Z thus, if x is a proposition, the value of x is a mapping { }1,0: →ν L such that

()
⎩
⎨
⎧=ν

false.isif;0
true,isif;1

x
x

x

It is standard, in almost all the logical literature, to ignore the mapping ν.
Therefore, for the sake of practical purposes, it is assumed that () xx =ν and from
this, 1=x means x is true and 0=x means x is false. Over L are defined the
following basic operations:

• The negation ¬ (unary operation “not”).

• The disjunction ∨ (binary operation “or”).

• The conjunction ∧ (binary operation “and”).

Table 1. Most known operations or functions in binary logic

 Neg(x) Disj(x, y) Conj(x, y) Imp(x, y) Equiv(x, y)
x y ¬ x x ∨ y x ∧ y x → y x ↔ y

1 1 0 1 1 1 1
1 0 1 0 0 0
0 1 1 1 0 1 0
0 0 0 0 0 1

The system L is closed under any of these three operations, in the sense that if
,, L∈yx then both ,L∈¬ x ,L∈∨ yx and .L∈∧ yx From these three

operations, we can derive 16 binary operations, among them the implication
() yxyx →=,Imp and the equivalence () .,Equiv yxyx ↔= The value of these

basic operations and any other composed propositions depend on the value of each
component x and y as can be seen in the truth table for these operations shown in
Table 1.

One practical advantage of the use of the identity () ,xx =ν is that the above

basic operations can be considered functions. In this way, the unary operator
“negation” is a function ,: 22 ZZ →f and a binary operation such as the

“disjunction” is a function .: 2
2
2 ZZ →f In general, by combining the three basic

operations we can define binary logic functions as mappings .: 22 ZZ →nf

JORGE PEDRAZA ARPASI 292

When ,1=n we have one-variable functions (),xf and there are 42
12 = of

this kind of functions which are: the Identity or Affirmation (),xid the Negation

(),xN the Tautology ()xτ and the Contradiction ().xγ All these four functions are

also called modal functions of x and they are shown in Table 2.

Table 2. All the one-variable binary functions

x id(x) N(x) τ(x) γ(x)

1 1 0 1 0
0 0 1 1 0

When ,2=n we have two-variable functions (),, yxf and there are 162
22 =

of this kind of functions which are shown in Table 3. It is possible to show that all
the 16 two-variable functions can be derived from that basic functions “and” (),∧

“or” ()∨ and “not” ().¬ Notice, in that table, that ()yxf ,2 is the disjunction,

()yxf ,8 is the conjunction, ()yxf ,5 is the implication, 7f is the equivalence,

whereas 1f and 16f are the tautology and the contradiction functions, respectively.

Table 3. All the two-variable binary functions

x y 1f 2f 3f 4f 5f 6f 7f 8f 9f 10f 11f 12f 13f 14f 15f 16f

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

For three variables we will have 2562
32 = different functions ().,, zyxf In

general, there exist
n22 different binary logical functions ()nxxxf ...,,, 21 of n

variables.

Example 1. Functions or propositions of one variable.

Let x be the statement “Peter is tall”. Then we can construct all the four one-
variable functions:

• () =xid Peter is tall.

• () =¬= xxN Peter is not tall.

FUNDAMENTALS OF TERNARY LOGIC 293

• () =¬∨=τ xxx Peter is tall or he is not tall.

• () =¬∧=γ xxx Peter is tall and he is not tall.

Example 2. Some functions or propositions of two variables.

Let x and y be the statements “Peter is tall” and “Peter is thin”, respectively.
Then we can construct the following functions, among all the 16 possible ones
(Table 3):

• () =∨= yxyxf ,2 Peter is tall or thin (disjunction).

• () =∧= yxyxf ,8 Peter is tall and thin (conjunction).

• () =→= yxyxf ,5 If Peter is tall then he is thin (implication).

• () =↔= yxyxf ,7 Peter is tall if and only if he is thin (equivalence).

• () () == yxXORyxf ,,10 Either Peter is tall or Peter is thin (Exclusive OR).

• () () == yxNANDyxf ,,15 Peter is not tall or Peter is not thin (Negation of

Conjunction).

• () () () () =¬∨¬∨∧=τ= yxyxyxyxf ,,1 Peter is tall and thin, or he is

not tall or he is not thin (tautology).

• () () () () =¬∧¬∧∨=γ= yxyxyxyxf ,,16 Peter is tall or thin, and he is

not tall and he is not thin (contradiction).

Table 4. Boolean properties of binary logic, where =τ tautology and =γ
contradiction

 1 xyyx ∨=∨ 5 xyyx ∧=∧

 2 () ()zyxzyx ∨∨=∨∨ 6 () ()zyxzyx ∧∧=∧∧

 3 () () ()zxyxzyx ∨∧∨=∧∨ 7 () () ()zxyxzyx ∧∨∧=∨∧

 4 xx =γ∨ 8 xx =τ∧

 9 τ=¬∨ xx 10 γ=¬∧ xx

3. Boolean Algebra

Definition 1. Let S be a set. Then the power set of S, denoted by (),SP is the

set of all subsets of S.

JORGE PEDRAZA ARPASI 294

If the set S is finite, with n elements, then the power set ()SP has n2 elements.

In other words, each set with n elements has n2 different subsets. Obviously, an
infinite set S has a power set which is also infinite.

Example 3. Consider the finite set { },,, cbaS = a set with three elements.

The power set ()SP has 823 = elements(subsets). In effect,

() { } { } { } { } { } { } { }{ },,,,,,,,,,,,, cbacbcabacbaS ∅=P

where ∅ is the empty set and { }cba ,, is the full set S itself.

Definition 2. An Algebra of Boole is a nonempty set B with two binary
operations, the sum (),+ and the product (),⋅ and one unary operation, the

complement ();′ satisfying the following conditions:

 (1) The sum is commutative, that is, ,xyyx +=+ for all ., B∈yx

 (2) The sum is associative, that is, () (),zyxzyx ++=++ for all zyx ,,

.B∈

 (3) The sum is distributive with respect to the product, that is, ()zyx ⋅+

() (),zxyx +⋅+= for all .,, B∈zyx

 (4) There exists a neutral element for the sum, ,0 B∈ such that ,0 xx =+
for all .B∈x

 (5) The product is commutative, that is, ,xyyx ⋅=⋅ for all ., B∈yx

 (6) The product is associative, that is, () (),zyxzyx ⋅⋅=⋅⋅ for all

.,, B∈zyx

 (7) The product is distributive with respect to the sum, that is, () =+⋅ zyx

() (),zxyx ⋅+⋅ for all .,, B∈zyx

 (8) There exists a neutral element for the product, ,1 B∈ such that ,1 xx =⋅
for all .B∈x

 (9) ,1=′+ xx for all .B�∈x

 (10) ,0=′⋅ xx for all .B∈x

FUNDAMENTALS OF TERNARY LOGIC 295

Table 5. Operations and identities of binary logic and Boolean algebra

Disjunction ∨ 6 + Boolean sum
Conjunction ∧ 6 · Boolean product

Negation ¬ 6 ′ Boolean complement
Tautology τ 6 1 Product identity

Contradiction γ 6 0 Sum identity

3.1. Examples

Example 4. Consider a class L of binary logical propositions, that is, with
values on { },1,02 =Z with the operations negation (),¬ disjunction (),∨ and

conjunction (),∧ then L with these operations is an infinite Boolean algebra.

By making the correspondences of Table 5, we can verify that the properties of
L shown in Table 4 satisfy the definition of Boolean algebra.

Example 5. Consider a finite set S, then the power set ();SP with the set

operations: union of sets ,∪ the intersection of sets ,∩ and the complement of a set

′; is a finite Boolean algebra.

Table 6. The Boolean structure for sets with the operations ′, ,∪ and ∩

 1 ABBA ∪∪ = 5 ABBA ∩∩ =

 2 () ()CBACBA ∪∪∪∪ = 6 () ()CBACBA ∩∩∩∩ =

 3 () () ()CABACBA ∪∩∪∩∪ = 7 () () ()CABACBA ∩∪∩∪∩ =

 4 AA =∅∪ 8 () ASA =P∩

 9 ()SAA P=′∪ 10 ∅=′AA ∩

In effect, any subsets A, B and C of S hold the properties of Table 6 and
therefore ()SP is a finite Boolean Algebra.

4. Ternary Logic

If binary logic is valued in { },1,02 =Z where =1 true is the best case and

=0 false is the worst case, then the set of values of ternary could be the set

{ }.2,1,03 =Z These values could be made in such a way that =2 false (worst),

JORGE PEDRAZA ARPASI 296

=1 true (best), and =0 unknown (intermediate). Some advantages of this

representation, of ternary logic, are that the values are integers, and 3Z is an

algebraic ring where .12 −= Thus the set of values { }2,1,0 commutes easily with

{ }.1,0,1− These last values are more convenient for the people who implement this

logic in electrical circuits where would be used alternating current which varies in
direction cyclically. One direction would be – 1, the opposite direction would be + 1
whereas the current off would be 0 [2, 6]. In this work, we will use the set

,1,2
1,0

⎭⎬
⎫

⎩⎨
⎧ where =0 false, =2

1 unknown and =1 true. We think that the choice

of these values leads in a more natural way the adaptation of the ideas from the
binary logic. Moreover, Łukasiewicz himself proposed this notation in his celebrated
work [3, 8].

Definition 3. As ternary logic we will mean a system L whose elements called

propositions or statements are valued in the set .1,2
1,0

⎭⎬
⎫

⎩⎨
⎧ If x is a proposition, then

the value of x is a mapping
⎭⎬
⎫

⎩⎨
⎧→ν 1,2

1,0: L such that

()

⎪
⎪
⎩

⎪⎪
⎨

⎧

=ν

false.isif;0

unknown,isif;2
1

true,isif;1

x

x

x

x

From this, we have that if () 1=ν x (true) under the rules of binary logic, then

also () 1=ν x (true) under the ternary logic laws. Analogously for the false value.

On the other hand, for the same considerations made for binary logic case, we can
avoid ν by making () .xx =ν Then over L are defined the following basic

operations [6, 3]:

• The negation ¬ (unary operation “not”).

• The disjunction ∨ (binary operation “or”).

• The conjunction ∧ (binary operation “and”).

• The implication → (binary operation “if...then”).

FUNDAMENTALS OF TERNARY LOGIC 297

Table 7. Basic operations of the ternary logic

 Neg(x) Conj(x, y) Disj(x, y) Imp(x, y) Equiv(x, y)
x y ¬x x ∧ y x ∨ y x → y x ↔ y

1 1 0 1 1 1 1

1 2
1

2
1 1 2

1
2
1

1 0 0 1 0 0

2
1 1 2

1
2
1 1 1 2

1

2
1

2
1

2
1

2
1 1 1

2
1 0 0 2

1
2
1

2
1

0 1 1 0 1 1 0

0 2
1

0 2
1 1 2

1

0 0 0 0 1 1

The system L is closed under any of these four operations, in the sense that if
,, L∈yx then ,L∈¬ x ,L∈∨ yx ,L∈∧ yx and .L∈→ yx Notice that the

implication, in this case, is not derived from the three basic operations as it happens
in the binary logic.

The values of ,x¬ ,yx ∨ ,yx ∧ and yx → and other composed operations

depend on the value of each component x and y. These values can be obtained by
using the truth table as Table 7 shows. In such Table 7 also it is shown the
equivalence operation which can be derived from the conjunction and implication.

Remembering binary logic, notice that for ()yx,Disj be true it is enough that

only one of the two variables be true. From this, we can say that () =yx,Disj

{ },,max yx whereas for the conjunction we have () { }.,min,Conj yxyx =

Since ternary logic is an extension of binary logic in the sense that each
proposition x that is true(false) in binary logic also must be true(false) in ternary
logic, the disjunction ()yx,Disj and conjunction (),,Conj yx for the ternary

case, must have similar behavior. From this () { }yxyx ,max,Disj = and ()yx,Conj

{ }.,min yx= These facts are shown in Table 7.

JORGE PEDRAZA ARPASI 298

As in the binary case the operators can be considered functions. The unary
operator negation is a function ,: 33 ZZ →f and a binary operator such as the

disjunction is a function .: 3
2
3 ZZ →f In general, we can define ternary logical

functions with n variables as mappings .: 33 ZZ →nf

When ,1=n we have one-variable functions (),xf and there are 273
13 =

different functions, among them are, the Identity or Affirmation (),xid the Negation

(),xN the Tautology ()xτ and the contradiction ().xγ All these 27 functions are
also called modal functions of x and they are shown in Table 8.

Table 8. All the one-variable ternary functions

x 1f 2f 3f 4f 5f 6f 7f 8f 9f 10f 11f 12f 13f 14f 15f

1 1 1 1 1 1 1 1 1 1 2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1 0 0 0 1 1 1 2

1
2
1

2
1 0 0 0

0 0 1 2
1 0 1 2

1 0 1 2
1 0 1 2

1 0 1 2
1

x 16f 17f 18f 19f 20f 21f 22f 23f 24f 25f 26f 27f

2
1

2
1

2
1 1 0 0 0 0 0 0 0 0 0

1 1 1 2
1

2
1

2
1

2
1 0 0 0 1 1 1

0 1 2
1 0 0 1 2

1 0 1 2
1 0 1 2

1

When ,2=n we have two-variable functions (),, yxf and there are =
233

19683 of them. It is impossible, in a single page, to show the truth table for each one.

In the same way, we can compute that there are 98776255974843
33 = three-

variable different functions. In general, there exist
n33 different ternary logical

functions ()nxxxf ...,,, 21 of n variables.

Example 6. Some functions or propositions of one variable.

Let x be the simple statement “it is raining”. Then we show 6 of the 27 one-

FUNDAMENTALS OF TERNARY LOGIC 299

variable ternary functions ():xf

• () () == xidxf1 It is raining (affirmation).

• () () =¬== xxNxf20 It is not raining (negation).

• () () =→=τ= xxxxf8 If it is raining then it is raining (tautology).

• () () () =→¬=γ= xxxxf22 It is not true that if it is raining then it is

raining (contradiction).

• () =¬∨= xxxf2 It is raining, or it is not raining.

 This function is not a tautology as it happens in the binary logic case. Also,
this example shows that condition (9) of the definition of Algebra of Boole
cannot be held by the ternary logic system. Therefore, the ternary logic
system cannot have a Boolean Algebra structure.

• () =¬∧= xxxf19 It is raining, and it is not raining.

 This function is not a contradiction as it happens in the binary logic case.
Also, this example shows that condition (10) of the definition of Algebra of
Boole cannot be held by the ternary logic system. Therefore, the ternary logic
system cannot have a Boolean Algebra structure.

Example 7. Some functions or propositions of two variables.

Let x, y be the propositions “it is raining” and “the sun is shining”, respectively.
Then we write some of the 19683 two-variable functions:

• () () () =¬∧¬↔∨¬=τ yxyxyx, It is not true that it is raining or the

sun is shining, if and only if it is not raining and the sun is not shining.

 By making () ()yxyxm ∨¬=,11 and () ,,12 yxyxm ¬∧¬= we can verify

in Table 9 that this is a tautology called the first law of De Morgan.
Analogously for () (),,21 yxyxm ∧¬= and () ,,22 yxyxm ¬∨¬= we can

see that the second law of De Morgan holds in ternary logic.

• () =∨¬=α yxyx, It is not raining or the sun is shining.

 The truth table of this function is shown in Table 10 together with the truth
table of the implication and we can verify over there, that ()yx,α and

()yx,Imp are not equivalent as it happens in binary logic.

JORGE PEDRAZA ARPASI 300

• () =¬→¬=β xyyx, If the sun is not shining then it is not raining.

 We can verify in Table 10 that it is equivalent to the implication as the binary
case.

• () () () =→∧→=δ xyyxyx, If it is not raining then the sun is shining,

and if the sun is shining then it is raining.

 We can see in Table 11 that it is equivalent to the “equivalent” function.

Table 9. The De Morgan laws in ternary logic

x y ¬ x ¬ y x ∨ y x ∧ y 11m 12m 21m 22m

1 1 0 0 1 1 0 0 0 0

1 2
1 0 2

1 1 2
1 0 0 2

1
2
1

1 0 0 1 1 0 0 0 1 1

2
1 1 2

1 0 1 2
1 0 0 2

1
2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1 0 2

1 1 2
1 0 2

1
2
1 1 1

0 1 1 0 1 0 0 0 1 1

0 2
1 1 2

1
2
1 0 2

1
2
1 1 1

0 0 1 1 0 0 1 1 1 1

Table 10. () ()yxyx ∨¬↔→ fails and () ()yxxy →↔¬→¬ holds in ternary

logic

x y ¬ y ¬ x β α imp(x, y)

1 1 0 0 1 1 1

1 2
1

2
1 0 2

1
2
1

2
1

1 0 1 0 0 0 0

2
1 1 0 2

1 1 1 1

2
1

2
1

2
1

2
1 1 2

1 1

FUNDAMENTALS OF TERNARY LOGIC 301

2
1 0 1 2

1
2
1

2
1

2
1

0 1 0 1 1 1 1

0 2
1

2
1 1 1 1 1

0 0 1 1 1 1 1

Table 11. The derivation of the equivalence law in ternary logic

x y x → y y → x δ(x, y) Equiv(x, y)

1 1 1 1 1 1

1 2
1

2
1 1 2

1
2
1

1 0 0 1 0 0

2
1 1 1 2

1
2
1

2
1

2
1

2
1 1 1 1 1

2
1 0 2

1 1 2
1

2
1

0 1 1 0 0 0

0 2
1 1 2

1
2
1

2
1

0 0 1 1 1 1

5. Conclusions

We have shown, at least, at this elementary level that there exist four main
properties of ternary logic:

1. The ternary logic is one generalization of the binary(classic) case. Such
generalization is in the sense of each proposition that is true under the rules
of the binary logic will be true under the rules of the trivalent case.
Analogously for the false propositions.

2. In ternary logic the construction of tautologies is more difficult than in
binary logic. Worse for the construction of contradictions.

3. For the ternary logic, the implication ()yx → operation of two propositions

JORGE PEDRAZA ARPASI 302

x, y cannot be derived from the basic operations (),¬ (),∨ and ()∧ as it

happens in the binary case.

4. The ternary logic cannot have a Boolean algebra structure whereas the
binary logic can have. The proof of this conclusion is given by the functions

2f and 19f of Table 8.

References

 [1] N. P. Brousentsov, Computing machine Setun of Moscow State University, New
Developments on Computer Technology, Kiev, 1960, pp. 226-234.

 [2] N. P. Brousentsov et al., Development of ternary computers at Moscow State
University, www.computer-museum.ru/english/setun.htm, online accessed, 2008-05-
29.

 [3] R. Cignoli, I. D’Ottaviano and D. Mundici, Álgebra das lógicas de Łukasiewicz,
Universidade Estadual de Campinas, UNICAMP, 1995.

 [4] Judith L. Gersting, Mathematical Structures for Computer Science, 4th ed., W. H.
Freeman, New York, 1998.

 [5] Suresh Golconda, Genetic Algorithm for tic-tac-toe,

http://www.cacs.louisiana.edu/sxg3148/~files/Genetic_docu.doc.

 [6] Ivan Guzmán de Rojas, Logical and Linguistic Problems of Social Communication
with Aymara People, International Development Research Centre (IDRC), Ottawa,
Canada, 1984.

 [7] D. E. Knuth, The Art of Computer Programming, Vol. 2. Seminumerical Algorithms,
Addison-Wesley, 1969.

 [8] Jan Łukasiewicz, O Logice Trójwarkoscioewj. English translation: On Three-valued
Logic, Selected Works by Jan Łukasiewicz, L. Borkowski, ed., North-Holland,
Amsterdam, 1970, pp. 87-88.

 [9] L. A. Zadeh, Fuzzy sets, Information and Control 8(3) (1965), 338-353.

