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Abstract 

In this article, we show that ternary logic is a generalization of the binary 
(classic) case in the sense of each proposition that is true under the rules 
of the binary logic will be true under the rules of the trivalent case. Also, 
we show that the tautologies and contradictions are relatively few when 
compared with the binary case. Finally, it is shown that ternary logic 
cannot have a Boolean structure. 

1. Introduction 

A ternary logic system was first proposed by the polish mathematician Jan 
Łukasiewicz, in 1920, in his celebrated paper O Logice Trójwarkoscioewj, [8], as a 
generalization of the classical binary logic. After that, Łukasiewicz proposed a more 
generalized logical system: the multivalued logic. In 1965, Lotfi Zadeh introduced 
the Fuzzy set theory, in [9], from which was derived the Fuzzy logic. Both, 
multivalued and Fuzzy logic have the same rules, the only difference is in their 
respective aims [3]. 

In connection with ternary logic, Donald Knuth assumed that the replacement of 
“flip-flop” for “flip-flap-flop” one a “good” day will nevertheless happen [7]. 
Hence, to move beyond binary logic to circuits based on multivalued logic in which 
the information density and processing efficiency of a circuit could theoretically be 



JORGE PEDRAZA ARPASI 290 

increased substantially without any further expensive “improvements” to the 
underlying fabrication technology, is an idea that must be taken into account. 
Elementary calculations allow us to say that a 16-bit microcomputer with on-board 
memory has access to no more than 65 Kbytes of directly accessible memory, while 
that same microcomputer with memory based on ternary logic would have direct 
access to 43 Mbytes of memory, that means, one gains more than 656 times of 
memory capacity. 

In 1956, in the academy of sciences of the former USSR was initiated the 
construction of the first ternary digital machine, the Setun. But the officials of the 
USSR did not believe in this project and it was stopped by 1965 after producing 
about 30 Setun machines. These ternary computers were replaced by binary ones of 
the same performance, but more than 2.5 times more expensive [1, 2]. 

In this work, we will describe some basic facts about binary logic and Boolean 
algebra in spite of both issues being widely known, but this description will be a 
good basement to introduce and to show the elementary properties of ternary logic. 
These properties can be summarized as follows: (a) Ternary logic is a generalization 
of binary logic, (b) it has not a structure to be a Boolean algebra, (c) it is based on 
more than three basic operations, and (d) its tautologies and contradictions are more 
hard-to-find propositions with respect to the binary case. The generalization is in the 
sense that if one proposition p is true(false) under the rules of binary logic, then it is 
also true(false) under the ternary logic. The lack of Boolean structure, in ternary 
logic, is compensated by more powerful tools for inferential analysis [6]. Recently 
some researchers are working in the building of one structure called trilean, which 
could have some analogous properties from Boolean structure [5]. 

For the binary case, we will use the values { }1,0  which means true 1=  and 

false 0,=  whereas that for ternary case we will use the values 
⎭⎬
⎫

⎩⎨
⎧ 1,2

10,  which 

means true 1,=  false 0,=  and “unknown” .2
1=  By x we will mean a simple 

statement or proposition, whereas by either p or f we will mean a composed 
proposition which depends on other simple propositions, hence we also refer them as 
functions. 

2. Binary Logic (Classical Logic) 

We can see the binary logic as a system L  whose elements called propositions 
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or statements are valued on the set { }1,0  [4]. This set { }1,0  we denote as being 

,2Z  thus, if x is a proposition, the value of x is a mapping { }1,0: →ν L  such that 

( )
⎩
⎨
⎧=ν

false.isif;0
true,isif;1

x
x

x  

It is standard, in almost all the logical literature, to ignore the mapping ν. 
Therefore, for the sake of practical purposes, it is assumed that ( ) xx =ν  and from 
this, 1=x  means x is true and 0=x  means x is false. Over L  are defined the 
following basic operations: 

• The negation ¬ (unary operation “not”). 

• The disjunction ∨ (binary operation “or”). 

• The conjunction ∧ (binary operation “and”). 

Table 1. Most known operations or functions in binary logic 

  Neg(x) Disj(x, y) Conj(x, y) Imp(x, y) Equiv(x, y) 
x y ¬ x x ∨ y x ∧ y x → y x ↔ y 

 

1 1 0 1 1 1 1 
1 0  1 0 0 0 
0 1 1 1 0 1 0 
0 0  0 0 0 1 

The system L  is closed under any of these three operations, in the sense that if 
,, L∈yx  then both ,L∈¬ x  ,L∈∨ yx  and .L∈∧ yx  From these three 

operations, we can derive 16 binary operations, among them the implication 
( ) yxyx →=,Imp  and the equivalence ( ) .,Equiv yxyx ↔=  The value of these 

basic operations and any other composed propositions depend on the value of each 
component x and y as can be seen in the truth table for these operations shown in 
Table 1. 

One practical advantage of the use of the identity ( ) ,xx =ν  is that the above 

basic operations can be considered functions. In this way, the unary operator 
“negation” is a function ,: 22 ZZ →f  and a binary operation such as the 

“disjunction” is a function .: 2
2
2 ZZ →f  In general, by combining the three basic 

operations we can define binary logic functions as mappings .: 22 ZZ →nf  
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When ,1=n  we have one-variable functions ( ),xf  and there are 42
12 =  of 

this kind of functions which are: the Identity or Affirmation ( ),xid  the Negation 

( ),xN  the Tautology ( )xτ  and the Contradiction ( ).xγ  All these four functions are 

also called modal functions of x and they are shown in Table 2. 

Table 2. All the one-variable binary functions 

x  id(x) N(x) τ(x) γ(x) 
 

1 1 0 1 0 
0 0 1 1 0 

When ,2=n  we have two-variable functions ( ),, yxf  and there are 162
22 =  

of this kind of functions which are shown in Table 3. It is possible to show that all 
the 16 two-variable functions can be derived from that basic functions “and” ( ),∧  

“or” ( )∨  and “not” ( ).¬  Notice, in that table, that ( )yxf ,2  is the disjunction, 

( )yxf ,8  is the conjunction, ( )yxf ,5  is the implication, 7f  is the equivalence, 

whereas 1f  and 16f  are the tautology and the contradiction functions, respectively. 

Table 3. All the two-variable binary functions 

x y 1f  2f  3f  4f  5f 6f 7f 8f 9f 10f 11f 12f 13f 14f 15f  16f  
 

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 
1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 
0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 
0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 

For three variables we will have 2562
32 =  different functions ( ).,, zyxf  In 

general, there exist 
n22  different binary logical functions ( )nxxxf ...,,, 21  of n 

variables. 

Example 1. Functions or propositions of one variable. 

Let x be the statement “Peter is tall”. Then we can construct all the four one-
variable functions: 

• ( ) =xid Peter is tall. 

• ( ) =¬= xxN Peter is not tall. 
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• ( ) =¬∨=τ xxx Peter is tall or he is not tall. 

• ( ) =¬∧=γ xxx Peter is tall and he is not tall. 

Example 2. Some functions or propositions of two variables. 

Let x and y be the statements “Peter is tall” and “Peter is thin”, respectively. 
Then we can construct the following functions, among all the 16 possible ones 
(Table 3): 

• ( ) =∨= yxyxf ,2 Peter is tall or thin (disjunction). 

• ( ) =∧= yxyxf ,8 Peter is tall and thin (conjunction). 

• ( ) =→= yxyxf ,5 If Peter is tall then he is thin (implication). 

• ( ) =↔= yxyxf ,7 Peter is tall if and only if he is thin (equivalence). 

• ( ) ( ) == yxXORyxf ,,10 Either Peter is tall or Peter is thin (Exclusive OR). 

• ( ) ( ) == yxNANDyxf ,,15 Peter is not tall or Peter is not thin (Negation of 

Conjunction). 

• ( ) ( ) ( ) ( ) =¬∨¬∨∧=τ= yxyxyxyxf ,,1 Peter is tall and thin, or he is 

not tall or he is not thin (tautology). 

• ( ) ( ) ( ) ( ) =¬∧¬∧∨=γ= yxyxyxyxf ,,16 Peter is tall or thin, and he is 

not tall and he is not thin (contradiction). 

Table 4. Boolean properties of binary logic, where =τ tautology and =γ  
contradiction 

  1  xyyx ∨=∨    5  xyyx ∧=∧  

  2  ( ) ( )zyxzyx ∨∨=∨∨    6  ( ) ( )zyxzyx ∧∧=∧∧  

  3  ( ) ( ) ( )zxyxzyx ∨∧∨=∧∨   7  ( ) ( ) ( )zxyxzyx ∧∨∧=∨∧  

  4  xx =γ∨    8  xx =τ∧  

  9  τ=¬∨ xx    10  γ=¬∧ xx  

3. Boolean Algebra 

Definition 1. Let S be a set. Then the power set of S, denoted by ( ),SP  is the 

set of all subsets of S. 
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If the set S is finite, with n elements, then the power set ( )SP  has n2  elements. 

In other words, each set with n elements has n2  different subsets. Obviously, an 
infinite set S has a power set which is also infinite. 

Example 3. Consider the finite set { },,, cbaS =  a set with three elements. 

The power set ( )SP  has 823 =  elements(subsets). In effect, 

( ) { } { } { } { } { } { } { }{ },,,,,,,,,,,,, cbacbcabacbaS ∅=P  

where ∅ is the empty set and { }cba ,,  is the full set S itself. 

Definition 2. An Algebra of Boole is a nonempty set B  with two binary 
operations, the sum ( ),+  and the product ( ),⋅  and one unary operation, the 

complement ( );′  satisfying the following conditions: 

 (1) The sum is commutative, that is, ,xyyx +=+  for all ., B∈yx  

 (2) The sum is associative, that is, ( ) ( ),zyxzyx ++=++  for all zyx ,,  

.B∈  

 (3) The sum is distributive with respect to the product, that is, ( )zyx ⋅+  

( ) ( ),zxyx +⋅+=  for all .,, B∈zyx  

 (4) There exists a neutral element for the sum, ,0 B∈  such that ,0 xx =+  
for all .B∈x  

 (5) The product is commutative, that is, ,xyyx ⋅=⋅  for all ., B∈yx  

 (6) The product is associative, that is, ( ) ( ),zyxzyx ⋅⋅=⋅⋅  for all 

.,, B∈zyx  

 (7) The product is distributive with respect to the sum, that is, ( ) =+⋅ zyx  

( ) ( ),zxyx ⋅+⋅  for all .,, B∈zyx  

 (8) There exists a neutral element for the product, ,1 B∈  such that ,1 xx =⋅  
for all .B∈x  

 (9) ,1=′+ xx  for all .B�∈x  

 (10) ,0=′⋅ xx  for all .B∈x  
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Table 5. Operations and identities of binary logic and Boolean algebra 

Disjunction ∨ 6  + Boolean sum 
Conjunction ∧ 6  · Boolean product 

Negation ¬ 6  ′ Boolean complement 
Tautology τ 6  1 Product identity 

Contradiction γ 6  0 Sum identity 

3.1. Examples 

Example 4. Consider a class L  of binary logical propositions, that is, with 
values on { },1,02 =Z  with the operations negation ( ),¬  disjunction ( ),∨  and 

conjunction ( ),∧  then L  with these operations is an infinite Boolean algebra. 

By making the correspondences of Table 5, we can verify that the properties of 
L  shown in Table 4 satisfy the definition of Boolean algebra. 

Example 5. Consider a finite set S, then the power set ( );SP  with the set 

operations: union of sets ,∪  the intersection of sets ,∩  and the complement of a set 

′; is a finite Boolean algebra. 

Table 6. The Boolean structure for sets with the operations ′, ,∪  and ∩  

 1 ABBA ∪∪ =   5 ABBA ∩∩ =  

 2 ( ) ( )CBACBA ∪∪∪∪ =   6 ( ) ( )CBACBA ∩∩∩∩ =  

 3 ( ) ( ) ( )CABACBA ∪∩∪∩∪ =   7 ( ) ( ) ( )CABACBA ∩∪∩∪∩ =  

 4 AA =∅∪   8 ( ) ASA =P∩  

 9 ( )SAA P=′∪   10 ∅=′AA ∩  

In effect, any subsets A, B and C of S hold the properties of Table 6 and 
therefore ( )SP  is a finite Boolean Algebra. 

4. Ternary Logic 

If binary logic is valued in { },1,02 =Z  where =1 true is the best case and 

=0 false is the worst case, then the set of values of ternary could be the set 

{ }.2,1,03 =Z  These values could be made in such a way that =2 false (worst), 
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=1 true (best), and =0 unknown (intermediate). Some advantages of this 

representation, of ternary logic, are that the values are integers, and 3Z  is an 

algebraic ring where .12 −=  Thus the set of values { }2,1,0  commutes easily with 

{ }.1,0,1−  These last values are more convenient for the people who implement this 

logic in electrical circuits where would be used alternating current which varies in 
direction cyclically. One direction would be – 1, the opposite direction would be + 1 
whereas the current off would be 0 [2, 6]. In this work, we will use the set 

,1,2
1,0

⎭⎬
⎫

⎩⎨
⎧  where =0 false, =2

1 unknown and =1 true. We think that the choice 

of these values leads in a more natural way the adaptation of the ideas from the 
binary logic. Moreover, Łukasiewicz himself proposed this notation in his celebrated 
work [3, 8]. 

Definition 3. As ternary logic we will mean a system L  whose elements called 

propositions or statements are valued in the set .1,2
1,0

⎭⎬
⎫

⎩⎨
⎧  If x is a proposition, then 

the value of x is a mapping 
⎭⎬
⎫

⎩⎨
⎧→ν 1,2

1,0: L  such that 

( )

⎪
⎪
⎩

⎪⎪
⎨

⎧

=ν

false.isif;0

unknown,isif;2
1

true,isif;1

x

x

x

x  

From this, we have that if ( ) 1=ν x  (true) under the rules of binary logic, then 

also ( ) 1=ν x  (true) under the ternary logic laws. Analogously for the false value. 

On the other hand, for the same considerations made for binary logic case, we can 
avoid ν by making ( ) .xx =ν  Then over L  are defined the following basic 

operations [6, 3]: 

• The negation ¬ (unary operation “not”). 

• The disjunction ∨ (binary operation “or”). 

• The conjunction ∧ (binary operation “and”). 

• The implication → (binary operation “if...then”). 
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Table 7. Basic operations of the ternary logic 

  Neg(x) Conj(x, y) Disj(x, y) Imp(x, y) Equiv(x, y) 
x y ¬x x ∧ y x ∨ y x → y x ↔ y 

 

1 1 0 1 1 1 1 

1 2
1   

2
1  1 2

1  
2
1  

1 0  0 1 0 0 

2
1  1 2

1  
2
1  1 1 2

1  

2
1  

2
1   

2
1  

2
1  1 1 

2
1  0  0 2

1  
2
1  

2
1  

0 1 1 0 1 1 0 

0 2
1   

0 2
1  1 2

1  

0 0  0 0 1 1 

The system L  is closed under any of these four operations, in the sense that if 
,, L∈yx  then ,L∈¬ x  ,L∈∨ yx  ,L∈∧ yx  and .L∈→ yx  Notice that the 

implication, in this case, is not derived from the three basic operations as it happens 
in the binary logic. 

The values of ,x¬  ,yx ∨  ,yx ∧  and yx →  and other composed operations 

depend on the value of each component x and y. These values can be obtained by 
using the truth table as Table 7 shows. In such Table 7 also it is shown the 
equivalence operation which can be derived from the conjunction and implication. 

Remembering binary logic, notice that for ( )yx,Disj  be true it is enough that 

only one of the two variables be true. From this, we can say that ( ) =yx,Disj  

{ },,max yx  whereas for the conjunction we have ( ) { }.,min,Conj yxyx =  

Since ternary logic is an extension of binary logic in the sense that each 
proposition x that is true(false) in binary logic also must be true(false) in ternary 
logic, the disjunction ( )yx,Disj  and conjunction ( ),,Conj yx  for the ternary           

case, must have similar behavior. From this ( ) { }yxyx ,max,Disj =  and ( )yx,Conj  

{ }.,min yx=  These facts are shown in Table 7. 
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As in the binary case the operators can be considered functions. The unary 
operator negation is a function ,: 33 ZZ →f  and a binary operator such as the 

disjunction is a function .: 3
2
3 ZZ →f  In general, we can define ternary logical 

functions with n variables as mappings .: 33 ZZ →nf  

When ,1=n  we have one-variable functions ( ),xf  and there are 273
13 =  

different functions, among them are, the Identity or Affirmation ( ),xid  the Negation 

( ),xN  the Tautology ( )xτ  and the contradiction ( ).xγ  All these 27 functions are 
also called modal functions of x and they are shown in Table 8. 

Table 8. All the one-variable ternary functions 

x 1f  2f  3f  4f  5f 6f 7f 8f 9f 10f 11f 12f 13f 14f  15f  
 

1 1 1 1 1 1 1 1 1 1 2
1

2
1

2
1

2
1

2
1  

2
1  

2
1  

2
1  

2
1  

2
1  0 0 0 1 1 1 2

1
2
1

2
1 0 0 0 

0 0 1 2
1  0 1 2

1 0 1 2
1 0 1 2

1 0 1 2
1  

 

x 16f  17f  18f  19f 20f 21f 22f 23f 24f 25f 26f 27f  
 

2
1  

2
1  

2
1  1 0 0 0 0 0 0 0 0 0 

1 1 1 2
1  

2
1  

2
1  

2
1  0 0 0 1 1 1 

0 1 2
1  0 0 1 2

1  0 1 2
1  0 1 2

1  

When ,2=n  we have two-variable functions ( ),, yxf  and there are =
233  

19683 of them. It is impossible, in a single page, to show the truth table for each one. 

In the same way, we can compute that there are 98776255974843
33 =  three-

variable different functions. In general, there exist 
n33  different ternary logical 

functions ( )nxxxf ...,,, 21  of n variables. 

Example 6. Some functions or propositions of one variable. 

Let x be the simple statement “it is raining”. Then we show 6 of the 27 one-
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variable ternary functions ( ):xf  

• ( ) ( ) == xidxf1 It is raining (affirmation). 

• ( ) ( ) =¬== xxNxf20 It is not raining (negation). 

• ( ) ( ) =→=τ= xxxxf8 If it is raining then it is raining (tautology). 

• ( ) ( ) ( ) =→¬=γ= xxxxf22 It is not true that if it is raining then it is 

raining (contradiction). 

• ( ) =¬∨= xxxf2 It is raining, or it is not raining. 

 This function is not a tautology as it happens in the binary logic case. Also, 
this example shows that condition (9) of the definition of Algebra of Boole 
cannot be held by the ternary logic system. Therefore, the ternary logic 
system cannot have a Boolean Algebra structure. 

• ( ) =¬∧= xxxf19 It is raining, and it is not raining. 

 This function is not a contradiction as it happens in the binary logic case. 
Also, this example shows that condition (10) of the definition of Algebra of 
Boole cannot be held by the ternary logic system. Therefore, the ternary logic 
system cannot have a Boolean Algebra structure. 

Example 7. Some functions or propositions of two variables. 

Let x, y be the propositions “it is raining” and “the sun is shining”, respectively. 
Then we write some of the 19683 two-variable functions: 

• ( ) ( ) ( ) =¬∧¬↔∨¬=τ yxyxyx, It is not true that it is raining or the 

sun is shining, if and only if it is not raining and the sun is not shining. 

 By making ( ) ( )yxyxm ∨¬=,11  and ( ) ,,12 yxyxm ¬∧¬=  we can verify 

in Table 9 that this is a tautology called the first law of De Morgan. 
Analogously for ( ) ( ),,21 yxyxm ∧¬=  and ( ) ,,22 yxyxm ¬∨¬=  we can 

see that the second law of De Morgan holds in ternary logic. 

• ( ) =∨¬=α yxyx, It is not raining or the sun is shining. 

 The truth table of this function is shown in Table 10 together with the truth 
table of the implication and we can verify over there, that ( )yx,α  and 

( )yx,Imp  are not equivalent as it happens in binary logic. 
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• ( ) =¬→¬=β xyyx, If the sun is not shining then it is not raining. 

 We can verify in Table 10 that it is equivalent to the implication as the binary 
case. 

• ( ) ( ) ( ) =→∧→=δ xyyxyx, If it is not raining then the sun is shining, 

and if the sun is shining then it is raining. 

 We can see in Table 11 that it is equivalent to the “equivalent” function. 

Table 9. The De Morgan laws in ternary logic 

x y ¬ x ¬ y x ∨ y x ∧ y 11m  12m  21m  22m  
 

1 1 0 0 1 1 0 0 0 0 

1 2
1  0 2

1  1 2
1  0 0 2

1  
2
1  

1 0 0 1 1 0 0 0 1 1 

2
1  1 2

1  0 1 2
1  0 0 2

1  
2
1  

2
1  

2
1  

2
1  

2
1  

2
1  

2
1  

2
1  

2
1  

2
1  

2
1  

2
1  0 2

1  1 2
1  0 2

1  
2
1  1 1 

0 1 1 0 1 0 0 0 1 1 

0 2
1  1 2

1  
2
1  0 2

1  
2
1  1 1 

0 0 1 1 0 0 1 1 1 1 

Table 10. ( ) ( )yxyx ∨¬↔→  fails and ( ) ( )yxxy →↔¬→¬  holds in ternary 

logic 

x y ¬ y ¬ x β α imp(x, y) 
 

1 1 0 0 1 1 1 

1 2
1  

2
1  0 2

1  
2
1  

2
1  

1 0 1 0 0 0 0 

2
1  1 0 2

1  1 1 1 

2
1  

2
1  

2
1  

2
1  1 2

1  1 
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2
1  0 1 2

1  
2
1  

2
1  

2
1  

0 1 0 1 1 1 1 

0 2
1  

2
1  1 1 1 1 

0 0 1 1 1 1 1 

Table 11. The derivation of the equivalence law in ternary logic 

x y x → y y → x δ(x, y) Equiv(x, y) 
 

1 1 1 1 1 1 

1 2
1  

2
1  1 2

1  
2
1  

1 0 0 1 0 0 

2
1  1 1 2

1  
2
1  

2
1  

2
1  

2
1  1 1 1 1 

2
1  0 2

1  1 2
1  

2
1  

0 1 1 0 0 0 

0 2
1  1 2

1  
2
1  

2
1  

0 0 1 1 1 1 

5. Conclusions 

We have shown, at least, at this elementary level that there exist four main 
properties of ternary logic: 

1. The ternary logic is one generalization of the binary(classic) case. Such 
generalization is in the sense of each proposition that is true under the rules 
of the binary logic will be true under the rules of the trivalent case. 
Analogously for the false propositions. 

2. In ternary logic the construction of tautologies is more difficult than in 
binary logic. Worse for the construction of contradictions. 

3. For the ternary logic, the implication ( )yx →  operation of two propositions 



JORGE PEDRAZA ARPASI 302 

x, y cannot be derived from the basic operations ( ),¬  ( ),∨  and ( )∧  as it 

happens in the binary case. 

4. The ternary logic cannot have a Boolean algebra structure whereas the 
binary logic can have. The proof of this conclusion is given by the functions 

2f  and 19f  of Table 8. 
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