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Abstract

This paper considers methods of variable selection that are based on

common statistics like the adjusted R-squared statistic, the t-statistic, or

the F-statistic and proposes various modifications for the case of non-

nested models. The resulting model selection criteria are somehow

related to the risk inflation criteria proposed by Foster and George [Ann.

Statist. 22 (1994), 1947-1975] and George and Foster [Biometrika 87

(2000), 731-747]. Next, the final prediction error criterion is modified in

a similar way so that it can also be used for subset selection. Finally, a

universal modeling procedure is discussed that can be used for the

simultaneous selection of the model class, the criterion for variable

selection, and the method for the estimation of the model parameters.

1. Introduction

According to Kempthorne [6] there is no objectively optimal variable-

selection procedure. Suppose the data ( )Tnyyy ...,,1=  follow a normal

linear regression

,ε+β= Xy (1)

where the columns ( ) ( )kxx ...,,1  of the nonstochastic ( )kn × -matrix X are

linearly independent, kℜ∈β  is the vector of regression coefficients, and

nεε ...,,1  are independent and identically distributed (i.i.d.) normal
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random variables with mean zero and variance .2σ  Then Kempthorne’s

[6] Theorem 1 states that for any two-stage estimator

( ) ( ){ } ( ) [ ]( )yPSnxxSy S=µ→⊆→ ˆ...,,1

of ( ) β==µ XyE  that (i) selects a subset of regressors and (ii) estimates

µ by projecting y onto the subspace [ ]S  spanned by the selected regressors

there does not exist another two-stage estimator ( )∗µ Sˆ  such that

( ) ( ) 22 ˆˆ µ−µ≤µ−µ ∗ SESE  for all 2, σβ

and

( ) ( ) 22 ˆˆ µ−µ<µ−µ ∗ SESE  for some ., 2σβ

Hence all variable-selection procedures are admissible, no procedure can
be uniformly better than any other procedure. The admissibility of
variable-selection procedures was first investigated by Stone [14], who
proved the admissibility of the trivial procedure which always selects all
regressors. Kabaila [4] extended Kempthorne’s [6] result to the case of
the misspecified normal regression model

,ε+η+β= Xy

where η is an unknown vector which is orthogonal to the subspace
spanned by the columns of X.

In a certain contrast to Kempthorne’s [6] and Kabaila’s [4] finite-
sample results, Shibata’s [13] Theorem 2.2 states that variable selection
with Akaike’s [1] information criterion (AIC) is asymptotically optimal.
To understand the exact meaning of this result we consider the
trigonometric regression

( )( ) ( )∑ ∑
∞

=

∞<β−π=ωε+−ωβ=ε+µ=
1

2 .,12,1cos
j

jtttjttt ntjjy

Given observations ( )Tnyyy ...,,1=  we estimate ( )Tnµµ=µ ...,,1  by

selecting { }Kk ...,,1∈  and projecting y onto the subspace spanned by

the first k regressors. If there are infinitely many nonzero regression
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coefficients jβ  and ( ),,, noKKnK =∞→≤  the assumptions of Shibata’s

Theorem 2.2 are satisfied and we can then conclude that the value of k
determined by AIC is asymptotically optimal in the sense that

( ) ( ) 1ˆˆlim 22
AIC =µ−µµ−µ ∗

∞→
kEkp

n
 for all ,, 2σβ

where ∗k  is an element of { }K...,,1  that minimizes ( ) .ˆ 2µ−µ kE

Determination of the number of regressors by minimization of

( ) kkn 2ˆlog 2 +σ (AIC)

is not the only possibility to achieve asymptotic optimality, we may as

well minimize closely related criteria like

( ) ( ) ( ).2ˆ21ˆ 22 knk
n
kkn +σ=




 +σ

In each case, the residual variance

( ) ( ) 22 ˆ1ˆ ky
n

k µ−=σ

measures the goodness of fit and the term 2k serves to penalize over-

fitting. It is a quite remarkable fact that a penalty term of the form

( )kδ+2  implies asymptotic optimality if and only if 0=δ  (Shibata [12,

13]). An immediate consequence of this fact is that the Bayesian

information criterion (BIC; Schwarz [11])

( ) ( )knkn logˆlog 2 +σ (BIC)

is not asymptotically optimal.

By imposing extremely restrictive conditions on the number of

models under consideration Shibata [13] was able to prove the asymptotic

optimality of AIC even in the case of non-nested models, where there is

no natural ordering of regressors and therefore the selection of arbitrary

subsets is possible. From an intuitive point of view it is hard to

understand why one and the same variable-selection method, namely

AIC, should be optimal both in the case of nested models and in the case

of subset selection. Consider, for example, the case of two regressors x
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and z. In the case of nested models, AIC prefers the full model to a model

with only one regressor if

( ) ( ) ,2ˆlog4,ˆlog 22 +σ<+σ xnzxn

whereas in the case of subset selection AIC prefers the full model to a

model with only one regressor if

( ) { ( ) ( )} .2ˆ,ˆminlog4,ˆlog 222 +σσ<+σ zxnzxn

Using the same penalty term for the smaller model in both cases just

does not seem to be appropriate.

Kabaila [5] stressed that Shibata’s [12, 13] asymptotic results are

pointwise in the space of data generating mechanisms, which are

typically specified by ,, 2σβ  and may therefore be misleading. He

considered the class of trigonometric regressions and compared the

performance of AIC and BIC for each fixed n and each pair ( )., 2σβ  He

found that AIC is not better than BIC no matter how large n is. However,

Kabaila [5] did not rule out that it might be possible to prove the

superiority of AIC over BIC in large samples by imposing further

restrictions on the rate of decline of the regression coefficients (see also

Ploberger and Phillips [7]). But since it is always very difficult to verify

assumptions about the rate of decline, practitioners should not expect too

much from such a result.

Thus it seems that, at least for the time being, we must manage to

live without an “optimal” variable-selection method and be content with

methods that perform well in a broad class of data generating

mechanisms. Recent research on subset selection has tended to focus on

methods that penalize each regressor in a different, possibly data

dependent way. In certain situations these new methods apparently

outperform conventional criteria like AIC and BIC, whose penalty terms

are just constants multiplied by the number of regressors. In the

following sections, we discuss the pros and cons of some of these methods

and propose a number of modifications. In Section 2, we discuss simple

model selection criteria that are based on common statistics like ,,2 tR



w
w

w
.p

ph
m

j.c
om

ON SUBSET SELECTION AND BEYOND 269

and F and propose modifications for the case of subset selection. In

Section 3, we also tune more popular criteria like the final prediction

error criterion (FPE) for the case of subset selection. Section 4 concludes.

Finally, since the penalty terms of the subset criteria are derived under

the assumption that all regression coefficients are zero, we describe in

the Appendix a universal, data-dependent variable-selection method that

is not based on implausible assumptions. This method can also be used

for the simultaneous selection of a suitable model class and an

appropriate method for the estimation of the model parameters.

2. Model Selection with Common Statistics

The ordinary R-squared ( )2R  statistic is a widely used measure of

the success of a regression model .ε+β= Xy  It is defined as the fraction

of the variance of the dependent variable y explained by the independent

variables ( ) ( )....,,1 kxx  Assuming that all occurring variables are

centered, we can write this statistic as

.
ˆˆ

1
ˆˆˆˆ2

yyyy
yy

yy
yyR ′

εε′−=′
εε′−′

=′
′

=

Clearly, 2R  can never fall and generally increases, if another regressor is

added to the model. However, if we modify this statistic by replacing the

sum of squared errors (SSE) ,ˆˆ εε′  which is a biased estimator of ,2σn  by

the unbiased estimator ,ˆˆ εε′
− kn
n  this is no longer the case. The adjusted

R-squared statistic

( ) ( ) ( )
kn

kRRR
kn

n
yykn

nkR
−

−−=−
−

−=
′
εε′

−
−= 2222 111

ˆˆ
1

can decrease as regressors are added. The selection of the dimension k of

a model by maximization of ( )kR 2  is equivalent to the selection of k by

minimization of

( )k
kn

k
nkn

n 2ˆ1
ˆˆ

σ






−
+=εε′

−
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or, equivalently, by minimization of

( ( )) .1logˆlog 2 






−
++σ

kn
knkn ( )CR −2

The addition of a new variable ( )jx  to a set of 1−j  regressors ( ) ...,,1x

( )1−jx  will cause the adjusted R-squared statistic to rise if and only if

 ( ) ( ) ( ) ( )
( )
yy
j

jn
njR

yy
j

jn
njR

′
−

−−
−=−>

′−
−= 1SSE

1
11

SSE
1 22

( ) ( )j
jn

j SSE111SSE 






−
+>−⇔

( ) ( ) ( )
( ) ,1

SSE
SSE1SSE2 >−−−=⇔

j
jj

jnt

where t is just the common t-statistic used for testing the marginal

contribution of a single variable. If the regression coefficient under

consideration is zero and n is large, then the mean of this statistic will be

close to 1. Hence, the condition ( ) ( )122 −> jRjR  for the inclusion of the

regressor ( )jx  is approximately equivalent to the condition that its

squared t-statistic exceeds the expected value ( ).2 jnEt −

Analogously, for the addition of k new variables ( ) ( )jxkjx ...,,1+−

to a set of kj −  regressors ( ) ( )kjxx −...,,1  it could be required that the

condition

( ) ( )
( ) ( )

2
,

SSE
SSESSE

−−
−=−>−−−=
jn

jnjnkEF
k

jn
j

jkj
F

is satisfied. This condition is equivalent to

( ) ( ) .
2

1ˆˆ 22 






−−
+σ>−σ

jn
kjkj

At first glance it seems that this condition might not always imply an
“optimal” number of regressors. But this is not the case. For example,
suppose that

( ) ( ) ,
2

1ˆˆ, 22 






−−
−+σ>σ<<
jn

ijjikji  and ( ) ( ) .
2

1ˆˆ 22 






−−
−+σ>σ
kn

jkkj



w
w

w
.p

ph
m

j.c
om

ON SUBSET SELECTION AND BEYOND 271

Then

( ) ( ) ( ) 






−−
−+







−−
−+σ>







−−
−+σ>σ

2
1

2
1ˆ

2
1ˆˆ 222

jn
ij

kn
jkk

jn
ijji

( ) .
2

1ˆ 2 






−−
−+σ=
kn

ikk

Indeed, it follows from

( ) ( ) ( ( )) ( ( )) 






−−
−−+σ>σ⇔







−−
−+σ>σ

jn
inji

jn
ijji

2
2logˆlogˆlog

2
1ˆˆ 2222

( ( )) ( )ini −−−σ⇔ 2logˆlog 2

( ( )) ( )jnj −−−σ> 2logˆlog 2

that the number of regressors is optimal according to the criterion based

on the F-statistic, which minimizes

( ( )) ( )knk −−−σ 2logˆlog 2

or, equivalently,

[ ( ( )) ( ) ( )]knnkn −−−−+σ 2log2logˆlog 2

( ( )) ,
2

1logˆlog 2 






−−
++σ=

kn
knkn ( )CF −∗

where ( )knk −− 2  is just the expected value of the statistic

( ) ( )
( ) .

SSE
SSE0SSE
k

kF
kn

kF −=
−

=∗

If k is small compared to n, then the criteria CR −2  and CF −∗  are

approximately equivalent to the criterion

( ( )) ,ˆlog 2 kkn +σ ( )1C

which assigns the fixed penalty 1 to each regressor. Of course, these

three criteria will differ dramatically if k is large. Although there is no

justification whatsoever for the use of fixed penalty criteria like C1 or

AIC in the case of large values of k (see also Section 3), these criteria are

generally used as benchmarks in comparisons of different model selection
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criteria. This is the case even when the number of regressors is close to

the number of observations (see, e.g., George and Foster [3]).

Now suppose that the k explanatory variables to be possibly included

in a linear regression model are not given but can be selected from a set

( ) ( ) ( ){ }Kxkxx ...,,...,,1  of size .kK ≥  If ,1=k  then the obvious candidate

for inclusion is the regressor with the largest t-value. Analogously, if

,1>k  then we might wish to select that k-dimensional subset implying

the highest F-value. Unfortunately, the problem of finding this set

quickly becomes computationally intractable as k and K increase. In the

following, we will therefore assume that the K regressors are orthogonal.

In this setup, the subset implying the highest F-value just consists of

those regressors with the highest t-values, hence there is no need to

examine all possible subsets of size k. However, there is still the problem

of determining k. For this purpose, we may use for each k the expected

value ( )nKke ,,∗  (under the assumption that all regression coefficients

are zero) of the highest ∗F -value as a benchmark and accordingly

formulate a subset version of CF −∗  as

( ( )) ( ( )).,,1logˆlog 2 nKkenkn ∗++σ ( )CF −∗
sub

Since ( )nKke ,,∗  coincides with the expected value of the sum of the

k largest t-statistics divided by ,kn −  the criterion CF −sub  is somehow

related to the risk inflation criterion (RIC), which penalizes the inclusion

of k regressors with k times ( ).log2 K  The latter criterion has been

motivated initially by minimaxity considerations (see Foster and George

[2]) and later by considering the term ( )Klog2  as an approximation of

the expected value of the maximum of K squared t-statistics (see George

and Foster [3]). For 250...,,20,10=K  and ,2,1.1 KKn =  Figure 1

compares the actual expected value of the maximum of K t-statistics (with

1−n  degrees of freedom) obtained from K orthogonal regressors with the

approximation ( ).log2 K  In general, this approximation is not very good.

For large values of n, the expected value of the maximum t-statistic is

close to the expected value of the maximum of K independent
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( )12χ -statistics. The latter quantity can be approximated reasonably well

by ( ) ( )( ).logloglog2 KK −  We might therefore find it appealing to replace

the term ( )klog2  occurring in RIC by ( ) ( )( ).logloglog2 KK −  An obvious

disadvantage of any version of RIC is that it compares not only the

largest squared t-statistic with an approximation of the expected value of

the maximum but all the other t-statistics as well. Therefore, George and

Foster [3] proposed to replace the penalty term ( )Kk log2  for a model

with Kk ≤  regressors by

( )∑
=

k

j

jK
1

.log2

The corresponding criterion, the modified risk inflation criterion (MRIC),
compares the jth largest squared t-statistic with the approximation

( )jKlog2  of its expected value. For ,...,,2,1,250 KkK ==  and

,2,1.1 KKn =  Figure 2 compares the expected value of the sum of the k

largest t-statistics (with kn −  degrees of freedom) with the approximation

( )∑ = kj
jK

..1
.log2  Again, the quality of this approximation strongly

depends on the sample size n. As n increases the expected value of the
sum of the k largest t-statistics approaches the expected value of the sum

of the k largest of K independent ( )12χ -statistics. In the following, we

denote the latter expected value by ( )., Kkς  The discrepancy between the

approximation ( )∑ = kj
jK

..1
log2  and ( )Kk,ς  increases as k increases. In

the extreme case, where ( )KknKk ,, ς==  is just the expected value of

the sum of n independent ( )12χ -statistics and is therefore approximately

only half as large as

( ) ( )∑ = − 





 +−−=






−=

kj nnn
nn

nen

n

n

njK
..1

log
2
1!log2!log2log2

 ( ) .22log2 π−−≈ nn

Anyhow, when n is much larger than K, we might wish to approximate

the term ( )nKke ,,∗  occurring in CF −∗
sub  by ( ) ( )., knKk −ς  Of course,
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we cannot expect that the resulting criterion

( ( )) ( )







−
ς++σ

kn
Kk

nkn
,1logˆlog 2 ( )C−∗

subChi

or CF −∗
sub  itself are generally better than MRIC (see the discussion in

Section 1), but once we believe in the rationale behind a certain
approach, we should try to translate it into a concrete criterion as
accurately as possible.

Anyhow, this seems to be an appropriate moment for a reality check.
We have started this section with comparing common statistics to their
expected values under the null hypothesis and are now fiddling around

with odd criteria involving ordered ( )12χ -statistics. What exactly are we

trying to estimate? In the next section, we will look at the problem of
subset selection from a different angle. Taking a more orthodox and less
heuristic approach, we will focus on the unbiased estimation of the
squared prediction error. Eventually, we will end up with a similar
criterion, which again involves ( )., Kkς

Figure 1. Expected values of the maximum of K squared ( )1−nt -statistics (where

)2,1.1 KKn =  and K independent ( )12χ -statistics, respectively, together with

two approximations
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Figure 2. Expected values of the sum of the k largest of 250=K  squared

( )knt − -statistics (where )2,1.1 KKn =  and of the sum of the k largest of K

independent ( )12χ -statistics, respectively, together with the approximation

( ) ( )kKK log21log2 ++

3. Model Selection Based on the Prediction Error

In practice, criteria like the adjusted R-squared statistic are hardly
ever used for the determination of the number of regressors in the case of
nested models. Applied workers prefer more conservative criteria like
FPE, AIC, or even BIC. Since the criteria for subset selection discussed in
the previous section may be considered as modifications of the adjusted
R-squared statistic, we may suspect that they will also not become very
popular. In this section, we will therefore try to tune a suitable version of
FPE for the case of subset selection. We start with a short discussion of
AIC and related criteria (including FPE).

In the classical linear regression model

( )IXNy 2,~ σβ

the AIC can be interpreted as an estimator of the expected Kullback-
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Leibler discrepancy

( ( )),ˆ,ˆ;log2 2IXyfED σβ−= ∗

where ( ) ( ) ( ),ˆˆ1ˆ,ˆ 21 β−′β−=σ′′=β − XyXy
n

yXXX  and ∗y  is a second sample

from ( ),, 2IXN σβ  which is independent of y. Indeed, the AIC-statistic

( ( )) ( ),12ˆ,ˆ;log2 2 ++σβ− kIXyf

which differs from ( ) kn 2ˆlog2 2 +σ−  just by a constant not depending on

the rank k of X, is an asymptotically unbiased estimator for D provided

that the model is correctly specified. Unfortunately, the finite sample-

bias of the AIC-statistic will only be small, if k is small in relation to the

sample size n. Whenever this is not the case, Sugiura’s [15] corrected AIC

( ( ( ) )) ( ) ,
2

46212ˆ,ˆ;log2
2

2
−−
+++++σβ−

kn
kkkIkXyf ( )CAIC

which is an unbiased estimator of D, should be used instead. Clearly, both

the AIC and the CAIC  will be severely biased, if the model is misspecified.

Extensions of the AIC and the CAIC  to the case of misspecified models

were proposed by Sawa [10] and Reschenhofer [9], respectively. But while
these improved criteria in general are superior estimators for the
expected Kullback-Leibler discrepancy, their model selection properties
are typically almost identical to those of the conventional, severely biased
criteria (see Reschenhofer [8]). This is mainly due to the fact that in those
cases, where the bias of the conventional criteria is large, the maximum
likelihood term is decisive anyhow.

If k is large, then AIC will not only differ significantly from CAIC

but also from the final prediction error criterion

( ) ( ),ˆ21ˆ 22 k
kn

kk
kn
kn σ







−
+=σ

−
+

which is an unbiased estimator for the mean squared prediction error

( ) ( ) ( ),ˆˆ12 β−β−=σ ∗∗ XyXyE
n

k T
p
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if the regression model is correctly specified. The minimization of the

FPE criterion is equivalent to the minimization of

( ( )) .21logˆlog 2 






−
++σ

kn
knkn (FPE)

For ,2,1.1,250...,,1 KKnKk ===  Figure 3a compares the

AIC-penalty term with the penalty terms of CAIC  and FPE, respectively.

For larger values of k, AIC can obviously neither be regarded as a

meaningful estimator for the Kullback-Leibler discrepancy nor for the log

prediction error. Figure 3a also shows that similarly dramatic differences

occur between the different versions of the 2R -criterion.

For the discussion of the case of subset selection, we consider the

simple orthogonal set-up used by George and Foster [3]. There we have

IX =  so that ε+β= Xy  reduces to .ε+β=y  If k of the first K

regressors are to be selected, then we choose the j-th regressor if 2
jy  is

among the k largest of the squared observations ....,, 22
1 Kyy  The

parameter jβ  is estimated by jj y=β̂  if the j-th regressor is selected and

by 0ˆ =β j  otherwise. The error variance is estimated by

( ) ( ) ,1ˆ
1 1

222













+=σ ∑ ∑

+= +=

K

kj

n

Kj
jj yy

n
k

where ( )
2
jy  denotes the j-th largest of the K values ....,, 22

1 Kyy  Under the

hypothesis that all jβ  are zero, the expected value of this estimator is

given by

( ) ( )














σ
+

σ
σ=σ ∑ ∑

+= +=

n

kj

n

Kj

jj yy
E

n
kE

1 1
2

2

2

22
2ˆ

( ) ( ) .,2

1 1
2

2

2

22

n
Kkny

E
y

n

n

j

k

j

jj ς−σ=














σ
−

σ
σ= ∑ ∑

= =
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Taking the logarithm of the unbiased estimator

( ) ( )Kkn
nk

,
ˆ 2

ς−
σ

and multiplying by n, we obtain the criterion

( ( )) ( )
( ) ,

,
,1logˆlog 2 







ς−
ς++σ

Kkn
Kk

nkn ( )C−∗∗
subChi

which looks very similar to ,Chisub C−∗  but is actually much more

conservative because ( )Kk,ς  is typically much greater than k (see also

Figure 3b). Nevertheless, this criterion must still be considered as a

subset version of 2R  or an improved version of MRIC rather than as a

subset version of AIC or FPE. However, it is quite clear what we must do
in order to obtain a subset version of FPE. We just need to find an
unbiased estimator for the mean squared prediction error, which is given
by

( ) ( )∑ ∑ ∑
=

∗∗∗













+−=β−

n

j j j
jjjjj yyyE

n
y

n
E

1 incl. excl.

222 1ˆ1














+−= ∑ ∑ ∑∗∗

j j j
jjjj yEEyEyyE

n
all incl. incl.

22 21

( )





 ς+σ=

n
nk,12

( ) ,,2
n

nkn ς+σ=

if all parameters jβ  vanish. Hence

( ) ( )
( )Kkn

Kkn
k

,
,ˆ 2

ς−
ς+

σ

is an unbiased estimator for the mean squared prediction error and the
criterion

( ( )) ( )
( ) ,

,
,21logˆlog 2 







ς−
ς++σ

Kkn
Kk

nkn ( )subFPE
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may be considered as a genuine subset version of FPE. Of course, this

criterion penalizes additional regressors much heavier than C−∗∗
subChi

(see also Figure 3b). At this point, we want to emphasize that, quite apart

from their statistical properties, the derivations of C−∗∗
subChi  and

subFPE  appear to be much sounder than those of C−∗
subChi  and MRIC.

Criteria for subset selection often become increasingly milder as the

number of already included regressors increases. Keeping this very

property in mind, we could be tempted to design simulation experiments,

which bluntly favor criteria of this type. Unfortunately, the results of

such simulation studies are sometimes interpreted as evidence of some

kind of overall optimality of MRIC and the likes. We will discuss this

issue in more detail in the next section.

Figure 3a. Comparison of different penalty terms for nested models,

where 250...,,1 == Kk  and KKn 2,1.1=
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Figure 3b. Comparison of different penalty terms for subset models,
where 250...,,1 == Kk  and KKn 2,1.1=

4. Discussion

The emergence of AIC as a standard criterion in the case of nested
models is mainly due to three facts. Firstly, the rationale behind AIC is
straightforward and easy to understand. Secondly, various asymptotic
results have been obtained that suggest that AIC could be optimal in
some sense. Thirdly, practical experience shows that AIC very rarely
selects an absurd model. In most cases the models selected by AIC are
quite reasonable. Despite the fact that numerous simulation studies have
been carried out to examine the performance of AIC, these studies are
hardly ever cited as arguments for or against AIC. In the case of subset
models, simulation studies are more important because there are hardly
any asymptotic results and we also have much less experience with these
models. However, in the light of our discussion in Section 1 we would
expect that in a fairly designed simulation study each criterion comes off
well in certain situations and badly in other situations. But how we can
then explain the overall good performance of MRIC and the likes
demonstrated in several Monte Carlo studies ? Choosing an appropriate
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version of MRIC for a particular setting and looking at the problem from
a particular viewpoint will do the trick.

We use the simple orthogonal set-up of George and Foster [3]. There

we have IX =  so that ε+β= Xy  reduces to .ε+β=y  Since in this case

,nK =  the orthogonality of the regressors is crucial for the examination

of all K2  sub-models. For each selection criterion, jβ  is estimated by

jj y=β̂  if the j-th regressor is selected and by 0ˆ =β j  otherwise. The

nonzero elements qββ ...,,1  of β are generated independently as ( ).,0 2rN

The remaining elements nq ββ + ...,,1  are set zero. The errors nεε ...,,1

are generated independently as ( ),,0 2σN  where .12 =σ  Under the null

hypothesis that all regression coefficients are zero, the quantities
22

1 ...,, nyy  will then be i.i.d. ( )12χ  and, assuming that 2σ  is known (!), we

may therefore simply select that k which minimizes the sum of the kn −

smallest squared observations plus the MRIC penalty for k regressors.

Following George and Foster [3], we set ,1000,52 == nr  and ,0=q

.1000,750,500,400,300,200,100,50,25,10  For each specification the

sum of prediction errors

( )∑
=

∗∗ −
n

j
jj yy

1

2,ˆ  where 


=∗

selected,notisif0
selected,isif

ˆ
j

jy
y j

j

is averaged over 25,000 repetitions. The results obtained for the fixed

penalty criteria ( ) 25,20,15,10,5,4,3,2,1,0, =iiC  (where ( )iC  includes

the j-th regressor if )2 iy j >  are quite unspectacular, the performance of

each of these criteria just keeps deteriorating linearly as q increases (see
Figure 4a). In contrast, since MRIC assigns large penalties to the very
first regressors and small penalties to the very last regressors, it does not
come as a surprise that it performs well in the case of very small or very
large values of q. But how is its performance in the case of medium-sized

values of q? Figure 4a shows that for each q its performance is always
“close” to that of the respective best fixed penalty criterion. But this does
not “prove” the superiority of MRIC, because its performance for medium-
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sized values of q depends critically on the size of .2r  As 2r  increases, the

relative performance of MRIC deteriorates quickly (see Figure 4b). The
results of simulation studies like those presented in Figure 4a, which
suggest that there might be some kind of “overall optimality”, must
therefore be interpreted with the utmost care.

As long as we do not have more experience with subset criteria or
understand their theoretical properties better, it seems that the best we
can do is to use the criterion with the soundest derivation. Among the
criteria discussed in this article, this is possibly the subset version of

FPE. Unfortunately, we cannot be completely happy with ,FPEsub

because it has been derived under the assumption that all regression
coefficients vanish. In contrast, for the derivation of the original criterion
FPE we only had to assume that the models under consideration are
correctly specified. In the Appendix, we therefore sketch a universal
model selection procedure that is not based on unrealistic assumptions
about the model parameters and can be used in a variety of situations.

Figure 4a. Comparison of the performance (sum of prediction errors) of MRIC and

various fixed penalty criteria (for 52 =r  and different numbers of nonzero regression

coefficients, i.e., )1000,750,500,400,300,200,100,50,25,10,0 nKq ===
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Figure 4b. Comparison of the performance (sum of prediction errors) of MRIC and

various fixed penalty criteria (for 1002 =r  and different numbers of nonzero

regression coefficients, i.e., )1000,750,500,400,300,200,100,50,25,10,0 nKq ===
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Appendix: The Mother of all Criteria

Let rMM ...,,1  be r competing modeling procedures and =y

( )nyy ...,,1  a sample of n observations. For each { },...,,1 ri ∈  we first

apply the modeling procedure iM  to the observations to obtain a

completely specified data generating mechanism ,iG  which is then used

to produce m independent pairs of samples ( ( ) ( ) ( ) ( )),, jyjy ii ∗  where

( ) ( ) ( ( ) ( ) ( ) ( )),...,,1 jyjyjy i
n

ii =

and

( ) ( ) ( ( ) ( ) ( ) ( )) ....,,1,...,,1 mjjyjyjy i
n

ii == ∗∗∗

Now iM  is applied to the synthetic samples ( )( ) ( )( )myy ii ...,,1  yielding

the data generating mechanisms ( )( ) ( )( )....,,1 mGG ii  Using some suitable

goodness-of-fit measure F, we determine the goodness of fit both for the

m pairs ( ( )( ) ( )( )) ( ( )( ) ( )( ))mGmyGy iiii ,...,,1,1  and for the m pairs ( ( )( ),1iy∗

( )( )) ( ( )( ) ( )( ))mGmyG iii ,...,,1 ∗  and use the discrepancy between the biased
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measures ( ( )( ) ( )( ))jGjyF ii ,  and the unbiased measures ( ( )( ) ( )( ))jGjyF ii ,∗

to evaluate the bias of iM  as

( ) ( ( )( ) ( )( )) ( ( )( ) ( )( ))∑ ∑
= =

∗−=
m

j

m

j

iiii jGjyF
m

jGjyF
m

ib
1 1

.,1,1

Finally, the “optimal” model is chosen by minimization of the criterion

( ) ( )., ibGyF i − (MOAC)

This universal criterion, which we call the mother of all criteria (MOAC),

may not only be used for the selection of a suitable model in a given class

of models but could also be used for the selection of the model class itself

and for many other selection tasks.

To illustrate the possible applications of this criterion we consider the

problem of finding a suitable model for the sequence y of first differences

of the logarithms of a macroeconomic time series like the real U.S. GDP.

Possible models for such data are autoregressive (AR) models, moving

average (MA) models, autoregressive moving average (ARMA) models,

and fractionally integrated ARMA (ARFIMA) models. We assume that all

models are Gaussian. Each model is completely specified, if the vector θ
of model parameters (including the mean, the AR parameters, the MA

parameters, the fractionally differencing parameter, and the variance of

the innovations) is specified. A suitable goodness-of-fit measure is given

by the Gaussian log likelihood, i.e., ( ) ( ) ( ).log,, yfyFGyF |θ=θ=

Example 1. In a traditional application, rGG ...,,1  ( )rθθ ...,,.,i.e 1

could be obtained by fitting AR models of order r...,,1  to the data. Here

MOAC only determines the dimension of the model.

Example 2. In a more unorthodox application, 1G  could be obtained

by selecting a suitable AR model with AIC and 2G  by selecting another

AR model with BIC. Here MOAC assigns different penalties to the two

models selected by AIC and BIC, respectively, and uses these penalties to

select one of the two models.
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Example 3. 1G  and 2G  are obtained by selecting a suitable AR

model and a suitable MA model, respectively, with AIC.

Example 4. Both 1G  and 2G  are obtained by selecting a suitable AR

model with AIC, but the model parameters are estimated in different

ways (e.g., maximum likelihood estimation for the parameters of 1G  and

least squares estimation for the parameters of ).2G  This example is not

very exciting, admittedly, but it serves the purpose of illustrating the
range of possible applications.

Example 5. rGG ...,,1  are obtained by fitting different subset AR

models to the data.

Example 6. 1G  and 2G  are the best AR models according to AIC and

BIC, respectively, 3G  and 4G  are the best ARMA models according to

AIC and BIC, respectively, 5G  and 6G  are the best ARFIMA models

according to AIC and BIC, respectively, 7G  is the AR model selected as in

Example 1, and 8G  is the subset AR model selected as in Example 5.

Of course, very little can be said about the properties of the models
selected in these examples. The best way to assess the usefulness of this
approach would be to use it in different concrete situations and to
examine whether the selected models are meaningful. We should also
examine different versions of MOAC. For example, in a situation, where

all competing models are submodels of one large model ,rM  all synthetic

series could be generated with .rG  Regardless of which version is used, it

might well turn out that in all but very simple applications the involved
computations are too costly. Large simulation studies would definitely be
computationally intractable.
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