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Abstract 

In this paper, the pulsatile flow of blood through a tapered artery with a 
mild stenosis is investigated. The body fluid blood is assumed to behave 
like a Newtonian fluid. A velocity-slip condition is employed at the 
stenotic wall. The effects of pulsatility, stenosis, slip condition and 
tapering of artery are simultaneously taken care of. A perturbation method 
is used to analyse the flow. Considering appropriate boundary conditions, 
analytic expressions for axial velocity, volumetric flow-rate and wall 
shear stress, have been obtained and their variations with different flow 
parameters are represented graphically. Biological implications of the 
present analysis are briefly discussed. 

1. Introduction 

The laminar flow of blood in arteries with the growth of a stenosis plays an 
important role in the diagnosis and clinical treatment as well as in the fundamental 
understanding of many cardiovascular diseases [11]. Among the various arterial 
diseases, the development of arteriosclerosis in blood vessels is quite common which 
may be attributed to accumulation of lipids in the arterial wall [1]. Arteries are 
narrowed by the development of atherosclerotic plaques that protrude into the lumen, 



DEVAJYOTI BISWAS and UDAY SHANKAR CHAKRABORTY 332 

resulting in stenosed arteries [2]. As an obstruction developed in an artery, one of the 
most serious consequences is the increased resistance and the associated reduction of 
blood flow to the particular vascular bed supplied by the artery [17]. Thus, the 
presence of a stenosis can lead to serious circulatory disorders [14]. It may be worth 
mentioning that in certain flow situations, physiological fluid blood may behave as a 
Newtonian fluid [15]. To understand the effects of stenosis in the lumen of an artery, 
many researchers [3, 4, 8, 10, 17, 18] have investigated the flow of blood through 
stenosed arteries, by considering blood to act as a Newtonian fluid. Thus it is 
reasonable to consider the body fluid blood as a Newtonian fluid. 

It is found that arterial blood flow is highly pulsatile, with marked effects on 
instantaneous velocity distributions and the flow rate varies over a wide range during 
a flow cycle [6, 18]. The pulsatile flow of blood in a stenosed artery is presented in 
[9, 12, 13, 16]. Recently a pulsatile model of blood flow in a stenosed artery has been 
considered in [14]. Thus it is appropriate to consider the unsteady flow of blood 
inside the artery. 

The study of blood flow through tapered tubes is also very important not only for 
an understanding of the flow behaviour of the marvellous body fluid blood in 
arteries, but also for the design of prosthetic blood vessels [5]. There is no doubt that 
tapering in arteries, is a significant aspect of mammalian arterial system. The 
formation of stenosis along the tapered wall may alter the flow situation to a great 
extent. In view of the above considerations, we are interested to study the pulsatile 
flow of blood through a catheterized tapered vessel with a stenosis. In this case, 
blood is taken as a Newtonian fluid and an axial slip in velocity, is introduced at the 
stenotic wall of the tapered artery. 

2. Mathematical Formulation 

We consider an axially symmetric, laminar, pulsatile and fully developed flow of 
blood (assumed to be Newtonian) through a tapered artery with a mild stenosis as 
shown in Figure 1. 

The wall of the stenosed artery is assumed to be rigid. The geometry of the 
constricted tapered artery is mathematically modeled as [7]. 
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Figure 1. Schematic diagram of a tapered artery with stenosis. 

where ( )zR  denotes the radius of the tapered arterial segment in the stenotic region, 

0R  is the constant radius of the straight artery in the non-stenotic region, φ is the 

angle of tapering, φδ coss  is the length of the stenosis at a length d  for the tapered 

artery, 0z  is the half-length of the stenosis and ( )φ= tanm  represents the slope of 

the tapered vessel. Let ( )zr ,, θ  be the system of co-ordinates, used to analyse the 

flow field in the geometry as stated above, where r  and θ  are along the radial and 
circumferential directions and, z -axis is taken along the axis of the artery. It has 
been reported that the radial velocity is negligibly small and can be neglected for a 
low Reynolds number flow in a tube with mild stenosis [5, 18]. The equations of 
motion governing the fluid flow are given by 
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where u  is the axial component of the velocity, p  is the pressure, ρ  is the density, 

t  is the time and zrzr τ−=τ=τ  is the shear stress. In this study, blood has been 

considered as Newtonian fluid whose constitutive equation is given by 

,
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where µ  is the coefficient of viscosity for Newtonian fluid. 
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The boundary conditions are 

 (i) τ  is finite at ,0=r  (2.6) 

(ii) suu =  at ( ),zRr =  (2.7) 

where su  is the slip-velocity at the stenotic wall. 

Since, the pressure gradient is a function of z  and ,t  we take 

( ) ( ),cos, 10 tAAtzz
p ω+=
∂
∂−  

where 0A  is the steady component of the pressure gradient, 1A  is amplitude of the 

fluctuating component and ,2 fπ=ω  where f  is the pulse frequency. Both 0A  and 

1A  are functions of z  [13]. We introduce the following non-dimensional variables 

( ) ( ) ,,,,,,
0

0
0

0000 R
LL

R
ddtt

R
rr

R
zRzR

R
zz ==ω====  

,,,

2

,

4

,
0
1

2
02

00
2

000 A
AeR

RARA

uu
R
s

s =
µ

ρω
=ατ=τ

µ

=
δ

=δ  (2.8) 

where 0R  is the radius of the normal artery and α is the pulsatile Reynolds number 

or generalized Womersley frequency parameter. 

Using non-dimensional variables equations (2.2) and (2.5) reduce to 
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The boundary conditions in the non-dimensional form are 

 (i) τ is finite at ,0=r  (2.11) 

(ii) suu =  at ( ).zRr =  (2.12) 

The geometry of stenosis in dimensionless form is given by 
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The non-dimensional volumetric flow rate is given by 
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3. Method of Solution 

Considering the Womersley parameter to be small, the velocity u and shear 
stress τ can be expressed in the following form 
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Using (3.1) and (3.2) in (2.9), we have 
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Integrating (3.3) and using the boundary condition (2.11), we have 

 ( ) ( ),0,0 zRrrtf ≤≤=τ  (3.5) 

where 

 ( ) .cos1 tetf +=  (3.6) 

Introducing (3.1) and (3.2) into equation (2.10), we obtain 
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Integrating (3.7) with the help of (3.5) and using the boundary condition (2.12), we 
get 
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Integrating equation (3.4) with the help of (3.9) and using the boundary condition 
(2.11), we get 

( ) ( ( )( ) ) ( ).0,28
1 32

1 zRrrrzRtf ≤≤−′−=τ  (3.10) 

Integrating equation (3.8) with the help of (3.10) and using boundary condition 
(2.12), we get 
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The expression for axial velocity ( )tzru ,,  can be obtained from equations (3.1), 

(3.9) and (3.11) and the expression for shear stress ( )tzr ,,τ  can be found from 

equations (3.2), (3.5) and (3.10). 

The wall shear stress is given by 
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The expression for volumetric flow rate is given by 
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4. Results and Discussions 

The objective of the present investigation is to study the combined effect of 
stenosis, tapering of artery and slip velocity at wall on the pulsatile flow of blood 
through a constricted tapered artery, considering blood as to behave like a Newtonian 
fluid. The governing equations of flow are solved using perturbation analysis 
assuming that the Womersley frequency parameter is very small which is valid for 
physiological situations in small blood vessels. Analytic expressions for axial 
velocity, flow rate and wall shear stress are found out and their variations with 
different flow parameters are represented graphically. 

4.1. Axial velocity profile 

Variation of axial velocity with the radial distance for different values of z and t 
are given by Figure 1 and Figure 2, respectively. 
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Figure 2. Variation of axial velocity with radial distance for slip and no-slip cases 

,1=t  ,1=e  .1=φ  

 
Figure 3. Variation of axial velocity with radial distance for different time ,0=z  

,1=e  ,05.0=su  .1=φ  
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It is observed from Figure 2 that velocity profiles show a non-parabolic trend. 
Axial velocity is maximum at the axis and minimum at the stenotic wall. As expected, 
with slip at stenotic wall velocity is more than that with no-slip. Further it is observed 
from Figure 3 that velocity decreases as the non-dimensional time t increases from 

0=t  to 5.1=t  at the throat of the stenosis ( ).0=z  

4.2. Volumetric flow rate 

The variations of volumetric flow rate as obtained from equation (3.13) against 
axial distance in the stenotic region of the tapered artery for different slip velocities 
and for different tapering angles of the artery are represented in Figure 4 and Figure 
5, respectively. 

 

Figure 4. Variation of flow-rate with axial distance for different slip velocities ,1=e  

,1=t .1=φ  
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Figure 5. Variation of flow-rate with axial distance for different tapering angles 
.05.0,1,1 === sute  

From the figures it is observed that flow rate is maximum at the initiation of the 
stenosis ( )0zz −=  and minimum at the maximum constricted area, i.e., at the throat 

of the stenosis ( ).0=z  The flow rate obtained with slip at stenotic wall is greater 

than that obtained with no-slip at wall and it further increases with the increase of 
velocity slip. Further, it is observed that though tapering of artery does not change the 
flow pattern but it affects the magnitudes of flow rate inside the artery. Flow rate 
obtained in the tapered artery is less in magnitude than that obtained in case of a 
uniform artery. Also an increase in tapering angle decreases the flow rate. 

4.3. Wall shear stress 

The variations of wall shear stress with axial distance for different tapering 
angles are given in Figure 6. 
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Figure 6. Variation of wall shear stress with axial distance for different tapering 
angles .05.0,1,1 === sute  

It is observed from the profile that wall shear stress in the tapered artery is more 
than that obtained in the uniform artery. Further an increase in tapering angle 
decreases the wall shear stress. 

5. Conclusion 

In this paper, the pulsatile flow of blood through a tapered artery with mild 
stenosis is modeled, using perturbation method and considering the body-fluid blood 
behaving as a Newtonian fluid. Analytic expressions for axial velocity, flow rate and 
wall shear stress are obtained and their variations with different flow parameters are 
shown in figures. It is observed that axial velocity and volumetric flow rate increase 
with the increase of velocity slip. Further, an increase in tapering angle increases the 
wall shear stress but reduces the flow-rate inside the artery. The axial velocity 
decreases with the increase in time from 0=t  to .5.1=t  As flow rate is increased 
due to the employment of a velocity slip at the constricted tapering wall, this clearly 
indicates that slip at a diseased artery wall could play a prominent role in blood flow 
modeling. It may be worthwhile to notice that an employment of slip at wall will 
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accelerate the speed and flow rate on one hand and retarded the resistance to flow on 
the other. As a result, bore of the vessel will increase, stenosis size will be lowered 
and rate of flow will be greater than that of the earlier. This in turn will improve the 
better functioning of the diseased artery and so slip may be exploited to act as a 
device for curing atherosclerosis. 
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