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Abstract 

Approximate analytic solutions of sub-harmonic resonances of nonlinear 
oscillations with parametric excitation are obtained using He’s Energy 
Balance Method (EBM). Unlike perturbation methods, EBM does not 
depend on any small physical parameters at all. One iteration step can 
provide very accurate analytical approximate solutions for both small and 
large values of oscillation amplitude and parameter. Comparisons are 
made between Energy Balance Method result and numerical solution of 
the problem. These approximate solutions show excellent agreement with 
the numerical solution, and this method can be easily extended to other 
nonlinear systems and can therefore be found widely applicable in 
engineering and other sciences. 

 



S. SOLEIMANI et al. 204 

1. Introduction 

The study of nonlinear oscillators is of great interest in engineering and physical 
sciences and many analytical techniques have been developed for solving the 
second-order nonlinear differential equations that govern their motion. In order to 
study this phenomenon, we need to solve the governing equations. Because of 
nonlinearity of these equations, it is difficult to solve them analytically. There is a 
large variety of approximate methods for the determination of solutions of nonlinear 
second-order dynamical equations including the Perturbation technique [21, 22] 
which is useful if there exist small parameters in the nonlinear problems, standard 
and modified Lindstedt-Poincaré [1, 10, 23], the harmonic balance method [5, 17-
19], parameter-expansion method [13, 28] and Parameterized perturbation method 
[7, 9]. Recently, some other approximate variational methods, including approximate 
energy method [2, 11, 12], variational iteration method [6, 8, 16, 26, 27] and 
variational approach [15, 20, 30, 31] have been used to solve nonlinear governing 
equations. These methods give successive approximations of high accuracy of the 
solution. The Energy Balance Method is one of the well-known methods to solve the 
nonlinear equations. This method is established by He [11, 12, 14] and has been 
used by many authors in [3, 4, 24, 25, 32]. 

In this paper, we will apply He’s Energy Balance Method to solve periodic 
solutions for sub-harmonic resonances of nonlinear oscillations. By comparing the 
results of Energy Balance Method and numerical solution of the problems, we will 
show this method has high accuracy. Also, for strong nonlinear equations that 
obtaining the Hamiltonian is difficult or impossible, we can use new assumption to 
solve the equations easily. 

2. He’s Energy Balance Method 

In He’s Energy Balance Method, a variational principle for the nonlinear 
oscillation is established and then a Hamiltonian is constructed, from which the 
angular frequency can be readily obtained by collocation method. This method will 
be useful for differential equations with strong nonlinearity. To show this case, we 
consider a general nonlinear oscillator in the form: 

 ( )( ) ,0=+′′ tXfX  (2.1) 

in which X and t are generalized dimensionless displacement and time variables, 
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respectively. The boundary conditions are: 

 ( ) ( ) .00,0 0 =′= XXX  (2.2) 

Its variational principle can be easily obtained: 

 ( ) ( )∫ ⎟
⎠
⎞⎜

⎝
⎛ +′−=

t
dtXFXXJ

0
2 ,2

1  (2.3) 

where ωπ= 2T  is the period of the nonlinear oscillator, ( ) ( )∫= .dXXfXF  

Its Hamiltonian, therefore, can be written in the form: 

 ( ) ( )0
2

2
1 XFXFXH =+′=  (2.4) 

or 

 ( ) ( ) ( ) .02
1

0
2 =−+′= XFXFXtR  (2.5) 

Oscillatory systems contain two important physical parameters, i.e., the 
frequency ω and the amplitude of oscillation, .0X  Assume that its initial 

approximate guess can be expressed as: 

 ( ) ( ).cos0 tXtX ω=  (2.6) 

Substituting (2.6) into X term of (2.5), yields 

 ( ) ( ) ( ) .0cossin2
1

00
22

0
2 =−ω+ωω= XFtXFtXtR  (2.7) 

If, by chance, the exact solution had been chosen as the trial function, then it 
would be possible to make H zero for all values of t by appropriate choice of ω. 
Collocation at 4π=ωt  gives: 

 ( ) ( )( ) .
sin

cos2
22

0

00

tX
tXFXF

ω

ω−
=ω  (2.8) 

Its period can be written in the form 

 
( ) ( )( )

.

sin
cos2

2

22
0

00

tX
tXFXF

T

ω

ω−
π=  (2.9) 
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3. He’s Energy Balance Method to Sub-harmonic Resonances of 
Nonlinear Oscillations 

In this section, we consider periodic solutions for sub-harmonic resonances of 
nonlinear oscillations with parametric excitation and use the Energy Balance Method 
to solve this equation in different states. The governing equation is [3]: 

 ( )( )[ ] ,0cos1 3 =β+αλε++′′ XXtX  (3.1) 

and the boundary conditions for this equation are: 

 ( ) ( ) ,00,0 0 =′= XXX  (3.2) 

where prime denotes derivation with respect to time. In equation (3.1), ( )tX  is 

displacement, t is time variable and ε, α, β, λ are generalized dimensionless small 
parameters [3]. 

In boundary conditions (3.2), the value of 0X  is unknown and we will find the 

corresponding unknown amplitude 0X  with given ε, α, β and λ. To do this, we 

utilize EBM and show the authority of this method in solving nonlinear oscillators 
like this. 

The first step to solve equation (3.1) is obtaining the Hamiltonian. So, we 
multiply the value of X ′  in equation (3.1): 

 ( )( )[ ] .0cos1 3 =′β+′αλε++′′′ XXXXtXX  (3.3) 

By integrating equation (3.3), we can readily obtain Hamiltonian formulation as 
follows: 

( ( ) ( ))∫ λ′β+λ′αε+β+α+′= dttXXtXXXXXH coscos4
1

2
1

2
1 3422  

 4
0

2
0 4

1
2
1 XX β+α=  (3.4) 

or 

( ) ( ( ) ( ))∫ λ′β+λ′αε+β+α+′= dttXXtXXXXXtR coscos4
1

2
1

2
1 3422  

 .04
1

2
1 4

0
2
0 =β−α− XX  (3.5) 
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Since the solution of equation (3.1) via boundary conditions (3.2) is periodic 
with the frequency ω, we consider parameter λ as follows: 

 ....,3,2,1, =ω=λ nn  (3.6) 

So, we rewrite the equation (3.5): 

( ) ( ( ) ( ))∫ ω′β+ω′αε+β+α+′= dttnXXtnXXXXXtR coscos4
1

2
1

2
1 3422  

 .0
4
1

2
1 4

0
2
0 =β−α− XX  (3.7) 

Substituting (2.6) into (3.7) and simplifying, we obtain: 

( ) ( ) ( ) ( )tXtXtXtR ωβ+ωα+ωω= 44
0

22
0

222
0 cos25.0cos5.0sin5.0  

( ) ( ) ( ) ( )
ω+ω

ωωωαε
−

ω+ω
ωωωαε

+ n
tntX

n
tntX

2
sin2sin25.0

2
cos2cos25.0 2

0
2
0  

( ) ( ) ( ) ( )
ω+ω−

ωωωαε
−

ω+ω−
ωωωαε

− n
tntX

n
tntX

2
sin2sin25.0

2
cos2cos25.0 2

0
2
0  

( ) ( ) ( ) ( )
ω+ω

ωωωβε
−

ω+ω
ωωωβε

+
n

tntX
n

tntX
4

sin4sin0625.0
4

cos4cos0625.0 4
0

4
0  

( ) ( ) ( ) ( )
ω+ω−

ωωωβε
−

ω+ω−
ωωωβε

− n
tntX

n
tntX

2
sin2sin125.0

2
cos2cos125.0 4

0
4
0  

( ) ( ) ( ) ( )
ω+ω

ωωωβε
−

ω+ω
ωωωβε

+
n

tntX
n

tntX
2

sin2sin125.0
2

cos2cos125.0 4
0

4
0  

( ) ( ) ( ) ( )
ω+ω−

ωωωβε
−

ω+ω−
ωωωβε

− n
tntX

n
tntX

4
sin4sin0625.0

4
cos4cos0625.0 4

0
4
0  

.025.05.0 4
0

2
0 =β−α− XX  (3.8) 

In this method according to basic idea of the Energy Balance Method, if ,0=X  

it shows the whole energy is in form of kinetic energy and if ,2π=X  it shows the 

whole energy is in form of potential energy, in 4π=X  there is a balance between 

the potential energy and kinetic energy. So we can benefit from this point. 



S. SOLEIMANI et al. 208 

If we collocate at 4π=ωt  and substitute ,1=n  we obtain: 

 ( ) εα−+β−α−ω= 2
0

4
0

2
0

22
0 144187494.0249988.0249988.0 XEXXXtR  

.0033333.0 4
0 =εβ+ X  (3.9) 

For determined values of α, β, ε, λ and n, we can obtain the corresponding 
unknown amplitude 0X  and the periodic solution with known frequency .nλ=ω  

For an example, we consider the case of 1=λ=ε=β=α ,1.0,4,9.0  and 1=n  

(i.e., ).1=ω  With these values, if we solve equation (3.9), we will obtain the 

amplitude 0X  as follows: 

 .184217.00 =X  (3.10) 

So, in this case, we will have the solution of equation (3.1): 

 ( ) ( ).cos184217.0 ttX =  (3.11) 

We have compared the result that has been obtained by the Energy Balance 
Method (equation (3.10)) and numerical solution in Figure 1. For other cases of α, β, 
ε, λ and n, the results show that this method is powerful to solve nonlinear 
oscillators. These comparisons are plotted in Figures 2-3. 

4. Conclusion 

In this paper, the Energy Balance Method (EBM) was employed to solve the 
periodic solutions for sub-harmonic resonances of nonlinear oscillations with 
parametric excitation. This method was applied for approaching amplitude of the 
system when the frequency is determined. Comparisons with the results of numerical 
solutions have been done by some figures. This example has shown that the 
approximate analytical solutions are in excellent agreement with the corresponding 
numerical solutions. The method can be easily extended to any nonlinear oscillator 
without any difficulty and, it is accurate, fast and reliable for such problems. 
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Figure 1. Comparison of the EBM solution with the numerical solution for the case 
that 1.0,,4,9.0 =ε1=λ=β=α  and ( ).11 =ω=n  

 

 

Figure 2. Comparison of the EBM solution with the numerical solution for the case 
that 01.0,0,4,1 =ε1=λ=β=α  and ( ).3103 =ω=n  

 • NM 
EBM 
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Figure 3. Comparison of the EBM solution with the numerical solution for the case 
that 01.0,0,4,1 =ε1=λ=β=α  and ( ).101 =ω=n  
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