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Abstract

Let B, :%XHXJTH, where X, = [Xjj],. iswith i.i.d. entriesand T,

is an nxn symmetric nonnegative definite random matrix independent
of the Xj;’s. Using the Stieltjes transform, it is shown that the limiting

distribution of By, has a continuous density function away from zero. In

the present paper, it is derived that the limiting density function is analytic
whenever it is positive and its behavior resembles a square root function
on the boundary of its support.

1. Introduction

The spectra for sample covariance matrices of the form %anng are

important in multivariate analysis. Let X, = [Xjj],,y With E| X33 — EXyq P =1
For each positive integer n, n =n(N) and n/N — ¢ >0 as n — +o, and let T,

be an n x n symmetric nonnegative definite random matrix independent of the X;’s.
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From previous work, the spectral distribution function of By, say F B converges

weakly to a nonrandom distribution function F as n — +o when FTn converges to

a nonrandom distribution function H, [2].

ForzeC" ={zeC:Im(z)> 0}, the Stieltjes transform of a distribution function
G is defined by

mg(z) = J.ﬁ dG(2).

From the inversion formula, distribution functions are uniquely determined by their
Stieltjes transform.

In [1], it is shown that, for each z € C*, m = mg(z) is the unique solution for

N ‘ ~ A !
m e C" to the equation m = —(Z - Cj—l —m dH(k)) .

Therefore, on C*, mg(z) has an inverse, given by

z(m):—%ﬂ:jﬁdH(X), m e mg(CY). (LD

In [2], it is shown that, for all X € R with x =0, lim .. me (z) = my(x)

exists and the function m; is continuous on R — {0}. Therefore, we have that, for

all x # 0, the density function of F is

f(x) = = Im(my(x)),

which is continuous on R — {0}.

Moreover, from (1.1), for every X = 0 for which f(x) >0, wmf(x) is the

imaginary part of the unique m € C* satisfying

R A
X = —HH:J'HM dH (). (1.2)

This nonrandom distribution function F is depending on H and c. In case,

H =1}, ) and ¢ =1, the density function f(x) = %1(0’4)(X)4X(4 -X), [2,4].
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For most cases of X, € 8Sg, the boundary of the support of F, for x € Sg, f(x)

resembles /| X — Xo | near Xo.

In this paper, we will analyze completely the case where H takes mass at two

positive distinct values L, o2 with 0 < p < o

2. Derivation of the Density f (x)

First, we will find Sg by using (1.2). To find Sg, we have X, € |  SE,

where | is an open interval, iff x'(mg) > 0, where my = my(Xg), [2]. For 0 < p <1,

and for 0 < p < 6%, let H(X) = (1 = p)Ip o) (X) + Pl 2., (). On

o~ (Ul 3ol oo

from (1.2),
SR IS N __ L, J1=p p
x(m) = m+CII+deH(X)_ e + . 2.1
—+m —+m
u (52
Moreover,
X(m)=—z—of 1P, P 2.2)
m

1 2 ) 2
() (_ + mj
n .
We will only consider ¢ < 1, the case for ¢ > 1 can be analyzed in a similar
way.

On (0, ), since x'(m) > 0, x(m) is increasing on (0, o), and from (2.1), we

have x(m) ¥ —c0 as m {1 0, and x(m) T 0 as m T . Therefore, (—o0, 0) = SE
and 0 € Sg.

On (—oo, —ﬁ), for m sufficiently large in the negative direction, x(m) > 0 and

x'(m) > 0. The latter fact and (2.1) gives us x(m) ¥ 0 as m — —oo. Moreover, for
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m near —ﬁ, from (2.1), x(m)< 0, from (2.2), x'(m)<0, and x(m){ —o0 as
m T —&. Therefore, {m : X'(m) > 0} = (=00, m;) for some mM; € (—oo, —&) with

x'(m;) = 0, and (0, x;) = Sg for x; = x(m;) > 0 with X; € Sg.
50
On - 0|, since
(e}

L ! € >0 and cp L - > 0.
u 1 1
o —+m —+m —4+m

u o’ H

Thus, from (2.1), x(m) > 0. For m near —Lz from (2.2), x'(m)< 0 and, from
c

2.1), x(m) T as m —LZ. Moreover, for m near 0, from (2.2), x'(m) > 0 and,
c
from (2.1), x(m) T o as m T 0. Therefore, {m: x'(m)> 0} = (m,, 0) for some
my € (_Lz’ Oj st. X'(my) =0 and (x4, ©) < S for some X4 = x(my) > X
c

S.t. X4 € SF'

_ 2
On (—ﬁ, —Lj, there are two different cases. Let g(m) = M+

(om)

1 1 1 1
If glm)<1 on |——, ——|, then AMy,, My st. (M, M) |——, —— |,
gm) <1 on (-1, -] poms st (mamy) <[~ -

X'(my) = x'(m3) =0, and x'(m) >0, Vm e (m,, m3). Let X, = Xx(M,) and X3 =

x(m3). Then (X5, X3) € SE, X,, X3 € Sg and X; < X, < X3 < X4. Therefore, Sf =

(—OO, 0) U (O, XI)U (X2, X3) U (X4, OO), in other Words, SF = {O}U [Xl, X2]U [X3, X4].
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1 1 . . 1 1
If glm)>1 on |—-—, ——|, then Xx(m) is decreasing on | ——, —— |.
9(m) (-+.-%) (m) g on (5~

Therefore, S = (~o0, 0) U (0, X;)U (X4, ), in other words, Sg = {0} U [x;, X4]-

The following argument will give us the density of F. From (2.1), we have, for

X #0 and m = my(x) e C",

_ (e=Duo’m? + (u(c(l - p) D +c’(cp-1))m -1

ucrzm(l + m) (L + m)
u 02

X

Therefore,

m*+ Am®> +Bm+C =0, (2.3)

x(u+02)-(0—1)u02, B= X—M(C(l—p)—l)_cz(Cp_l), c=—1

2 2

where A= 3
XUo Xuo Xuo

Let m = m+?. Then

M+ 3p(X) + 2q(x) = 0, (2.4)
A> B A AB . C
where p(x) = -5 t3 and q(x) = 7% t7 Notice the difference between

the roots of (2.3) and the roots of (2.4) is a real number.

Let u(x) = (=q(x)+/a*(x)+ p>(x))"* and v(x) = (~q(x) -4/ a*>(x) + p>(x))>

with the convention that square and cube roots of complex numbers are the principal

roots. Then, from the formula for the cubic equation, we have

M= u(0 + v(x) or —dXEVX) @(u(x) —v(x).

Notice, if q(x)+ p>(x) > 0, then (2.4) will have one real root and two conjugate
imaginary roots, if qz(x) + p3(x) = 0, then (2.4) will have three real roots of which

at least two are equal, and, if q?(x) + p>(x) < 0, then (2.4) will have three different

real roots.
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. — A
Since m = M — —, we have

3
u(x) + v(x) - X +0%) = (¢ ~ Duo” or
3Xu02 '
m - _u(x);v(x) V3i M3 G(x) = v(x) - X(u + 03) (c - po? Corl.
Xpo?
_u(x)+v(x) \/_I Y3 G40x) = v(x) - x(u + o2) = (¢ - 1)po?
2 3Xu62

Let p(x) = x*((q(x))* + (p(x))’) and G(x) = x*(q(x)). Then P(x) is a fourth
232

degree polynomial with negative leading coefficient — (e 2) T
108(uc”)

third degree polynomial. If P(Xx) < 0, then all three m’s are real and unequal.

and g(x) is a

Therefore, Im(m) =0 and the density f(x)=0 on {x #0: p(x) < 0}, in other words,
{x#0:p(x)<0}c SE. Moreover, from the graph of (2.1), for x #0e SE, we
have three different m’s s.t. X = x(m), and these m’s must satisfy (2.3). Therefore,

{x#0:p(x) <0} = (S U{0})".

Now, for x=0 st f(x)>0, we must have Im(m(x))> 0. Therefore,

P(x) > 0, and, since u(x) > v(X), we must take

rn:_u(x)nztv(x) \/_I(U(X) v(x)) - X(u+6%) - (c—l)ucs

3XMG

and hence

Im(m(x) = 2 () - V().

Therefore, for X # 0,
F(x) = % Im(m(x))

= g((_q(x)_{_ fqz(x)_i_ p3(X))l/3 —(—q(X)— ’qz(X)-i- p3(X))1/3)

i ((q(x) +x/B00)" (@) - xm)l/3j

T 2n X
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thus
f0-2 2500 ,
21| (@(x) + xdBOO)Y + @) + x3))2@(x) - xy PO + (@(%)
—x/(x))7?)

for x € {x: p(x) > 0}, and f(x) =0, otherwise.

Notice, from the early argument in this chapter for Sg, if g(m) > 1, then
{x #0: p(x)> 0} is one interval, and if g(m)<1, then {x #0: p(x) > 0} is a
union of two intervals, i.e., {Xx = 0: p(X) > 0} = (X, X4) or (X1, X3) U (X3, X4).
Moreover, f(X) resembles square root function near the boundary of the support of

F. This is the complete analysis of the case where H takes mass at two distinct

positive values.
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