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Abstract 

Let ,1
n

T
nnn TXXNB =  where [ ] Nnijn XX ×=  is with i.i.d. entries and nT  

is an nn ×  symmetric nonnegative definite random matrix independent   
of the s.’ijX  Using the Stieltjes transform, it is shown that the limiting 

distribution of nB  has a continuous density function away from zero. In 

the present paper, it is derived that the limiting density function is analytic 
whenever it is positive and its behavior resembles a square root function 
on the boundary of its support. 

1. Introduction 

The spectra for sample covariance matrices of the form n
T
nn TXXN

1  are 

important in multivariate analysis. Let [ ] Nnijn XX ×=  with .12
1111 =− EXXE  

For each positive integer n, ( )Nnn =  and 0>→ cNn  as ,∞+→n  and let nT  

be an nn ×  symmetric nonnegative definite random matrix independent of the s.’ijX  
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From previous work, the spectral distribution function of ,nB  say nBF  converges 

weakly to a nonrandom distribution function F as ∞+→n  when nTF  converges to 

a nonrandom distribution function H, [2]. 

For ( ){ },0: >∈≡∈ + zImzz CC  the Stieltjes transform of a distribution function 

G is defined by 

( ) ( )∫ λ
−λ

= .1 dGzzmG  

From the inversion formula, distribution functions are uniquely determined by their 
Stieltjes transform. 

In [1], it is shown that, for each ,+∈ Cz  ( )zmm F=  is the unique solution for 

+∈ Cm  to the equation ( ) .1

1−
⎟
⎠
⎞⎜

⎝
⎛ λ

λ+
λ−−= ∫ dHmczm  

Therefore, on ,+C  ( )zmF  has an inverse, given by 

 ( ) ( ) ( )∫ +∈λ
λ+
λ+−= .,1

1 CFmmdHmcmmz  (1.1) 

In [2], it is shown that, for all R∈x  with ,0≠x  ( ) ( )xmzmFxz 0lim ≡
→∈ +C  

exists and the function 0m  is continuous on { }.0−R  Therefore, we have that, for 

all ,0≠x  the density function of F is 

( ) ( )( ),1
0 xmImxf

π
=  

which is continuous on { }.0−R  

Moreover, from (1.1), for every 0≠x  for which ( ) ,0>xf  ( )xfπ  is the 

imaginary part of the unique +∈ Cm  satisfying 

 ( )∫ λ
λ+
λ+−= .1

1 dHmcmx  (1.2) 

This nonrandom distribution function F is depending on H and c. In case, 

[ )∞= ,11H  and ,1=c  the density function ( ) ( )( ) ( ),412
1

4,0 xxxxxf −
π

=  [2, 4]. 
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For most cases of ,0 FSx ∂∈  the boundary of the support of F, for ,FSx ∈ ( )xf  

resembles 0xx −  near .0x  

In this paper, we will analyze completely the case where H takes mass at two 

positive distinct values μ, 2σ  with .0 2σ<μ<  

2. Derivation of the Density ( )xf  

First, we will find FS  by using (1.2). To find ,FS  we have ,0
c
FSIx ⊂∈  

where I is an open interval, iff ( ) ,00 >′ mx  where ( ),000 xmm =  [2]. For ,10 << p  

and for ,0 2σ<μ<  let ( ) ( ) [ )( ) [ )( ).111
,, 2 xpxpxH
∞σ∞μ +−=  On 

( ),,00,11,11, 22 ∞⎟
⎠
⎞

⎜
⎝
⎛

σ
−⎟

⎠
⎞

⎜
⎝
⎛

σ
−

μ
−⎟

⎠
⎞⎜

⎝
⎛

μ
−∞−= ∪∪∪B  

from (1.2), 

 ( ) ( ) .11
11

1
1

2 ⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+
σ

+
+

μ

−+−=λ
λ+
λ+−= ∫ m

p

m

pcmdHmcmmx  (2.1) 

Moreover, 

 ( ) .
11

11
2

2

22

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛ +
σ

+

⎟
⎠
⎞⎜

⎝
⎛ +
μ

−−=′

m

p

m

pc
m

mx  (2.2) 

We will only consider ,1<c  the case for 1≥c  can be analyzed in a similar 
way. 

On ( ),,0 ∞  since ( ) ,0>′ mx  ( )mx  is increasing on ( ),,0 ∞  and from (2.1), we 

have ( ) ∞−↓mx  as ,0↓m  and ( ) 0↑mx  as .∞↑m  Therefore, ( ) c
FS⊂∞− 0,  

and .0 FS∈  

On ,1, ⎟
⎠
⎞⎜

⎝
⎛

μ
−∞−  for m sufficiently large in the negative direction, ( ) 0>mx  and 

( ) .0>′ mx  The latter fact and (2.1) gives us ( ) 0↓mx  as .∞−→m  Moreover, for 
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m near ,1
μ

−  from (2.1), ( ) ,0<mx  from (2.2), ( ) ,0<′ mx  and ( ) ∞−↓mx  as 

.1
μ

−↑m  Therefore, ( ){ } ( )1,0: mmxm ∞−=>′  for some ⎟
⎠
⎞⎜

⎝
⎛

μ
−∞−∈ 1,1m  with 

( ) ,01 =′ mx  and ( ) c
FSx ⊂1,0  for ( ) 011 >= mxx  with .1 FSx ∈  

On ,0,1
2 ⎟

⎠
⎞

⎜
⎝
⎛

σ
−  since 

,110 2 μ
−>

σ
−>> m    01 >

+
μ

m

c    and   .01
1

1
1

2

>
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
μ

−
+

σ
mm

cp  

Thus, from (2.1), ( ) .0>mx  For m near 2
1
σ

−  from (2.2), ( ) 0<′ mx  and, from 

(2.1), ( ) ∞↑mx  as .1
2σ

−↓m  Moreover, for m near 0, from (2.2), ( ) 0>′ mx  and, 

from (2.1), ( ) ∞↑mx  as .0↑m  Therefore, ( ){ } ( )0,0: 4mmxm =>′  for some 

⎟
⎠
⎞

⎜
⎝
⎛

σ
−∈ 0,1

24m  s.t. ( ) 04 =′ mx  and ( ) cF
Sx ⊂∞,4  for some ( ) 144 xmxx >=  

s.t. .4 FSx ∈  

On ,1,1
2 ⎟⎠
⎞

⎜
⎝
⎛

σ
−

μ
−  there are two different cases. Let ( ) ( ) +

⎟
⎠
⎞⎜

⎝
⎛ +
μ

−= 2

2

1
1

m

mpcmg  

.
1 2

2

2

⎟
⎠
⎞

⎜
⎝
⎛ +
σ

m

cpm  

If ( ) 1<mg  on ,1,1
2 ⎟⎠
⎞

⎜
⎝
⎛

σ
−

μ
−  then 32, mm∃  s.t. ( ) ,1,1, 232 ⎟

⎠
⎞

⎜
⎝
⎛

σ
−

μ
−⊂mm  

( ) ( ) ,032 =′=′ mxmx  and ( ) ,0>′ mx  ( )., 32 mmm ∈∀  Let ( )22 mxx =  and =3x  

( ).3mx  Then ( ) ,, 32
c
FSxx ⊂  FSxx ∈32,  and .4321 xxxx <<<  Therefore, =c

FS  

( ) ( ) ( ) ( ),,,,00, 4321 ∞∞− xxxx ∪∪∪  in other words, { } [ ] [ ].,,0 4321 xxxxSF ∪∪=  
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If ( ) 1≥mg  on ,1,1
2 ⎟⎠
⎞

⎜
⎝
⎛

σ
−

μ
−  then ( )mx  is decreasing on .1,1

2 ⎟⎠
⎞

⎜
⎝
⎛

σ
−

μ
−  

Therefore, ( ) ( ) ( ),,,00, 41 ∞∞−= xxSc
F ∪∪  in other words, { } [ ].,0 41 xxSF ∪=  

The following argument will give us the density of F. From (2.1), we have, for 

0≠x  and ( ) ,0
+∈= Cxmm  

( ) ( ( )( ) ( )) .
11

11111

2
2

222

⎟
⎠
⎞

⎜
⎝
⎛ +
σ

⎟
⎠
⎞⎜

⎝
⎛ +
μ

μσ

−−σ+−−μ+μσ−=
mmm

mcppcmcx  

Therefore, 

 ,023 =+++ CBmAmm  (2.3) 

where ( ) ( ) ,1
2

22

μσ
μσ−−σ+μ=

x
cxA  ( )( ) ( ) ,111

2

2

μσ
−σ−−−μ−=

x
cppcxB  .1

2μσ
=

x
C  

Let .3
Amm +=  Then 

 ( ) ( ) ,0233 =++ xqmxpm  (2.4) 

where ( ) 39

2 BAxp +−=  and ( ) .2627

3 CABAxq +−=  Notice the difference between 

the roots of (2.3) and the roots of (2.4) is a real number. 

Let ( ) ( ( ) ( ) ( ) ) 3132 xpxqxqxu ++−=  and ( ) ( ( ) ( ) ( ) ) 3132 xpxqxqxv +−−=  

with the convention that square and cube roots of complex numbers are the principal 
roots. Then, from the formula for the cubic equation, we have 

( ) ( )xvxum +=    or   ( ) ( ) ( ) ( )( ).2
3

2 xvxuixvxu −±+−  

Notice, if ( ) ( ) ,032 >+ xpxq  then (2.4) will have one real root and two conjugate 

imaginary roots, if ( ) ( ) ,032 =+ xpxq  then (2.4) will have three real roots of which 

at least two are equal, and, if ( ) ( ) ,032 <+ xpxq  then (2.4) will have three different 

real roots. 
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Since ,3
Amm −=  we have 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( )

.

3
1

2
3

2

or,
3

1
2
3

2

or,
3

1

2

22

2

22

2

22

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

μσ

μσ−−σ+μ−−−+−

μσ

μσ−−σ+μ−−++−

μσ

μσ−−σ+μ−+

=

x
cxxvxuixvxu

x
cxxvxuixvxu

x
cxxvxu

m  

Let ( ) ( ( )( ) ( ( )) )324 xpxqxxp +=  and ( ) ( )( ).3 xqxxq =  Then ( )xp  is a fourth 

degree polynomial with negative leading coefficient ( )
( )

,
108 42

22

μσ
σ−μ−  and ( )xq  is a 

third degree polynomial. If ( ) ,0<xp  then all three m’s are real and unequal. 

Therefore, ( ) 0=mIm  and the density ( ) 0=xf  on ( ){ },0:0 <≠ xpx  in other words, 

( ){ } .0:0 c
FSxpx ⊂<≠  Moreover, from the graph of (2.1), for ,0 c

FSx ∈≠  we 

have three different m’s s.t. ( ),mxx =  and these m’s must satisfy (2.3). Therefore, 

( ){ } { }( ) .00:0 c
FSxpx ∪=<≠  

Now, for 0≠x  s.t. ( ) ,0>xf  we must have ( )( ) .0>xmIm  Therefore, 

( ) ,0>xp  and, since ( ) ( ),xvxu ≥  we must take 

( ) ( ) ( ) ( )( ) ( ) ( ) ,
3

1
2
3

2 2

22

μσ
μσ−−σ+μ−−++−=

x
cxxvxuixvxum  

and hence 

( )( ) ( ) ( )( ).2
3 xvxuxmIm −=  

Therefore, for ,0≠x  

( ) ( )( )xmImxf
π

= 1  

(( ( ) ( ) ( ) ) ( ( ) ( ) ( ) ) )31323132
2

3 xpxqxqxpxqxq +−−−++−
π

=  

( ( ) ( ) ) ( ( ) ( ) ) ,2
3 3131

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−+
π

= x
xpxxqxpxxq  
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thus 

( ) ( )
(( ( ) ( ) ) ( ( ) ( ) ) ( ( ) ( ) ) ( ( )

( ) ) )

,2
2

3

32

313132

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

+−+++π
=

xpx

xqxpxxqxpxxqxpxxq
xpxf  

for ( ){ },0: >∈ xpxx  and ( ) ,0=xf  otherwise. 

Notice, from the early argument in this chapter for ,FS  if ( ) ,1>mg  then 

( ){ }0:0 >≠ xpx  is one interval, and if ( ) ,1≤mg  then ( ){ }0:0 >≠ xpx  is a 

union of two intervals, i.e., ( ){ } ( )41,0:0 xxxpx =>≠  or ( ) ( ).,, 4321 xxxx ∪  

Moreover, ( )xf  resembles square root function near the boundary of the support of 

F. This is the complete analysis of the case where H takes mass at two distinct 
positive values. 
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