THE LIMITING SPECTRAL DENSITY OF LARGE DIMENSIONAL SAMPLE COVARIANCE MATRICES

SANG-IL CHOI

Department of Mathematics
Hanseo University
Seosan, Chungnam 356-820, Korea
e-mail: schoi@hanseo.ac.kr

Abstract

Let $B_{n}=\frac{1}{N} X_{n} X_{n}^{T} T_{n}$, where $X_{n}=\left[X_{i j}\right]_{n \times N}$ is with i.i.d. entries and T_{n} is an $n \times n$ symmetric nonnegative definite random matrix independent of the $X_{i j}$'s. Using the Stieltjes transform, it is shown that the limiting distribution of B_{n} has a continuous density function away from zero. In the present paper, it is derived that the limiting density function is analytic whenever it is positive and its behavior resembles a square root function on the boundary of its support.

1. Introduction

The spectra for sample covariance matrices of the form $\frac{1}{N} X_{n} X_{n}^{T} T_{n}$ are important in multivariate analysis. Let $X_{n}=\left[X_{i j}\right]_{n \times N}$ with $E\left|X_{11}-E X_{11}\right|^{2}=1$. For each positive integer $n, n=n(N)$ and $n / N \rightarrow c>0$ as $n \rightarrow+\infty$, and let T_{n} be an $n \times n$ symmetric nonnegative definite random matrix independent of the $X_{i j}$'s.

2000 Mathematics Subject Classification: 60E99, 26A46.
Keywords and phrases: eigenvalues of random matrices, spectral distribution, Stieltjes transform.

Received March 26, 2009

From previous work, the spectral distribution function of B_{n}, say $F^{B_{n}}$ converges weakly to a nonrandom distribution function F as $n \rightarrow+\infty$ when $F^{T_{n}}$ converges to a nonrandom distribution function H, [2].

For $z \in \mathbb{C}^{+} \equiv\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$, the Stieltjes transform of a distribution function G is defined by

$$
m_{G}(z)=\int \frac{1}{\lambda-z} d G(\lambda)
$$

From the inversion formula, distribution functions are uniquely determined by their Stieltjes transform.

In [1], it is shown that, for each $z \in \mathbb{C}^{+}, m=m_{F}(z)$ is the unique solution for $m \in \mathbb{C}^{+}$to the equation $m=-\left(z-c \int \frac{\lambda}{1+\lambda m} d H(\lambda)\right)^{-1}$.

Therefore, on $\mathbb{C}^{+}, m_{F}(z)$ has an inverse, given by

$$
\begin{equation*}
z(m)=-\frac{1}{m}+c \int \frac{\lambda}{1+\lambda m} d H(\lambda), \quad m \in m_{F}\left(\mathbb{C}^{+}\right) . \tag{1.1}
\end{equation*}
$$

In [2], it is shown that, for all $x \in \mathbb{R}$ with $x \neq 0, \lim _{z \in \mathbb{C}^{+} \rightarrow x} m_{F}(z) \equiv m_{0}(x)$ exists and the function m_{0} is continuous on $\mathbb{R}-\{0\}$. Therefore, we have that, for all $x \neq 0$, the density function of F is

$$
f(x)=\frac{1}{\pi} \operatorname{Im}\left(m_{0}(x)\right)
$$

which is continuous on $\mathbb{R}-\{0\}$.
Moreover, from (1.1), for every $x \neq 0$ for which $f(x)>0, \pi f(x)$ is the imaginary part of the unique $m \in \mathbb{C}^{+}$satisfying

$$
\begin{equation*}
x=-\frac{1}{m}+c \int \frac{\lambda}{1+\lambda m} d H(\lambda) . \tag{1.2}
\end{equation*}
$$

This nonrandom distribution function F is depending on H and c. In case, $H=1_{[1, \infty)}$ and $c=1$, the density function $f(x)=\frac{1}{2 \pi x} 1_{(0,4)}(x) \sqrt{x(4-x)},[2,4]$.

For most cases of $x_{0} \in \partial S_{F}$, the boundary of the support of F, for $x \in S_{F}, f(x)$ resembles $\sqrt{\left|x-x_{0}\right|}$ near x_{0}.

In this paper, we will analyze completely the case where H takes mass at two positive distinct values μ, σ^{2} with $0<\mu<\sigma^{2}$.

2. Derivation of the Density $f(x)$

First, we will find S_{F} by using (1.2). To find S_{F}, we have $x_{0} \in I \subset S_{F}^{C}$, where I is an open interval, iff $x^{\prime}\left(m_{0}\right)>0$, where $m_{0}=m_{0}\left(x_{0}\right)$, [2]. For $0<p<1$, and for $0<\mu<\sigma^{2}$, let $H(x)=(1-p) 1_{[\mu, \infty)}(x)+p 1_{\left[\sigma^{2}, \infty\right)}(x)$. On

$$
B=\left(-\infty,-\frac{1}{\mu}\right) \cup\left(-\frac{1}{\mu},-\frac{1}{\sigma^{2}}\right) \cup\left(-\frac{1}{\sigma^{2}}, 0\right) \cup(0, \infty),
$$

from (1.2),

$$
\begin{equation*}
x(m)=-\frac{1}{m}+c \int \frac{\lambda}{1+\lambda m} d H(\lambda)=-\frac{1}{m}+c\left(\frac{1-p}{\frac{1}{\mu}+m}+\frac{p}{\frac{1}{\sigma^{2}}+m}\right) \tag{2.1}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
x^{\prime}(m)=\frac{1}{m^{2}}-c\left(\frac{1-p}{\left(\frac{1}{\mu}+m\right)^{2}}+\frac{p}{\left(\frac{1}{\sigma^{2}}+m\right)^{2}}\right) \tag{2.2}
\end{equation*}
$$

We will only consider $c<1$, the case for $c \geq 1$ can be analyzed in a similar way.

On $(0, \infty)$, since $x^{\prime}(m)>0, x(m)$ is increasing on $(0, \infty)$, and from (2.1), we have $x(m) \downarrow-\infty$ as $m \downarrow 0$, and $x(m) \uparrow 0$ as $m \uparrow \infty$. Therefore, $(-\infty, 0) \subset S_{F}^{c}$ and $0 \in S_{F}$.

On $\left(-\infty,-\frac{1}{\mu}\right)$, for m sufficiently large in the negative direction, $x(m)>0$ and $x^{\prime}(m)>0$. The latter fact and (2.1) gives us $x(m) \downarrow 0$ as $m \rightarrow-\infty$. Moreover, for
m near $-\frac{1}{\mu}$, from (2.1), $x(m)<0$, from (2.2), $x^{\prime}(m)<0$, and $x(m) \downarrow-\infty$ as $m \uparrow-\frac{1}{\mu}$. Therefore, $\left\{m: x^{\prime}(m)>0\right\}=\left(-\infty, m_{1}\right)$ for some $m_{1} \in\left(-\infty,-\frac{1}{\mu}\right)$ with $x^{\prime}\left(m_{1}\right)=0$, and $\left(0, x_{1}\right) \subset S_{F}^{c}$ for $x_{1}=x\left(m_{1}\right)>0$ with $x_{1} \in S_{F}$.

On $\left(-\frac{1}{\sigma^{2}}, 0\right)$, since

$$
0>m>-\frac{1}{\sigma^{2}}>-\frac{1}{\mu}, \quad \frac{c}{\frac{1}{\mu}+m}>0 \quad \text { and } \quad c p\left(\frac{1}{\frac{1}{\sigma^{2}}+m}-\frac{1}{\frac{1}{\mu}+m}\right)>0
$$

Thus, from (2.1), $x(m)>0$. For m near $-\frac{1}{\sigma^{2}}$ from (2.2), $x^{\prime}(m)<0$ and, from (2.1), $x(m) \uparrow \infty$ as $m \downarrow-\frac{1}{\sigma^{2}}$. Moreover, for m near 0 , from (2.2), $x^{\prime}(m)>0$ and, from (2.1), $x(m) \uparrow \infty$ as $m \uparrow 0$. Therefore, $\left\{m: x^{\prime}(m)>0\right\}=\left(m_{4}, 0\right)$ for some $m_{4} \in\left(-\frac{1}{\sigma^{2}}, 0\right)$ s.t. $x^{\prime}\left(m_{4}\right)=0$ and $\left(x_{4}, \infty\right) \subset S_{F^{c}}$ for some $x_{4}=x\left(m_{4}\right)>x_{1}$ s.t. $x_{4} \in S_{F}$.

On $\left(-\frac{1}{\mu},-\frac{1}{\sigma^{2}}\right)$, there are two different cases. Let $g(m)=\frac{c(1-p) m^{2}}{\left(\frac{1}{\mu}+m\right)^{2}}+$ $\frac{c p m^{2}}{\left(\frac{1}{\sigma^{2}}+m\right)^{2}}$.

If $g(m)<1$ on $\left(-\frac{1}{\mu},-\frac{1}{\sigma^{2}}\right)$, then $\exists m_{2}, m_{3}$ s.t. $\left(m_{2}, m_{3}\right) \subset\left(-\frac{1}{\mu},-\frac{1}{\sigma^{2}}\right)$, $x^{\prime}\left(m_{2}\right)=x^{\prime}\left(m_{3}\right)=0$, and $x^{\prime}(m)>0, \forall m \in\left(m_{2}, m_{3}\right)$. Let $x_{2}=x\left(m_{2}\right)$ and $x_{3}=$ $x\left(m_{3}\right)$. Then $\left(x_{2}, x_{3}\right) \subset S_{F}^{c}, x_{2}, x_{3} \in S_{F}$ and $x_{1}<x_{2}<x_{3}<x_{4}$. Therefore, $S_{F}^{c}=$ $(-\infty, 0) \cup\left(0, x_{1}\right) \cup\left(x_{2}, x_{3}\right) \cup\left(x_{4}, \infty\right)$, in other words, $S_{F}=\{0\} \cup\left[x_{1}, x_{2}\right] \cup\left[x_{3}, x_{4}\right]$.

If $g(m) \geq 1$ on $\left(-\frac{1}{\mu},-\frac{1}{\sigma^{2}}\right)$, then $x(m)$ is decreasing on $\left(-\frac{1}{\mu},-\frac{1}{\sigma^{2}}\right)$. Therefore, $S_{F}^{c}=(-\infty, 0) \cup\left(0, x_{1}\right) \cup\left(x_{4}, \infty\right)$, in other words, $S_{F}=\{0\} \cup\left[x_{1}, x_{4}\right]$.

The following argument will give us the density of F. From (2.1), we have, for $x \neq 0$ and $m=m_{0}(x) \in \mathbb{C}^{+}$,

$$
x=\frac{(c-1) \mu \sigma^{2} m^{2}+\left(\mu(c(1-p)-1)+\sigma^{2}(c p-1)\right) m-1}{\mu \sigma^{2} m\left(\frac{1}{\mu}+m\right)\left(\frac{1}{\sigma^{2}}+m\right)}
$$

Therefore,

$$
\begin{equation*}
m^{3}+A m^{2}+B m+C=0 \tag{2.3}
\end{equation*}
$$

where $A=\frac{x\left(\mu+\sigma^{2}\right)-(c-1) \mu \sigma^{2}}{x \mu \sigma^{2}}, B=\frac{x-\mu(c(1-p)-1)-\sigma^{2}(c p-1)}{x \mu \sigma^{2}}, C=\frac{1}{x \mu \sigma^{2}}$.

Let $\bar{m}=m+\frac{A}{3}$. Then

$$
\begin{equation*}
\bar{m}^{3}+3 p(x) \bar{m}+2 q(x)=0 \tag{2.4}
\end{equation*}
$$

where $p(x)=-\frac{A^{2}}{9}+\frac{B}{3}$ and $q(x)=\frac{A^{3}}{27}-\frac{A B}{6}+\frac{C}{2}$. Notice the difference between the roots of (2.3) and the roots of (2.4) is a real number.

$$
\text { Let } u(x)=\left(-q(x)+\sqrt{q^{2}(x)+p^{3}(x)}\right)^{1 / 3} \text { and } v(x)=\left(-q(x)-\sqrt{q^{2}(x)+p^{3}(x)}\right)^{1 / 3}
$$ with the convention that square and cube roots of complex numbers are the principal roots. Then, from the formula for the cubic equation, we have

$$
\bar{m}=u(x)+v(x) \quad \text { or } \quad-\frac{u(x)+v(x)}{2} \pm \frac{\sqrt{3} i}{2}(u(x)-v(x)) .
$$

Notice, if $q^{2}(x)+p^{3}(x)>0$, then (2.4) will have one real root and two conjugate imaginary roots, if $q^{2}(x)+p^{3}(x)=0$, then (2.4) will have three real roots of which at least two are equal, and, if $q^{2}(x)+p^{3}(x)<0$, then (2.4) will have three different real roots.

Since $m=\bar{m}-\frac{A}{3}$, we have

$$
m=\left(\begin{array}{l}
u(x)+v(x)-\frac{x\left(\mu+\sigma^{2}\right)-(c-1) \mu \sigma^{2}}{3 x \mu \sigma^{2}}, \text { or } \\
-\frac{u(x)+v(x)}{2}+\frac{\sqrt{3} i}{2}(u(x)-v(x))-\frac{x\left(\mu+\sigma^{2}\right)-(c-1) \mu \sigma^{2}}{3 x \mu \sigma^{2}}, \text { or } \\
-\frac{u(x)+v(x)}{2}-\frac{\sqrt{3} i}{2}(u(x)-v(x))-\frac{x\left(\mu+\sigma^{2}\right)-(c-1) \mu \sigma^{2}}{3 x \mu \sigma^{2}}
\end{array}\right) .
$$

Let $\bar{p}(x)=x^{4}\left((q(x))^{2}+(p(x))^{3}\right)$ and $\bar{q}(x)=x^{3}(q(x))$. Then $\bar{p}(x)$ is a fourth degree polynomial with negative leading coefficient $-\frac{\left(\mu-\sigma^{2}\right)^{2}}{108\left(\mu \sigma^{2}\right)^{4}}$, and $\bar{q}(x)$ is a third degree polynomial. If $\bar{p}(x)<0$, then all three m 's are real and unequal. Therefore, $\operatorname{Im}(m)=0$ and the density $f(x)=0$ on $\{x \neq 0: \bar{p}(x)<0\}$, in other words, $\{x \neq 0: \bar{p}(x)<0\} \subset S_{F}^{c}$. Moreover, from the graph of (2.1), for $x \neq 0 \in S_{F}^{c}$, we have three different m 's s.t. $x=x(m)$, and these m 's must satisfy (2.3). Therefore, $\{x \neq 0: \bar{p}(x)<0\}=\left(S_{F} \cup\{0\}\right)^{c}$.

Now, for $x \neq 0$ s.t. $f(x)>0$, we must have $\operatorname{Im}(m(x))>0$. Therefore, $\bar{p}(x)>0$, and, since $u(x) \geq v(x)$, we must take

$$
m=-\frac{u(x)+v(x)}{2}+\frac{\sqrt{3} i}{2}(u(x)-v(x))-\frac{x\left(\mu+\sigma^{2}\right)-(c-1) \mu \sigma^{2}}{3 x \mu \sigma^{2}},
$$

and hence

$$
\operatorname{Im}(m(x))=\frac{\sqrt{3}}{2}(u(x)-v(x))
$$

Therefore, for $x \neq 0$,

$$
\begin{aligned}
f(x) & =\frac{1}{\pi} \operatorname{Im}(m(x)) \\
& =\frac{\sqrt{3}}{2 \pi}\left(\left(-q(x)+\sqrt{q^{2}(x)+p^{3}(x)}\right)^{1 / 3}-\left(-q(x)-\sqrt{q^{2}(x)+p^{3}(x)}\right)^{1 / 3}\right) \\
& =\frac{\sqrt{3}}{2 \pi}\left(\frac{(\bar{q}(x)+x \sqrt{\bar{p}(x)})^{1 / 3}-(\bar{q}(x)-x \sqrt{\bar{p}(x)})^{1 / 3}}{x}\right),
\end{aligned}
$$

thus

$$
f(x)=\frac{\sqrt{3}}{2 \pi}\binom{\frac{2 \sqrt{\bar{p}(x)}}{\left((\bar{q}(x)+x \sqrt{\bar{p}(x)})^{2 / 3}+(\bar{q}(x)+x \sqrt{\bar{p}(x)})^{1 / 3}(\bar{q}(x)-x \sqrt{\bar{p}(x)})^{1 / 3}+(\bar{q}(x)\right.}}{\left.-x \sqrt{\bar{p}(x)})^{2 / 3}\right)},
$$

for $x \in\{x: \bar{p}(x)>0\}$, and $f(x)=0$, otherwise.
Notice, from the early argument in this chapter for S_{F}, if $g(m)>1$, then $\{x \neq 0: \bar{p}(x)>0\}$ is one interval, and if $g(m) \leq 1$, then $\{x \neq 0: \bar{p}(x)>0\}$ is a union of two intervals, i.e., $\{x \neq 0: \bar{p}(x)>0\}=\left(x_{1}, x_{4}\right)$ or $\left(x_{1}, x_{2}\right) \cup\left(x_{3}, x_{4}\right)$. Moreover, $f(x)$ resembles square root function near the boundary of the support of F. This is the complete analysis of the case where H takes mass at two distinct positive values.

References

[1] V. A. Marčenko and L. A. Pastur, Distribution of eigenvalues for some sets of random matrices, Mathematics of the USSR-Sbornik 1(4) (1967), 457-483.
[2] J. W. Silverstein and Sang-Il Choi, Analysis of the limiting spectral distribution of large-dimensional random matrices, J. Multivariate Anal. 54(2) (1995), 295-309.
[3] J. W. Silverstein and P. L. Combettes, Signal detection via spectral theory of large dimensional random matrices, IEEE Trans. Signal Process. 40(8) (1992), 2100-2105.
[4] Y. Q. Yin, Limiting spectral distribution for a class of random matrices, J. Multivariate Anal. 20(1) (1986), 50-68.

