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Abstract 

In this paper, we introduce an interactive method for treating 
multiobjective nonlinear programming problems with fuzzy parameters in 
the objective functions. The decision maker (DM) must make two types of 
preference statements at each iterate generated by the method. First, the 
local tradeoff rates between the objective functions. Second, the 
preference selection among several vectors of objective functions for each 
considered feasible solution. The stability of solutions which are obtained 
by using this method is also presented. 
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1. Introduction 

Osman [7, 8] introduced the notions of the solvability set, stability set of the 
first kind and stability set of the second kind. Tanaka and Asai [12] formulated 
multiobjective linear programming problems with fuzzy parameters. Orlovski [6] 
formulated general multiobjective nonlinear programming problems with fuzzy 
parameters. Sakawa and Yano [11] introduced the concept of α-multiobjective 
nonlinear programming and α-Pareto optimality. Osman and El-Banna [9] introduced 
the qualitative analysis of the stability set of the first kind for fuzzy parametric 
multiobjective nonlinear programming problems. Kassem [4] introduced the 
interactive stability of multiobjective nonlinear programming problems with fuzzy 
parameters in the constraints. Geoffrion et al. [3] introduced the interactive method 
for multicriterion optimization, this method is called GDF method. Recently, Elshafei 
[2] introduced an interactive stability compromise programming method for solving 
fuzzy multiobjective integer nonlinear programming problems. 

In this paper, we present a solution method for fuzzy multiobjective nonlinear 
programming problems by using GDF method. Moreover, we determine the stability 
of the solutions which are obtained from the directional problems generated by this 
method. 

2. Problem Formulation 

Let us consider the following fuzzy multiobjective nonlinear programming 
(FMONLP) problem: 
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where ( )ii axf ~,  is a continuously differentiable and concave function for ,...,,2,1 ki =  

X is nonempty convex and compact, jg  is a continuously differentiable and convex 

function for ,...,,2,1 mj =  and ( )iiqiii aaaa ~...,,~,~~
21=  represents a vector of fuzzy 

parameters in the objective function ( ),~, ii axf  these fuzzy parameters are assumed to 

be characterized as the fuzzy numbers introduced in [1]. A real fuzzy number p~  is a 

convex continuous fuzzy subset of the real line whose membership function ( )pp~μ  

is defined by: 
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(1) a continuous mapping from R to the closed interval [ ];1,0  

(2) ( ) 0~ =μ pp  for all ( ];, 1pp ∞−∈  

(3) strict increase on ( );, 21 pp  

(4) ( ) 1~ =μ pp  for all [ ];, 32 ppp ∈  

(5) strict decrease on ( );, 43 pp  

(6) ( ) 0~ =μ pp  for all [ ).,4 ∞+∈ pp  

For simplicity of notations we define the following vectors: 

( ),~...,,~,~~
21 iiqiii aaaa =  

( ),...,,, 21 kaaaa =  

( ).~...,,~,~~
21 kaaaa =  

Definition 1 (α-level set). The α-level set of the numbers ia~  ( )ki ...,,2,1=  is 

defined as the ordinary set ( )aL ~
α  for which the degree of their membership functions 

exceeds the level α: 

( ) { ( ) }....,,2,1,~ ~ kiaaaL iai =α≥μ|=α  

For a certain degree of α, the problem (FMONLP) can be understood as the 

following nonfuzzy α-multiobjective nonlinear programming ( )′α MONLP-  problem: 

( )
( ) ( ) ( )( )

( ).~,tosubject

,...,,,,,max
MONLP- 2211
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α∈∈
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Problem ( )′α MONLP-  can be rewritten as the following form: 

( ) ( ) ( )( )kk axfaxfaxf ,...,,,,,max 2211  

(α-MONLP) subject to ,Xx ∈  

,...,,2,1, kiBaA iii =≤≤  

where iA  and iB  are lower and upper bounds on ia  for ....,,2,1 ki =  
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Definition 2 (α-Pareto optimal solution). Xx ∈∗  is said to be an α-Pareto 
optimal solution to the (α-MONLP), if and only if there does not exist another 

,Xx ∈  ( )aLa ~
α∈  such that ( ) ( ),,, ∗∗≥ iiii axfaxf  ,...,,2,1 ki =  with strictly 

inequality holding for at least one i, where the corresponding values of parameters 
∗
ia  are called α-level optimal parameters. 

For some (unknown) implicit utility function, we have the following problem: 

( ) ( ) ( )[ ]kk axfaxfaxfU ,...,,,,,max 2211  

(αM ) subject to ,Xx ∈  

,...,,2,1, kiBaA iii =≤≤  

where ( )⋅U  is concave and continuously differentiable. 

3. Tradeoff Weights 

In this approach, given a point ( ) ( ),~, aLXax ll
α×∈  the DM is asked to 

estimate the local tradeoff rates l
iw  for ,...,,2,1 ki =  where 

 ( )
( )11 ,

,
axfU
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=    evaluated  at  ( ) ( ).,, ll axax =  (1) 

The method employs the local tradeoff rates (1) in a different directional subproblem 
at each iteration. This subproblem is defined as follows: 
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Without loss of generality, the problem (2) can be reformulated to the equivalent 
form 
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4. Stability Set of the First Kind 

Here, we assume that the problem (FMONLP) is stable, therefore the problem 
(α-MONLP) is also stable [10]. The stability of problem (2) and problem (3) follows 
directly from the stability of the (α-MONLP) problem. 

Definition 3 (Stability set of the first kind). Given a certain knRt +∈  with a 
corresponding optimal solution ( ),, ax  then the stability set of the first kind of 

problem (3) corresponding to ( ),, ax  denoted by ( ),, axS  is defined by 

( ) { ( ) }.(3)problemofsolutionoptimalanis,, axRtaxS kn |∈= +  

Let a certain knRt +∈  with a corresponding optimal solution ( )ax,  be given. 

Then from the stability of problem (3), there exist ,knRt +∈  ,mR∈ν  kR∈λ  and 
kR∈μ  such that the Kuhn-Tucker conditions of problem (3) take the form: 
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,0  ,...,,2,1 nr =  

,0=μ+λ−+ iiint  ,...,,2,1 ki =  

( ) ,0≤xg j  ,...,,2,1 mj =  

,0≤− ii Ba  ,...,,2,1 ki =  

,0≤− ii aA  ,...,,2,1 ki =  

( ) ,0=ν xg jj  ,...,,2,1 mj =  

( ) ,0=−λ iii Ba  ,...,,2,1 ki =  

( ) ,0=−μ iii aA  ,...,,2,1 ki =  

,0=ν j                                          for { },...,,2,1 mJj ⊂∈  

,0≥ν j                   for ,Jj ∉  

0,0 =μ=λ ii                   for { },...,,2,1 kIi ⊂∈  

,0,0 ≥μ≥λ ii                   for .Ii ∉  
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Consider the system of equations 
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It is clear that 

( ) { ( ) }.)(systemthesolves,,,, ∗μλν|∈= + tRtaxS kn  

Theorem. The set ( )axS ,  is convex. 

Proof. The proof is similar to the one in [7]. 

5. A Solution Algorithm 

The steps of the algorithm can be summarized as follows: 

Step 1. Set a certain degree α  ( ).10 ≤α≤  

Step 2. Determine the α-level set of the fuzzy numbers. 

Step 3. Convert the FMONLP in the form of α-MONLP and select an initial 

feasible point ( )., ll ax  Set .0=l  

Step 4. The DM specifies precise values of local tradeoff rates l
iw  at ( )ll ax ,  

for ....,,2,1 ki =  

Step 5. Solve problem (3) to get optimal solution ( )., 11 ++ ll ax  

Step 6. Set ( ) ( ).,, 111 lllll axaxd −= +++  Present to DM the vector 

(( ) ) (( ) ),,...,,, 11
1

++ ρ+ρ+ lll
k

lll daxfdaxf  

for various values of ,10 ≤ρ≤  the preference selection defines .lρ  

Step 7. If ,0=ρl  go to Step 10. 

Step 8. Determine the stability set of the first kind ( )., 11 ++ ll axS  
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Step 9. Put ( ) ( ) ,,, 111 +++ ρ+= llllll daxax  set 1+= ll  and go to Step 4. 

Step 10. Terminate with ( )ll ax ,  as α-Pareto optimal solution to the α-MONLP 

problem. 
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