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Abstract

We study the configuration space € of a parallel polygonal mechanism,
and give necessary conditions for the existence of singularities; this shows
that generically € is a smooth manifold. In the planar case, we construct
an explicit Morse function on €, and show how geometric information

about the mechanism can be used to identify the critical points.
1. Introduction

The mathematical theory of robotics is based on the notion of a mechanism,
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consisting of links, joints, and rigid parts known as platforms. The type of a
mechanism is defined by a g-dimensional simplicial (or polyhedral) complex, where
the parts of dimension > 2 correspond to the platforms and the complementary one-
dimensional graph corresponds to the links and joints. There may be restrictions as
to the kind of motion allowed at the joints. In this paper, the lengths of all links are
fixed.

A specific embedding of this complex in the ambient Euclidean space RY is
called a configuration of the mechanism. The collection of all such embeddings
forms a topological space, called the configuration space of the mechanism (see [7]).
These spaces have been studied intensively, mostly for simple closed or open chains
(cf. [5,6,9,12, 15, 16, 18]; but see [11, 14, 19]).

Figure 1. A pentagonal planar mechanism.

The goal of this note is to study the configuration space of a mechanism
comprising a moving planar polygonal platform, having a flexible leg consisting of
concatenated links (i.e., rigid rods) attached to each vertex, with the other end fixed

in R (see Figure 1). We may think of these fixed ends as forming the fixed
polygon of the mechanism, “parallel” to the moving polygon inside. The spatial
version of such a mechanism, consisting of a two-dimensional platform free to move
in three dimensions, has been studied extensively, but even the planar version, to
which we later specialize, has practical applications — for example, in micro-
electromechanical systems (MEMS). See [1].

Our main results are:

(a) The configuration space of a parallel polygonal mechanism is generically a
smooth manifold, when it is not, the possible singular points are explicitly described
(Theorem 2.2 and Corollary 2.9).
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(b) The topology of this manifold can be described for a triangular planar
mechanism by means of an explicit Morse function (Theorem 3.1), whose critical
points can be identified geometrically (see Subsection 3.2).

We start with some terminology and notation:

Definition 1.1. A branch (of multiplicity n) is a sequence L = (¢, ..., £,) of n

positive numbers, which we think of as the lengths of n concatenated links, having

(d —1)-dimensional spherical joints at the consecutive meeting points (if d = 2,
the joints are rotational).

Definition 1.2. A configuration in RY for a branch L = (¢, ..., ¢,) consists
of n vectors V = (v}, .., vy) in RY with lengths |vi|=¢; (i=1..n). A
branch configuration V = (vy, ..., V,,) is aligned, with a direction vector W e R?,
if all the vectors V; are scalar multiples of W.

The configuration space € = @(L) of a branch L is the product of n (d —1)-
dimensional spheres S9! of radii (R = Ei)in:l. Up to homeomorphism, € is
independent of the order on L, so we can assume /i, ..., £,, to be in descending

order.

Definition 1.3. A polygonal mechanism (£, X, P) in RY consists of:

(a) k branches £ = {L(i)}z(=1 of multiplicity {n(i)}k respectively;

i=1>

(b) k distinct base points & = {xM}X_ in RY, to which the initial points of the

corresponding branches are attached.

(¢) An abstract planar k-polygon P in RY.

Think of this mechanism as a linkage of k branches, starting at the base points

(which form a not necessarily planar polygon in R , called the fixed platform), and
ending at the vertices of a rigid planar polygon congruent to P (called the moving
platform of the mechanism). There are spherical joints at either end of each branch,
too.

We use parenthesized superscripts to indicate the branch number, and plain
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subscripts to indicate the link number, e.g., ¢ (ji) denotes the length of the jth link of

the ith branch.

Remark 1.4. Let P be a convex polyhedron in RY. It need not be

d-dimensional; e.g., we can think of a planar polygon as a degenerate polyhedron in

R3. If p(l), - p(k) (k > d) are its vertices (extremal points), P is determined up

to isometry by the lengths g(i’ - [ p(i) - p(j) | for (i, j) € Z, where the index

set 7 consists of the following ordered pairs:
7=41,2),..,(1,m);(23),.,2m);.,(m-1,m); (1, m+1),..(d, k)} (1)

for m := min{d, k}. We first include in Z all ordered pairs (i, j) with 1 <i < j

<m, which span a “basic” (d —1)-simplex A (possibly degenerate!) if d < k.

Note that for each i > d + 1, the d edges with second index i, together with A, span

a d-simplex, and we add to the list Z just enough such d-simplices to rigidly

determine P < RY.

Thus we have

k
(], if k<d,
1Z]={2 e

(2J+d(k—d), if k>d+1.

If P is not convex, the only additional data needed is the discrete information

in which half-space the new vertex is to be placed.

Definition 1.5. A configuration for a polygonal mechanism (£, X, P) in RY

consists of a setV =(V (1), sV (k)) of k branch configurations for £ (Definition 1.2),

) . i .
satisfying the condition that the endpoints p(') = x4 Zr;=1 V(jl) (i=1,..,k) of
the corresponding branch configurations (attached to the given base points) form a
planar polygon congruent to P in RY. If the branch configuration V ) s aligned,

with direction vector W; (Definition 1.2), then the line LineV := {X(i) +tw; |t e R}

is called the direction line for V¥ (with p(i) € Line(i)).
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The set of all configurations for the given mechanism T = (£, X, P) (as a

subspace of the product of the appropriate branch configuration spaces) is its
configuration space € = G(I").

Definition 1.6. Note that the moving platform P can be translated and rotated
in RY (subject to the constraints imposed by the branches and the locations of the
fixed vertices). The space of all allowable positions for P, denoted by W = W(T'),
is called the work space for T = (£, X, P). The work map @ : C — W assigns to

each configuration V' the resulting position of P.

The rest of the article is organized as follows: In Section 2, we identify the
potential singular points of the configuration spaces C we consider here, in any
ambient dimension, and show that, generically, € is a manifold. In Section 3, we
describe a Morse function for the configuration space of a generic planar
mechanism, analyze its critical points geometrically, and give a simple example

showing how this analysis may be used to recover C.
2. Singularities for Polygonal Mechanisms

We now show that, generically, the configuration space of a polygonal
mechanism is a manifold, and give necessary geometric conditions for a
configuration to be singular. We note that such “topological” singularities can in fact
occur (cf. [4] and [13]), and their analysis is of interest in relation to the kinematic
singularities.

Definition 2.1. A configuration V = (V o ., V(k)) of a polygonal mechanism
I' = (L, X, P) is called hyper-aligned if:

(a) Two of its branch configurations v and v(2) gre aligned, with

coinciding direction lines: Line™ = Line®) (see Figure 2).
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0)3 @,

Figure 2. Singular configuration of type (a).

(b) Three of its branch configurations are aligned, with direction lines in the
same plane meeting in a single point (see Figure 3).

W

Figure 3. Singular configuration of type (b).

(c) Four of its branch configurations are aligned, with direction vectors all lying

in the same plane, if d > 2.
Compare [8].
Theorem 2.2. The configuration space € = €(T") of a polygonal mechanism in

RY is smooth at each configuration V, unless it is hyper-aligned.

Remark 2.3. Note that we do not claim that any hyper-aligned configuration is

necessarily a singular point of C. It is in fact not easy to directly determine all
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singularities of a configuration space, except for the simple case of a closed chain
(i.e., a polygonal linkage), where all hyper-aligned configurations (necessarily of
type (a)) are in fact singular (cone points). See [15, Theorem 2.6]. For a more
general analysis, with an explicit description of the form of the singularities
occurring, see [2].

Proof of Theorem 2.2. For any n, define amap f, : (R9)" - R" by:

fa@p o Vi) = (V[P o [ Vg ). (3)

Let N = Z:(ZI n(® (the total number of links in the mechanism), and consider

the constraintmap F : RN — RN defined:
FO) = (f (D), s £ ™), Ja 2)7, o k=L K)P). @)
Here V =(V (1), ves V(i)) is the ordered set of branch configurations, which
: « : sm. o x5 )
potentially constitute a configuration of our mechanism, p‘’ = x*/ + Zt:l vy’ is
the endpoint of the ith branch for the configuration v = (Vgi), vy V(i()i)) attached
n

to the base point x e RY, and a(i, j) = p(i) - p(j) is the (i, j)-diagonal of the
polygon spanned by these endpoints. Recall that the polygonal platform P

determines (and is determined by) the set of diagonals G = (g(i’ j))(i, ieT (see

Remark 1.4).
Let
2z, g) (s (0P D (s (Y s (@, (@ H90)P)

be the pre-determined value of F at any configuration belonging to the mechanism.

That is, the configuration space € = G(T") is precisely the preimage of Z£,g)
e RN 21 under the constraint map F.

Note that this preimage generally has various connected components,
corresponding to different “assembly modes” of the mechanism, in those cases
where geometric constraints prevent a continuous motion between certain
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configurations. A simple example is a (scalene) triangle and its reflection, in the

plane.

Recall that a sufficient condition for a subset C of a Euclidean space RN tobea
smooth submanifold is for C to be the preimage of a regular value Z of a smooth
function F : RN — R™ (N = m), that is, if the Jacobian matrix dF), has maximal
rank (i.e., m) at each point V € F_I(Z) (see [10, I, Theorem 3.2]). We calculate the

Jacobian matrix explicitly:

AD o 0 0 0
N 0
0 0 A® g 0
0 0 0 A4) 0
: (k)
dr, =2 ° 0 0 0 AV
512 B
6(1,3) 0 6(3 1)
0 B2 B2
0 0 0 pk-Lk)  pk.k-1)

Here AD is the n® x dn®) matrix:
Vgi) 0
S : (6)
wey®
0 VoD
The last | Z | rows of D are:

D= o.,0 .00 o.,0 BED 0.0 ) (7

d(n4...4nl-1) d(n(+D4...4n(i-D) d(n+D ... 4n(k))

(for (i, j) € Z, see Remark 1.4), where each edge a(i, j) € RY appears nl) times
g pp

in the sub-vector:
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B0-1) = (ai. ). a(i, j). ... a(i, j)) e RO, ®)

R0

Thus we may write the last | Z | rows of D in terms of k matrices By, ..., By of size

| Z | x d, where the matrix B; is repeated n® times:

(Bb Bla ceey B]’ 827 BZ? ceey 827 ceey Bk7 Bka ceey Bk) (9)
RO e R0

Since a(i, j) = -a(]j, i) forany i # j, we see from (7) that:

k
By =0, (10)
i=1

(the |Z|xd zero matrix).

In our case, V will be a smooth point of € if D := %dFV is of rank N +|Z |

whenever F(V) = Z(z,g)- Let us assume by way of contradiction that D is not of

maximal rank. This means that there is some non-trivial vanishing linear

combination of the rows of D:

k_(n®
Z Z?»(}’GS” + Z YU D700 o (11)
i=1 | j=1 (i, ))ez

where Ugi), oy G(i()i) denote the rows of A,
n

Foreach 1 <i <k, let

Wi : Z y(s’i) -a(s,i) - Z y(i’t) -a(i,t) e RY.

(s,i)eZ (i,t)eZ
s<i i<t

Note that W; = 0 if and only if k(},) # 0 forsome 1 < j' < n(i), since Wj consists
of the total contribution of the last | Z | rows to the sum (11) in each of the columns
corresponding to the submatrix AW But because of the repeated blocks B;, ..., Bj

in (9), we see that X(}) = X(}) forall 1< j, j' < n@). If we denote this common
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value by k(i), then we deduce that

M_ 1 &
Vi N0) Wi,

so that the ith branch is aligned, with direction vector W;.

By (10), Y W =0, soif W; =0, for i #ig, iy, then W, +W; =0, and

thus branches i, and i are co-aligned with direction vector a(iy, ij). In other

words, V is hyper-aligned (see Definition 2.1(a)). To complete the proof of

Theorem 2.2, we need the following:

Proposition 2.4. Any singular configuration V, € C having at least three

aligned branches is hyper-aligned.

Proof. The proof is by induction on K, the number of branches in I". The initial
step of the induction, k = 3, will be dealt with below.

Without loss of generality we may assume that the three branches 1, 2 and k are
aligned, with direction vectors W;, W,, and W), respectively. We assume no two
of the branches are hyper-aligned (Definition 2.1(a)). Branch 3 may also be aligned,

with direction vector W3, but in this case we may assume that W;, W,, W; and

W) are not coplanar (Definition 2.1(c)).

Step I. Let € denote the configuration space of the “reduced” mechanism I,

obtained from ' = (£, X, P) by omitting the last branch, and C(k) denote the

configuration space for this branch I'(k) (attached to x) e ]Rd, with free end
p)y.

/w\rﬂo
Vi
'/ 4 N

~—’

~

r

\

Figure 4. The “reduced” mechanism.
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The work space of both mechanisms (ie., the set of possible locations for the
kth vertex p(k) of P) is contained in R , and we have work maps  : ¢ > RY

and ¢ : C(k) —» RY which associate to each configuration the location of this vertex

o).

The main idea of the proof is that the configuration space € = G(I') is the
pullback of the two maps ¢ and v, that is, a configuration for the full mechanism
I = (L, X, P) is (uniquely determined by) a pair (V, V(k)) such that y(V) = p(k)
= o(v ), where V € € and V) € e(k):

v=w,vhee — ek)sv®

| o (12)

Ve S SN RY 5 p)
In other words, these are compatible configurations for the reduced mechanism

I" and the last branch, in the sense that the locations of their two end vertices (which
were the same in the original mechanism) coincide. In particular, the specific aligned

configuration )|, whose singularity is in question is determined by the pair

(Vo, V).

Remark 2.5. Tt is convenient to assume one of the two configuration spaces ¢
and C(k), say, é, is a submanifold of a large ambient manifold Y, in such a way that
v turns into an embedding. In this case, we can guarantee that the pullback € is a

manifold if we can show that the other map ¢ is transversal to C.
Note that the manifold €(k) (an n-torus for n = n(k)) is the preimage of
Z,w under the map f = f, : R™ 5 R" of (3), and we write i : Ck) > RM™

for the inclusion. Similarly, € is determined by a smooth constraint map:

A

E.rM o pN-M 7|
for M =(N —n)d, where RM is a fiber bundle over RM with fiber S, where S

isapointif K >4, and S = S92 if k = 3. The index set T is defined as in (1).
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The constraint map is defined as in (4) by:
FO) = Fv O, v G)
= (FoVD), s f V&) a2 P, e DIF) (3)
(with the functions | a(i, j) ||2 indexed by (i, j) € 7). There is no constraint on @.

Sd—2

Remark 2.6. The vector ® € S = is needed if k =3 (so the moving

platform P is a triangle) and d > 2, since in this case the location of the two

vertices p(l) and p(z) of the triangle determines the position of P only up to

rotation around the given edge a(l, 2). The rotation is about a(l, 2) in the
hyperplane a(l, 2)l, and is thus uniquely determined by a rotation vector @ in the

unit sphere 592 in a(l, 2)*.

In a neighborhood U of any given configuration f)o, for which a(l, 2) has the
value ay(1, 2), say, we may choose a fixed copy S of $972 in a,(1, 2)* = R4,

If we move from 1>0 to a neighboring configuration Ve U, the associated vector
a(l, 2) will still be linearly independent of any ® € S, so by the Gram-Schmidt
process (@, a(l, 2)) determines a unique orthogonal pair (&, a(l, 2)) (still spanning

the plane of the moving platform 7). This is the reason we have a locally trivial

fiber bundle S = RM — M , rather than a (global) product R M~ pMxs.

Again, we may identify € with F~!(Z )) for the obvious value (L, G).

(LG
Moreover, we may assume by our induction hypothesis on k that (ﬁ, G ) is a regular

value of F, since the branches of I" are not hyper-aligned at fio. Thus € is

smooth, at least in a neighborhood of IA)O. We denote the inclusion by 1 : ¢ > RM.
Let X ::G(k)xRM and Y = RY x RM. We define h: X — Y to be the
product map ¢ x Idw— and g:C > Y tobe (y, 1), so that g is an embedding of

€ as a submanifold in Y. Since € = C(T') is simply the pullback (12), it may be
identified with the preimage of the submanifold ¢ c Y under h.
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Now let fio €€ bea configuration, where the first two branches are aligned
(but not hyper-aligned), and vk ¢ C(k) be an aligned configuration with direction
vector v(¥), such that y(Vy) = ¢(V(k)). Let x € X denote the pair (V(k), i(Vy))

in the pullback (so that h(x) = g(V;)).

x € X = e(k) > vV® X RM 3 i(V)
h[ ¢j Idl
h(x) €Y = R 5 ¢(V(R) X RM > i(V)
T /
g ~
Vel

Step I1. We must show that if the corresponding configuration V, = (V (), Vo)
is not smooth in C, then it is hyper-aligned. By [10, I, Theorem 3.3]), V), is smooth

if hh @ there, that is, h is locally transverse to € at the points X € X and 1>0 € é,

which means that:
Im dh, +T1>O(é) =T;, (V) = RY x RM+2, (14)
where A = dim(S) is 0 unless k = 3, in which case A =d - 2.
First note that since €(k) = ffl(Zl(k)) — R" the tangent space Tv(k)(e(k))
may be identified with the kernel of dfv(k) :R"™ 5 R", which is the null space of

the matrix AK) of (6). Since v K s aligned, by assumption, with direction vector

Wy, we see that:

T, 00@K) =y, . y§) e R™ [y wy =0, ., y§) iy =0}

Tk x-o X Wi
|
n

Furthermore, ¢ : C(k) - RY extends to ¢:R"™ > RY (so that §oi = ¢),
with
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O(Vy, oy V) = x) 4 Vi + oo+ V.
Since ¢ is linear, its differential d§ is represented by the d x nd matrix
(14, 14, - Ig) (nblocks). Thus:

Imdhy = v"vﬁ x RM*+4,

RM+A

We may disregard the factor , which was only needed in order to change v

into the embedding g, as explained above. Essentially, we are using the fact that for
an aligned open chain, as for a single rigid link, an infinitesimal movement in the

work space is orthogonal to its direction vector Wy.
Therefore, in order for (14) to hold it is necessary and sufficient to have

W\ is not orthogonal to Tf)o ©). (15)
Step I11. The tangent space T% (é) may be identified with the kernel of

dlff/o CRM+A RN—nHI\’

for F defined in (13). Thus dlf% is described as in (5) by the (N —n+]|Z |)x

(M + A) matrix:

A0 0 0 0 - 0
0 0 oo A
dF;, =2 , (16)
52 p@h . 0 0 - 0
0 0 .. pii 9

where the zero columns on the right show the lack of constraint on ©® € S.

Since the first two branches are aligned with direction vectors Wy, W, Tf/o (é)

may be identified with the set of N — n d-dimensional vectors

1 1 2 2 k-1 k-1
yg ), s yf]()l); yg ), - YE](%); s yg )3 s yf](k_g), (17)
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together with z € R, where the first n) vectors are all in VT/IL, the next n®) are

all in \Tv%, and the remainder are in individual orthogonal complements:
3 3 3 3 k-1 k-1 k-1 k-1
yg )1 vg ), yf]()” L vf](g), rees yg )1 v% ), yi](k_f) L vf](k_)). (18)
Furthermore, the last | Z | rows of dF,,, as described in (7) and (8), impose

. M .
additional conditions on (17), namely, if we let )7(') = Ztn:1 Yt(l) (i=1..,k-1),
we must have
a(i, j)- " -y =0 (19)
for each (i, j) € Z, as well as

w, -y =0 and W, -y =o. (20)

Of course, if branch 3 is aligned, too, we have likewise W3 - )7(3) =0, and so on if
there are additional aligned branches.

Thus in practice we can simply replace each aligned branch i (i =1, 2, and

possibly 3) by a “virtual” branch with a single link (ie., nt) = 1), with

corresponding directions W; and tangent vectors )7(') € WiL.

Step 1V. We must now distinguish several cases:
Casel. k>3 and d > 2

Because the moving platform P is planar, and we assumed all vertices are

extremal, there are fixed (non-zero) scalars o and B such that a(l, k) = aa(l, 2) +

Ba(l, 3), and the position vector for the kth vertex is
p®) = pM + qa(, 2) + pa(, 3).

Thus the work function v : € > RY for the vertex p(k) in the reduced mechanism

= (ZZ, X, P) extends to a smooth function  : RM - RY of the form

WV O V(k’l)) =xW 4 vgl) ot v(l()l) +aa(l, 2) + Ba(l, 3),
n
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where

all, j) = p(j) -pW = (x(j) + ng) +ot vm))— (x(l) + vgl) ot VS()I))

for j =2, 3, k. We see that dy is represented by the d x M matrix:

((1 - — B)Id» cees (1 - — B)Id» (de, veey Ot|d, Blds cens Bld: O, cens 0)
n(d n(2)g 03

However, the composite of the inclusion of T, (é) into RM xRY with the
projection onto RY is just dy = dy |T1> ©) Combining this with the description of
T{}(é) in (18), (19) and (20), we see that the image of dy in RY consists of all
vectors V of the form
7=y + ol + pv Q1)
for )7(1), u:= )7(2) — )7(1), and V = )7(3) - )7(1) satisfying:
w, -y =0, a1, 2)-G=0, al,3)- V=0, and W, -@+yP)=0. (22)
If branch 3 is aligned, too, then we have W; ~(\7+)7(1)) =0 (otherwise (18)
imposes no constraint on )7(3) =V+ )7(1); and in any case additional aligned
branches play no role in ).
Assume that W) is orthogonal to any Z as in (21). If &£ = Span(a(l, 2), W, )

in Rd, by setting )7(1) =V =0 we see that for any U L £ we must have wy L U,
so Wy € £. Proceeding in this way, we deduce that a necessary condition for
Im(dy) to be orthogonal to Wy is that Wy, W,, Wy, a(l, 2), a(l, 3) all lie in the

plane of P. This is equivalent to a reduction to Case 3 below (d = 2).
Case2. k=3 and d > 2
In this case S =592 RM is (M +d —2)-dimensional, and the work

function v : ¢ > RY for the vertex p(k) in T extends to a smooth function

y:U—> RY of the form:
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g\, ., VS()I), v v<n2(;), ®) = x4 vl 4oy v<n1(>1) +aa(l, 2) + BG(&, a(l, 2))

in some open neighborhood U of the given aligned configuration fﬁo e € in RM ,
where a(l, 3) = aa(l, 2) + Bv for fixed scalars o and B, and V is the unit normal to
a(l, 2) in the plane of P. As before,

@ a®
a(l, 2) = p? — p(l) = x®) _ x4 Z vi(z) - V(Jl).
i=1 j=1
Here G(®, a) is result of applying the Gram-Schmidt process to the pair
(o, ), so:

’’o-(0-a)a

W —G-a?

where ¢ :=| a|| is the constant 9% and & e S = RY is the rotation vector for

G(o, a) =

the plane of P about the edge a = a(l, 2) as in Remark 2.6.

Thus dy, is represented for V=V ORVION w) by the d x d(n(l) +n® 4 1)

matrix:

0G(6, 0G(6,
(1-a)ly +B$,m, (1-a)ly +B$,
ov! v
alg +B&%a>, aly +p 8@ 6(G.2)] (23)
o) av(z(g) e
n

Now calculate:

ow, . .
@y, awy O D) @22,

ow; ' 2~ (@ )]

Since we assumed & -a = 0 at V), for a == ay(1, 2) and any ® € S, we have
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Q= (Ml}o =1y - a'a

= =,
oo EY

where a'a is the d x d matrix with (p, q)th entry ap - g, thatis, Q is simply the
projection onto a® = a,(1, 2)%. Since T4(S) = o1 Nay(l, 2)* < RY, we deduce
that the image of Q applied to X € Ty (S) is the orthogonal complement to the plane
of P in RY.

Similarly, we have

(Mj I (GG((?J, a)jv _o'a

VO Jp T ov® ¢

(both projections onto a = ay(1, 2)), so when applied to the vector (17), subject to

0G(®, a)

condition (19), we see that
oV 0]

contributes 0 to Im(dy ;).

In summary, Im(dy) consists of all vectors of the form
2=yV tali+v
for y) L Wy, G L a(L 2) (since @ =y —y"), and v € P+ with W, - (G +
y) =o.
We see again that W5 is in the image of dy, obtained by applying (23) to
Tf)(é) = RM*9=2 " except possibly if @, Wy, W,, W3, and a(l, 2) (and thus
also a(l, 3)) all to lie in the plane of P, again reducing to the following:

Case3.d =2

g (k)
ertlng A= W(

cos® sin6
for the rotation-dilitation matrix taking
—sin® cosB
a(l, 2) to a(l, k), we see that  : RM 5 R?, for M = n® 4 n(z), is now given
by:
GV, v @) = x4 Ax® - x4 Z(vgl) - Avi(l)) + Z Av(Jz),
i=1 =1
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and thus d\vf} is represented by the 2 x 2M matrix
L -A ., 1L, -A A .., A|
- e —
on® on@
Applying d\u{) to a vector of the form (17), and noting that from (20) we have

)7(1) = sWi and )7(2) = tWy for some S, t € R, we see that Im(dy;,) consists of

sums of the form:
V = SWi — SAWi + tAWS = sWii + A(tWy — SWi ).

Moreover, by (19) we know that )7(2) - )7(1) = tWy — SWi is orthogonal to a(l, 2),

so that tW3 — swi- = ua(l, 2)* for some U e R, and thus:
v = uAa(l, 2)* + swi, (24)
subject to the condition that
ua(l, 2)* + sWi is a multiple of W5 (25)

Now for any three vectors X, ¥ and Z in Rz, we have
(x~yi)z+(y~zL)x+(z~xL)y =0. (26)
Therefore, setting X = a(l, 2)l, Z:= Vvll, and y = \Tv%, we see that v”v% is a
multiple of (a(1, 2)* - (=W,))Wi + (W3 - (-W;))a(l, 2)*, and so (25) holds for

s=-a(l, 2)" W, =a(l,2)- W3 and U=-W3 -W; =W, - Wi". Therefore, by

(24), Im(dy ) is spanned by:
Vo = (Wy - Wi') Aa(l, 2)* + (a(l, 2) - Wy )Wy,
where Aa(l, 2) = a(l, k), so Aa(l, 2)* = a(l, k)*.

Thus (15) fails only if Wy is perpendicular to Vv, in other words, if W) is

proportional to:

(W - Wi)a(l, k) + (a(l, 2) - Wy )W,
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or equivalently, if Wy is proportional to:

e = a(l, i) W2 & a(l, k),
Wi - Wy

which by (26) is precisely the vector connecting the meeting point

poopth 202 Wy i)i' "2
Wi - Woy
of Line" and Line® with the end point p(k) = p(l) +a(l, k) of V(k), so that
W) is proportional to e if and only if the direction line Line®) passes through P,
i.e., the configuration V is hyper-aligned (see Figure 3 and Definition 2.1(b)).
This completes the proof of Proposition 2.4, and thus of Theorem 2.2. [
Definition 2.7. A mechanism T = (£, X, P) is called generic if none of its

configurations are hyper-aligned (cf. Definition 2.1).

Remark 2.8. The moduli space M of all possible mechanisms of a given

combinatorial type — i.e., feasible choices of the parameters T = (£, X, P) —is a

n(i)+dk+\I\

k
semi-algebraic subspace of Rzi:l determined by a set of linear

inequalities. The “generic” mechanisms will indeed be generic in the sense of (real)
algebraic geometry, since mechanisms which can have singular configurations form

a subspace of M of positive codimension.
Corollary 2.9. The configuration space € = @(I') of a generic polygonal

mechanism T = (£, X, P) in RY is a smooth closed orientable manifold of

dimension N(d —1)—|Z|, where k is the number of vertices of P,

N = Z:(:l n®, and | Z | is given by (2).

3. Morse Functions for Planar Mechanisms
From now on we shall concentrate on the simplest type of polygonal
mechanism, namely, planar mechanisms (d = 2) having triangular platforms

(k =3) and exactly two links per branch (n(l) =n® =n® = 2). These

mechanisms are known in the robotics literature as 3-RRR (rotational) mechanisms.
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Recall that a smooth real-valued function on a manifold is called a Morse
function if all its critical points are non-degenerate (cf. [17, I, Section 2]). Such
functions may be used to deduce the cellular structure of the manifold, and thus
recover its homotopy type (see [17, I, Section 3]). Our goal is to describe a Morse
function for the configuration space of a 3-RRR mechanism.

Theorem 3.1. The function f(V) = Zi.:l | vi) | is generically a Morse
function on C(I"), where v = v%j) + v(zj) = p(j) —x{),

Proof. In order to show that the critical points of f are non-degenerate, we must
choose a local coordinate system near each such point.

3)
¢

&
&

Figure 5. Local coordinates.

Unfortunately, there is no uniform choice of such a system, so we must
distinguish three cases:

Case I. Let @ := (¢, ¢3, ¢3), where ¢ denotes the angle between the vectors

—V%j) and v(zj) for j =1, 2, 3. Then

hDg) = v = v+ vl | = YD) + () - 26DiD cos g, 27)
and thus () = 231.21 hD(9;)2, so that
Vi = Vgt =208 Wsin(e)), 2P sin(9,), (P¢S) sin(95))
=2 v, (V) V), Py, (28)

where W' = (b, —a) for W = (a, b).
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Thus @ is a critical point if and only if:
CD=§(1+61,1+62,1+63) for o, 0,5, 03 € {£l}. (29)

Computing the Hessian at a critical point @ yields:

NASLS) 0 0
Ho =| 0 02 o |
0 0 o3/

which is non-degenerate, with index Indg, equal to the number of negative values in

{o1, 64, 63}. Such critical points will be referred to as Type 1.

Figure 6. Type I critical point.

Case Il. As we saw, critical points of f appear when all three branches are
aligned. However, for some mechanisms this will never happen, because one or two

branches can never fully stretch or fold, that is, ¢5; (say) takes values in a proper
subset [a;, a,]U [-a,, — a;] of [-=, n] (see Example 3.3). Clearly, ¢3 cannot then

serve as a local coordinate at a point (¢, ¢5, £ay ).

However, if the first two branches can both be aligned, then in the vicinity of

doubly aligned configurations we take ® := (¢, ¢,, 0;), where bj (J=1,2) asin
Case I, and 6 is the angle between v = ng) + V(zj) and the vector x(2) (we

assume for simplicity that x1) s at the origin).

Since

v = h0)(cos ), sino, ), G0)
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using (27), we have
Ol i

j

for {j, j't =11, 2}.
However, since 0, is a dependent variable, we may differentiate the norms in:
v 4 a(l, 2) - v® = x() (32)

implicitly and deduce that:

O - o ooyt - 202V oy
661V = aelez(v ) = a(lj 2)(V(2))J— \' ) . (33)

Differentiating (32) itself and using (31), (33), and (26) yields:

vsa(l, 2)

= —MV _ (\/52))L . V(zz) (2) V(l) . (V(Z))J_
hV (g, )? h®(9,)? al, 2) - (vt

(ﬂh@%} (34)

Since x\) = 0, we see v =y 4 a(l, 3) - X(3), SO:

m 20 (9)* +v(@(1,3)-x3)+ (x - v(V). (B, v (V)
V2 M)/ 12 ’
h(;)
Oy +(x —v) (B,v®)
h®)(9,)?
v () i -xY) (a1, 3))]
a(1,2)- (vt

0y, f =2(vi)*

9y, f =2(v{)H v h (35)

9o, f =2(x¥) ~a(1,3))- (v)+ +2

>

where B, is the rotation-and-dilitation matrix taking a(l, 2) to a(l, 3).

Note that we use the coordinates @ only at points where the first two branches

are aligned, so that v(zj) . (V%j) )L =0 for j =1, 2, and thus the first two entries of

\Y é)( f) vanish at these points. The vanishing of % is equivalent to the condition:
1
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- () a0, 2)- (V)] - [ 3)- (V) 2)- (V)]
+ v (YD @, 3) - v (V)P - a 3) = 0. (36)
Note that by (26) again, the intersection of Line!) with Line®) is at the point:

a2)- (vt g

= x® 4y
P=x"+v'+ v(l)-(v(z))L ,

and (36) is equivalent to the colinearity of x®), P, and vV + a(l, 3). Such critical

points will be referred to as Type II.

Figure 7. Type II critical point.

Calculating the Hessian matrix H¢ of f at a critical point, we find that it is

diagonal, with

000 f = —2u) ) 200600 V0 - (@, 3) =)+ (< v - (B )
191 ’

(g, )?
o=@ @ hP) + P ) (B,v?)
$202 1 2 h(z)((l)z )2 ,
2
69191 f = 5 (_2[V(1) . (V(Z))J_] [a(l’ 3) . V(l)] [a(l, 2) . (V(Z))J_]

[a(t, 2) - (v\?)*]
+1(x® —a(1, 3)) - vID][aq, 2) - (v@)L P2

+ v v@T[aq, 2) - (v - v - xO). a(, 3)t]
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+ - )P - x®)- @, 3))
+[alt, 2)- vV - a(, 2))- () I -, 3)- (vVO)).
If we solve (35) to find explicitly the critical points of f in the coordinates @,

and then substitute into the expression we have found for H; at these points, we

obtain a polynomial expression of degree 6 in the parameters ' = (£, X, G) for the

mechanism. Thus the critical point we identified is degenerate only when this
polynomial vanishes, so generically f is indeed a Morse function.

Case I11. Note that the work space W for each vertex of P is the intersection
of three annuli (so it is compact), and thus the boundary of ¥V must intersect at least
one of the bounding circles of the annuli. Therefore, at least one of the three
branches (say, the first) can be aligned.

Thus, at critical points of f where neither @ nor ® can be used as local

coordinates, the first branch is aligned, and we take ¥ := (0, ¢;, W) as our local

coordinates, where 0; and ¢; are as in Case I, and v denotes the angle between
a(l, 2) and x2) (see Figure 5). Note that this will not work when the second branch

is also aligned, since these coordinates only determine the length of v(2), and not
“elbow up/down” near ¢, = %(1 +0,).

Here

F#) = [ VI v 2 4 v® a1, 2) = x@ P2+ v a1, 3) - x@) 2,
and since a(l, 2) = g(l’z)(cos v, siny), we have

N (Vgl))L . V(21)

" hO(g))?

and Vy(a(l, j)) = (0, 0, —a(l, j)*) for j =2, 3, so

V() = (—(vm) v, o

99, f = 2(v)E - (1 + x¥) — (a1, 2) + a(1, 3))),

M @av +a@, 2) +a(1, 3) - x?) —xB))
v P ’

0g T = ~(vi)t v 2
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o, f =a(l, 23 (x®) — vy aq, 3)t - (x®) - vy, (37)

We are using the coordinates ¥ because the first leg is aligned, so indeed

6¢1 f = 0. In order for this to be a critical point, we have two additional geometric
conditions: the vanishing of 691 f implies that the vector connecting the midpoints
of sides of the fixed and moving platforms opposite the first vertex, that is,
A= (x? 4+ X(S))/2 and B = (a(2) + a(3))/2, are aligned with v() (see Figure 8).

On the other hand, the vanishing (in addition) of 0,, f is equivalent to:

which means that the areas of the triangles spanned by v() and x() (j=2,3) are

equal. Such critical points will be referred to as Type I11.

BN
\

Figure 8. Type III critical point.

Now, calculating the Hessian of f at the critical points, we have
A0, T = =2 - (¢ +x) - (a(t, 2) + a1, 3)).
Ogo, f =04y T =0,
dyo, F =2v1V - (a(l, 2) +a(l, 3)),

M ] (2) _ )
VOO RARE (4vt +a(1, 2)+a(1, 3) - x\“ —x*)
6¢1¢1 f= VitoVa " V(l) "2 ’

dyy f =a(,2)-(x —v) 1 a1, 3)- (x® —v),

Again, generically the critical point is non-degenerate. O
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3.2. Identifying the critical points
Since we usually have no explicit description of the configuration space C as a
manifold, it is hard to calculate the Morse function f : € — R directly. However,

in the course of proving Theorem 2.2 we gave a geometric description of each of the
possible critical points of f, which are the main ingredient needed for analyzing the
topology of €, in terms of the work space W. We can use this geometric
information in order to identify all possible candidates for critical points, and then
we need only calculate df in local coordinates at these points (also provided in the
proof above) to check if they are indeed critical, and find their indices.

Recall that W (Definition 1.6) is the space of all possible locations of the

moving platform P, whose vertices must be situated in the respective work spaces

Wi (i =1, 2, 3) of (the end points of) the three branches. Each W, is an annulus
centered at the ith vertex x1) of the fixed triangle.

Also recall the concept of the coupler curve y of a planar four-bar linkage, that
is, a degenerate polygonal mechanism with k =2 linear branches (n(l) =
n® = 1), but having a triangular platform P: the coupler curve is the work space
for the third (unattached) vertex of P. See [7, Ch. 4]. We consider the coupler
curves for two vertices x() (say i =1,2) of a triangular mechanism
I = (L, X, P) as above, in which the two corresponding branches are aligned, so
that each can be replaced by a single linear branch of length o = é(li) + ég) or

Egi) - f(zi), as the case may be.

(1) The critical points of Type I (all three branches aligned) correspond to
placements of P with all three vertices on the (inner or outer) boundary circles of
these annuli. Determining these is a straightforward geometric problem, which can
be described as intersecting the coupler curve for the first two vertices, say, with the
two boundary circles of Wj.

(2) For critical points of Type II, we need also a line field V along the coupler
curve y, where V (y(t)) is the line from y(t) to the intersection point P(t) of Line()
with Line'®). This line field is readily calculated from y. The critical points are then

those configurations for which V (y(t)) passes through xG),
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(3) For critical points of Type III, the first vertex v of P must lie on one of
the two boundary circles of V. Given v(l), the possible positions of P are
determined by its rotation angle © around its first vertex, and at most two values
0, 0" of 0 satisfy condition (38). Thus we can define on oW, two line fields
V', V" which associate to v) the line between the midpoints of the (2, 3)-side of
the fixed and moving triangles in the positions corresponding to 6, 6",

respectively. The critical points are those for which the vector v lies on one of

these two lines.

Example 3.3. In general, the critical points of a Morse function on a manifold
do not determine its topology, though together with their indices they impose certain
restrictions on its homology, via the Morse inequalities. However, in the simplest
cases the geometric considerations described above limit the possible critical points
so severely that the configuration space € can be recovered in full. Note that there

are two connected components in C, determined by the orientation of the moving

platform.
For example, consider a triangular mechanism with one branch (say, k = 3)

having one very large link, so that the work space for the vertex p(3) contains those

for all points of the moving platform, and thus imposes no restriction on the allowed
configurations. We assume the moving platform is a small triangle, and that the
work space for (the vertex of) the first branch is a small annulus, intersecting that of
the second branch in a crescent-shaped lune, which is the approximate “work space”
for the moving platform (i.e., for its barycenter). Finally, assume that the fixed

vertex x©) is far to the left (see Figure 9).

Now we may analyze the possible critical points as follows:

(1) Since the two small annuli above are wholly contained in the large one, and
the moving platform is small, there are no critical points of Type I.

(2) Note that there are exactly two cases where Line" meets Line® on the

inner boundary circle of the work space for vertex 2. Since 9(23 ) is very small, any
critical points of Type II must occur nearby, so that the edges a(12) and a(13)

(which nearly coincide) are aligned with v (see Figure 10).
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o3

Figure 9. Work spaces for the three moving vertices.

- N
a0
) |

ot

/
/

O
Figure 10. A critical point of Type II.

By choosing appropriate generic values for the parameters, we can ensure that
there are exactly two critical points of Type II in each component of C.

(3) Consider the three dashed lines LK) in Figure 11, each connecting x()
with the midpoint of opposite (fixed) edge (for k =1, 2, 3). Because the moving

triangle is so small, the vector v must approximate the direction of L&) in order

to obtain a critical point of Type III, but since these lines do not pass near the

approximate work space for the moving platform, no such critical points can occur.

o p®
»'V//,»,:,i,, \ ,\
X q S~

)
’ X
i

e )

2 ! 2
I e

Figure 11. Potential critical points of Type III.
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Thus each component of the configuration space C(I') has exactly two critical

points in this case (both of Type II), so it is homeomorphic to s3.

(1]
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