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Abstract 

We study the configuration space C  of a parallel polygonal mechanism, 
and give necessary conditions for the existence of singularities; this shows 
that generically C  is a smooth manifold. In the planar case, we construct 
an explicit Morse function on ,C  and show how geometric information 

about the mechanism can be used to identify the critical points. 

1. Introduction 

The mathematical theory of robotics is based on the notion of a mechanism, 
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consisting of links, joints, and rigid parts known as platforms. The type of a 
mechanism is defined by a q-dimensional simplicial (or polyhedral) complex, where 
the parts of dimension 2≥  correspond to the platforms and the complementary one-
dimensional graph corresponds to the links and joints. There may be restrictions as 
to the kind of motion allowed at the joints. In this paper, the lengths of all links are 
fixed. 

A specific embedding of this complex in the ambient Euclidean space dR  is 
called a configuration of the mechanism. The collection of all such embeddings 
forms a topological space, called the configuration space of the mechanism (see [7]). 
These spaces have been studied intensively, mostly for simple closed or open chains 
(cf. [5, 6, 9, 12, 15, 16, 18]; but see [11, 14, 19]). 

 

Figure 1. A pentagonal planar mechanism. 

The goal of this note is to study the configuration space of a mechanism 
comprising a moving planar polygonal platform, having a flexible leg consisting of 
concatenated links (i.e., rigid rods) attached to each vertex, with the other end fixed 

in dR  (see Figure 1). We may think of these fixed ends as forming the fixed 
polygon of the mechanism, “parallel” to the moving polygon inside. The spatial 
version of such a mechanism, consisting of a two-dimensional platform free to move 
in three dimensions, has been studied extensively, but even the planar version, to 
which we later specialize, has practical applications – for example, in micro-
electromechanical systems (MEMS). See [1]. 

Our main results are: 

(a) The configuration space of a parallel polygonal mechanism is generically a 
smooth manifold, when it is not, the possible singular points are explicitly described 
(Theorem 2.2 and Corollary 2.9). 
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(b) The topology of this manifold can be described for a triangular planar 
mechanism by means of an explicit Morse function (Theorem 3.1), whose critical 
points can be identified geometrically (see Subsection 3.2). 

We start with some terminology and notation: 

Definition 1.1. A branch (of multiplicity n) is a sequence ( )nL ...,,1=  of n 

positive numbers, which we think of as the lengths of n concatenated links, having 
( )1−d -dimensional spherical joints at the consecutive meeting points (if ,2=d  

the joints are rotational). 

Definition 1.2. A configuration in dR  for a branch ( )nL ...,,1=  consists 

of n vectors ( )nV vv ...,,1=  in dR  with lengths ( )....,,1 niii ==v  A 

branch configuration ( )nV vv ...,,1=  is aligned, with a direction vector ,dR∈w  

if all the vectors iv  are scalar multiples of .w  

The configuration space ( )LCC =  of a branch L is the product of n ( )1−d - 

dimensional spheres 1−dS  of radii ( ) .1
n
iiiR ==  Up to homeomorphism, C  is 

independent of the order on L, so we can assume n...,,1  to be in descending 

order. 

Definition 1.3. A polygonal mechanism ( )PXL ,,  in dR  consists of: 

(a) k branches { ( )}k
i

iL 1==L  of multiplicity { ( )} ,1
k
i

in =  respectively; 

(b) k distinct base points { ( )}k
i

i
1== xX  in ,dR  to which the initial points of the 

corresponding branches are attached. 

(c) An abstract planar k-polygon P  in .dR  

Think of this mechanism as a linkage of k branches, starting at the base points 

(which form a not necessarily planar polygon in ,dR  called the fixed platform), and 
ending at the vertices of a rigid planar polygon congruent to P  (called the moving 
platform of the mechanism). There are spherical joints at either end of each branch, 
too. 

We use parenthesized superscripts to indicate the branch number, and plain 
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subscripts to indicate the link number, e.g., ( )i
j  denotes the length of the jth link of 

the ith branch. 

Remark 1.4. Let P  be a convex polyhedron in .dR  It need not be 
d-dimensional; e.g., we can think of a planar polygon as a degenerate polyhedron in 

.3R  If ( ) ( ) ( )dkk >pp ...,,1  are its vertices (extremal points), P  is determined up 

to isometry by the lengths ( ) ( ) ( )jijig pp −=:,  for ( ) ,, I∈ji  where the index 

set I  consists of the following ordered pairs: 

  ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }kdmmmmm ,...,,1,1;,1...,;,2...,,3,2;,1...,,2,1: +−=I  (1) 

for { }.,min: kdm =  We first include in I  all ordered pairs ( )ji,  with ji <≤1  

,m≤  which span a “basic” ( )1−d -simplex Δ (possibly degenerate!) if .kd ≤  

Note that for each ,1+≥ di  the d edges with second index i, together with Δ, span 
a d-simplex, and we add to the list I  just enough such d-simplices to rigidly 

determine .dR⊂P  

Thus we have 

( )
⎪
⎪
⎩

⎪
⎪
⎨

⎧

+≥−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
.1if,

2

,if,
2

dkdkd
d

dk
k

I  (2) 

If P  is not convex, the only additional data needed is the discrete information 
in which half-space the new vertex is to be placed. 

Definition 1.5. A configuration for a polygonal mechanism ( )PXL ,,  in dR  

consists of a set ( ( ) ( ) )kVV ...,,1=V  of k branch configurations for L  (Definition 1.2), 

satisfying the condition that the endpoints ( ) ( ) ( ) ( )
( )

∑ =
=+=

in
j

i
j

ii ki1 ...,,1: vxp  of 

the corresponding branch configurations (attached to the given base points) form a 

planar polygon congruent to P  in .dR  If the branch configuration ( )iV  is aligned, 

with direction vector iw  (Definition 1.2), then the line ( ) { ( ) }R∈|+= tt i
ii wx:Line  

is called the direction line for ( )iV  ( ( ) ( ) ).Linewith ii ∈p  
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The set of all configurations for the given mechanism ( )PXL ,,=Γ  (as a 

subspace of the product of the appropriate branch configuration spaces) is its 
configuration space ( ).Γ= CC  

Definition 1.6. Note that the moving platform P  can be translated and rotated 

in dR  (subject to the constraints imposed by the branches and the locations of the 
fixed vertices). The space of all allowable positions for ,P  denoted by ( ),Γ= WW  

is called the work space for ( ).,, PXL=Γ  The work map W→Φ C:  assigns to 

each configuration V  the resulting position of .P  

The rest of the article is organized as follows: In Section 2, we identify the 
potential singular points of the configuration spaces C  we consider here, in any 
ambient dimension, and show that, generically, C  is a manifold. In Section 3, we 
describe a Morse function for the configuration space of a generic planar 
mechanism, analyze its critical points geometrically, and give a simple example 
showing how this analysis may be used to recover .C  

2. Singularities for Polygonal Mechanisms 

We now show that, generically, the configuration space of a polygonal 
mechanism is a manifold, and give necessary geometric conditions for a 
configuration to be singular. We note that such “topological” singularities can in fact 
occur (cf. [4] and [13]), and their analysis is of interest in relation to the kinematic 
singularities. 

Definition 2.1. A configuration ( ( ) ( ) )kVV ...,,1=V  of a polygonal mechanism 

( )PXL ,,=Γ  is called hyper-aligned if: 

(a) Two of its branch configurations ( )1iV  and ( )2iV  are aligned, with 

coinciding direction lines: ( ) ( )21 LineLine ii =  (see Figure 2). 
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Figure 2. Singular configuration of type (a). 

(b) Three of its branch configurations are aligned, with direction lines in the 
same plane meeting in a single point (see Figure 3). 

 

Figure 3. Singular configuration of type (b). 

(c) Four of its branch configurations are aligned, with direction vectors all lying 
in the same plane, if .2>d  

Compare [8]. 

Theorem 2.2. The configuration space ( )Γ= CC  of a polygonal mechanism in 
dR  is smooth at each configuration ,V  unless it is hyper-aligned. 

Remark 2.3. Note that we do not claim that any hyper-aligned configuration is 
necessarily a singular point of .C  It is in fact not easy to directly determine all 
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singularities of a configuration space, except for the simple case of a closed chain 
(i.e., a polygonal linkage), where all hyper-aligned configurations (necessarily of 
type (a)) are in fact singular (cone points). See [15, Theorem 2.6]. For a more 
general analysis, with an explicit description of the form of the singularities 
occurring, see [2]. 

Proof of Theorem 2.2. For any n, define a map ( ) nnd
nf RR →:  by: 

 ( ) ( )....,,:...,, 22
11 nnnf vvvv =  (3) 

Let ( )∑ =
=

k
i

inN 1:  (the total number of links in the mechanism), and consider 

the constraint map ,: I+→ NdNF RR  defined: 

 ( ) ( ( ) ( ( ) ) ( ) ( ( ) ) ( ) ( ) ).,1...,,2,1,...,,: 221
1 kkVfVfF k

nn k −= aaV  (4) 

Here ( ( ) ( ) )iVV ...,,1=V  is the ordered set of branch configurations, which 

potentially constitute a configuration of our mechanism, ( ) ( ) ( )( )

∑ =
+=

in
t

i
t

ii
1: vxp  is 

the endpoint of the ith branch for the configuration ( ) ( ( )
( )

( ) )i
n

ii
iV vv ...,,1=  attached 

to the base point ( ) ,di R∈x  and ( ) ( ) ( )jiji ppa −=:,  is the ( )ji, -diagonal of the 

polygon spanned by these endpoints. Recall that the polygonal platform P  

determines (and is determined by) the set of diagonals ( ( ) )( ) IG ∈= ji
jig ,

,  (see 

Remark 1.4). 

Let 

( ) (( ( ) ) ( ( )
( ) ) ) (( ( ) ) ( ( )

( ) ) ( ( ) ) ( ( ) ) )2,122,122
1

2121
1, ...,,...,,...,,...,,...,,: 1

kkk
n

k
n

ggZ k
−

GL  

be the pre-determined value of F at any configuration belonging to the mechanism. 
That is, the configuration space ( )Γ= CC  is precisely the preimage of ( )GL,Z  

I+∈ NR  under the constraint map F. 

Note that this preimage generally has various connected components, 
corresponding to different “assembly modes” of the mechanism, in those cases 
where geometric constraints prevent a continuous motion between certain 
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configurations. A simple example is a (scalene) triangle and its reflection, in the 
plane. 

Recall that a sufficient condition for a subset C of a Euclidean space NR  to be a 
smooth submanifold is for C to be the preimage of a regular value Z of a smooth 

function ( ),: mNF mN ≥→ RR  that is, if the Jacobian matrix VdF  has maximal 

rank (i.e., m) at each point ( )ZF 1−∈V  (see [10, I, Theorem 3.2]). We calculate the 

Jacobian matrix explicitly: 

 

( )

( )

( )

( )

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

.

000

000
000
000

0000

0000
0000
0000
0000

2

1,,1

2,33,2

1,33,1

1,22,1

4

3

2

1

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

−− kkkk

kA

A
A

A
A

dF

bb

bb
bb

bb

V  (5) 

Here ( )iA  is the ( ) ( )ii dnn ×  matrix: 

 

( )

( )
( )

.
0

01

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

i
n

i

iv

v
 (6) 

The last I  rows of D are: 

 ( ) (
( ( ) ( ) )

( )

( ( ) ( ) )

( )

( ( ) ( ) )

)
kjjii nnd

ij

nnd

ji

nnd

ji

++++++ +−+−

=
11111

0...,,0,,0...,,0,,0...,,0: ,,, bbz  (7) 

(for ( ) ,, I∈ji  see Remark 1.4), where each edge ( ) dji R∈,a  appears ( )in  times 

in the sub-vector: 
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 ( ) ( ) ( ) ( )( )
( )

( )
.,...,,,,,:, i

i

dn

n

ji jijiji R∈= aaab  (8) 

Thus we may write the last I  rows of D in terms of k matrices kBB ...,,1  of size 

,d×I  where the matrix iB  is repeated ( )in  times: 

 (
( ) ( ) ( )

)....,,,...,,...,,,,...,,,
21

222111
kn

kkk

nn

BBBBBBBBB  (9) 

Since ( ) ( )ijji ,, aa −=  for any ,ji ≠  we see from (7) that: 

 ∑
=

=
k

i
iB

1
,0  (10) 

(the d×I  zero matrix). 

In our case, V  will be a smooth point of C  if VdFD 2
1:=  is of rank I+N  

whenever ( ) ( ).,GLV ZF =  Let us assume by way of contradiction that D is not of 

maximal rank. This means that there is some non-trivial vanishing linear 
combination of the rows of D: 

 ( ) ( )
( )

( ) ( )

( )
∑∑ ∑

∈= =

=γ+
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
λ

Iji

jiji
k

i

n

j

i
j

i
j

i

,

,,

1 1

,0zu  (11) 

where ( )
( )

( )i
n

i
iuu ...,,1  denote the rows of ( ).iA  

For each ,1 ki ≤≤  let 

( ) ( ) ( ) ( )
( )( )

∑ ∑
< <
∈ ∈

∈⋅γ−⋅γ=

is ti
is ti

dtiis
i tiis

I I, ,

,, .,,: Raaw  

Note that 0w ≠i  if and only if ( ) 0≠λ ′
i
j  for some ( ),1 inj ≤′≤  since iw  consists 

of the total contribution of the last I  rows to the sum (11) in each of the columns 

corresponding to the submatrix ( ).iA  But because of the repeated blocks ii BB ...,,  

in (9), we see that ( ) ( )i
j

i
j ′λ=λ  for all ( ).,1 injj ≤′≤  If we denote this common 
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value by ( ),iλ  then we deduce that 

( )
( ) ,1

ii
i
j wv ⋅

λ
=  

so that the ith branch is aligned, with direction vector .iw  

By (10), ∑ =
=k

i i1 ,0w  so if ,0w =i  for ,0ii ≠  ,1i  then ,10 0ww =+ ii  and 

thus branches 0i  and 1i  are co-aligned with direction vector ( )., 10 iia  In other 

words, V  is hyper-aligned (see Definition 2.1(a)). To complete the proof of 
Theorem 2.2, we need the following: 

Proposition 2.4. Any singular configuration C∈0V  having at least three 

aligned branches is hyper-aligned. 

Proof. The proof is by induction on k, the number of branches in Γ. The initial 
step of the induction, ,3=k  will be dealt with below. 

Without loss of generality we may assume that the three branches 1, 2 and k are 
aligned, with direction vectors ,1w  ,2w  and ,kw  respectively. We assume no two 

of the branches are hyper-aligned (Definition 2.1(a)). Branch 3 may also be aligned, 
with direction vector ,3w  but in this case we may assume that ,1w  ,2w  3w  and 

kw  are not coplanar (Definition 2.1(c)). 

Step I. Let Ĉ  denote the configuration space of the “reduced” mechanism ,Γ̂  

obtained from ( )PXL ,,=Γ  by omitting the last branch, and ( )kC  denote the 

configuration space for this branch ( )kΓ  (attached  to ( ) ,dk R∈x  with free end 
( ) ).kp  

 

Figure 4. The “reduced” mechanism. 
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The work space of both mechanisms ( .,e.i  the set of possible locations for the 

kth vertex ( )kp  of )P  is contained in ,dR  and we have work maps dR→ψ Ĉ:  

and ( ) dk R→φ C:  which associate to each configuration the location of this vertex 
( ).kp  

The main idea of the proof is that the configuration space ( )Γ= CC  is the 

pullback of the two maps φ and ψ, that is, a configuration for the full mechanism 

( )PXL ,,=Γ  is (uniquely determined by) a pair ( ( ) )kV,V̂  such that ( ) ( )kp=ψ V̂  

( ( ) ),kVφ=  where Ĉˆ ∈V  and ( ) ( ):kV k C∈  

( ( ) ) ( ) ( )

( )

.

ˆˆ

|
|

|
|

,ˆ

kd

kk VkV

pR⎯⎯ →⎯∈

φ
↓↓

→−−−−−−∈=

ψ
C

CC

V

VV

 (12) 

In other words, these are compatible configurations for the reduced mechanism 

Γ̂  and the last branch, in the sense that the locations of their two end vertices (which 
were the same in the original mechanism) coincide. In particular, the specific aligned 
configuration 0V  whose singularity is in question is determined by the pair 

( ( ) ).,ˆ
00

kVV  

Remark 2.5. It is convenient to assume one of the two configuration spaces Ĉ  

and ( ),kC  say, ,Ĉ  is a submanifold of a large ambient manifold Y, in such a way that 

ψ turns into an embedding. In this case, we can guarantee that the pullback C  is a 

manifold if we can show that the other map φ is transversal to .̂C  

Note that the manifold ( )kC  (an  n-torus for ( ) )knn =  is the preimage of 

( )kZ  under the map nnd
nff RR →= :  of (3), and we write ( ) ndki R→C:  

for the inclusion. Similarly, Ĉ  is determined by a smooth constraint map: 

ˆ : N nMF − +→ IR R  

for ( ) ,dnNM −=  where MR  is a fiber bundle over MR  with fiber ,S  where S  

is a point if ,4≥k  and 2−= dSS  if .3=k  The index set I  is defined as in (1). 
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The constraint map is defined as in (4) by: 

( ) ( ( ) ( ) )ω= − ,...,,ˆˆˆ 11 kVVFF V  

( ( ) ( ( ) ) ( ) ( ( ) ) ( ) ( ) )2211 ,...,,2,1,...,,: 11 jiVfVf k
nn k aa−

−=  (13) 

(with the functions ( ) 2, jia  indexed by ( ) )., I∈ji  There is no constraint on .ω  

Remark 2.6. The vector 2−=∈ω dSS  is needed if 3=k  (so the moving 
platform P  is a triangle) and ,2>d  since in this case the location of the two 

vertices ( )1p  and ( )2p  of the triangle determines the position of P  only up to 

rotation around the given edge ( ).2,1a  The rotation is about ( )2,1a  in the 

hyperplane ( ) ,2,1 ⊥a  and is thus uniquely determined by a rotation vector ω  in the 

unit sphere 2−dS  in ( ) .2,1 ⊥a  

In a neighborhood U of any given configuration ,ˆ
0V  for which ( )2,1a  has the 

value ( ),2,10a  say, we may choose a fixed copy S  of 2−dS  in ( ) .~2,1 1
0

−⊥ = dRa  

If we move from 0V̂  to a neighboring configuration ,ˆ U∈V  the associated vector 

( )2,1a  will still be linearly independent of any ,S∈ω  so by the Gram-Schmidt 

process ( ( ))2,1, aω  determines a unique orthogonal pair ( ( ))2,1,ˆ aω  (still spanning 

the plane of the moving platform ).P  This is the reason we have a locally trivial 

fiber bundle ,→M MR RS  rather than a (global) product .≅ ×M MR R S  

Again, we may identify Ĉ  with ( ( ) )GL ˆ,ˆ
1ˆ ZF −  for the obvious value ( ).ˆ,ˆ GL  

Moreover, we may assume by our induction hypothesis on k that ( )GL ˆ,ˆ  is a regular 

value of ,F̂  since the branches of Γ̂  are not hyper-aligned at .ˆ
0V  Thus Ĉ  is 

smooth, at least in a neighborhood of .ˆ
0V  We denote the inclusion by .ˆ:ˆ Mi R→C  

Let ( ):= × MX k RC  and : .d MY = ×R R  We define YXh →:  to be the 

product map MIdφ ×
R

 and Yg →Ĉ:  to be ( ),ˆ, iψ  so that g is an embedding of 

Ĉ  as a submanifold in Y. Since ( )Γ= CC  is simply the pullback (12), it may be 

identified with the preimage of the submanifold Y⊆Ĉ  under h. 
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Now let Ĉˆ
0 ∈V  be a configuration, where the first two branches are aligned 

(but not hyper-aligned), and ( ) ( )kV k C∈  be an aligned configuration with direction 

vector ( ),kv  such that ( ) ( ( ) ).ˆ
0

kVφ=ψ V  Let X∈x  denote the pair ( ( ) ( ))0
ˆˆ, ViV k  

in the pullback (so  that ( ) ( )).ˆ
0Vgh =x  

 

Step II. We must show that if the corresponding configuration ( ( ) )00
ˆ, VV kV=  

is not smooth in ,C  then it is hyper-aligned. By [10, I, Theorem 3.3]), 0V  is smooth 

if Ĉh  there, that is, h is locally transverse to Ĉ  at the points X∈x  and ,ˆˆ
0 C∈V  

which means that: 

 ( ) ( ) ,ˆIm
00 ˆˆ

Δ+×==+ MdYTTdh RRVV Cx  (14) 

where ( )Sdim=Δ  is 0 unless ,3=k  in which case .2−=Δ d  

First note that since ( ) ( ( ) ) ,1 nd
kZfk R⊆= −C  the tangent space ( ) ( ( ))kT kV

C  

may be identified with the kernel of ( ) ,: nnd
V kdf RR →  which is the null space of 

the matrix ( )kA  of (6). Since ( )kV  is aligned, by assumption, with direction vector 
,kw  we see that: 

( ) ( ( )) {( ( ) ( ) ) ( ) ( ) }0...,,0...,,~
11 =⋅=⋅|∈= k

k
nk

kndk
n

k
V

kT k wywyyy RC  

.
n

kk
⊥⊥ ××= ww  

Furthermore, ( ) dk R→φ C:  extends to dnd RR →φ :ˆ  (so that ),ˆ φ=φ i  

with 
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( ) ( ) ....,,ˆ
11 n

k
n vvxvv +++=φ  

Since φ̂  is linear, its differential φ̂d  is represented by the ndd ×  matrix 

( )ddd III ...,,,  (n blocks). Thus: 

.Im Δ+⊥ ×= M
kdh Rwx  

We may disregard the factor ,Δ+MR  which was only needed in order to change ψ 

into the embedding g, as explained above. Essentially, we are using the fact that for 
an aligned open chain, as for a single rigid link, an infinitesimal movement in the 
work space is orthogonal to its direction vector .kw  

Therefore, in order for (14) to hold it is necessary and sufficient to have 

 kw  is not orthogonal to ( ).ˆ
0ˆ CVT  (15) 

Step III. The tangent space ( )Ĉ
0V̂

T  may be identified with the kernel of 

,:ˆ
0ˆ

I
V

+−Δ+ → nNMFd RR  

for F̂  defined in (13). Thus 
0ˆˆ
VFd  is described as in (5) by the ( ) ×+− InN  

( )Δ+M  matrix: 

 

( )

( )

( ) ( )

( )

,

0000
00
000

0000

0000

2ˆ

,

1,22,1

1

ˆ0

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

ji

kA

A

Fd

b

bb
V  (16) 

where the zero columns on the right show the lack of constraint on .S∈ω  

Since the first two branches are aligned with direction vectors ,1w  ,2w  ( )Ĉ
0V̂

T  

may be identified with the set of nN −  d-dimensional vectors 

 ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ,...,,...;;...,,;...,, 11
1

22
1

11
1 121

−−
−

k
n

k
nn kyyyyyy  (17) 
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together with ,Δ∈ Rz  where the first ( )1n  vectors are all in ,1
⊥w  the next ( )2n  are 

all in ,2
⊥w  and the remainder are in individual orthogonal complements: 

( ) ( )
( )

( )
( )

( ) ( ) ( )
( )

( )
( )

( ) ....,,...,,...,, 111
1

1
1

333
1

3
1 1133

−−−−
−− ⊥⊥⊥⊥ k

n
k

n
kk

nn kk vyvyvyvy  (18) 

Furthermore, the last I  rows of ,ˆ
V̂Fd  as described in (7) and (8), impose 

additional conditions on (17), namely, if we let ( ) ( ) ( )
( )

∑ =
−==

in
t

i
t

i kiy1 ,1...,,1:y  

we must have 

 ( ) ( ( ) ( ) ) 0, =−⋅ jiji yya  (19) 

for each ( ) ,, I∈ji  as well as 

 ( ) 01
1 =⋅ yw  and ( ) .02

2 =⋅ yw  (20) 

Of course, if branch 3 is aligned, too, we have likewise ( ) ,03
3 =⋅ yw  and so on if 

there are additional aligned branches. 

Thus in practice we can simply replace each aligned branch i ( ,2,1=i  and 

possibly 3) by a “virtual” branch with a single link ( ( ) ),1.,e.i =in  with 

corresponding directions iw  and tangent vectors ( ) .⊥∈ i
i wy  

Step IV. We must now distinguish several cases: 

Case 1. 3>k  and 2>d  

Because the moving platform P  is planar, and we assumed all vertices are 
extremal, there are fixed (non-zero) scalars α and β such that ( ) ( ) +α= 2,1,1 aa k  

( ),3,1aβ  and the position vector for the kth vertex is 

( ) ( ) ( ) ( ).3,12,11 aapp β+α+=k  

Thus the work function dR→ψ Ĉ:  for the vertex ( )kp  in the reduced mechanism 

( )PXL ,ˆ,ˆˆ =Γ  extends to a smooth function dM RR →ψ :ˆ  of the form 

( ( ) ( ) ) ( ) ( )
( )

( ) ( ) ( ),3,12,1...,,ˆ 11
1

111
1 aavvx β+α++++=ψ −

n
kVV  
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where 

( ) ( ) ( ) ( ( ) ( )
( )

( ) ) ( ( ) ( )
( )

( ) )11
1

1
1

1
1:,1

n
j

n
jjj

jj vvxvvxppa +++−+++=−=  

for .,3,2 kj =  We see that ψ̂d  is represented by the Md ×  matrix: 

(( ) ( )
( ) ( ) ( )

)....,,,...,,,...,,,1...,,1
321

00

dn

dd

dn

dd

dn

dd IIIIII ββααβ−α−β−α−  

However, the composite of the inclusion of ( )ĈV̂T  into dM RR ×  with the 

projection onto dR  is just ( ).ˆ ˆˆ CVT
dd |ψ=ψ  Combining this with the description of 

( )ĈV̂T  in (18), (19) and (20), we see that the image of ψd  in dR  consists of all 

vectors v of the form 

 ( ) vuyz β+α+= 1  (21) 

for ( ),1y  ( ) ( ),: 12 yyu −=  and ( ) ( )13: yyv −=  satisfying: 

 ( ) ( ) ( ) ,03,1,02,1,01
1 =⋅=⋅=⋅ vauayw  and  ( ( ) ) .01

2 =+⋅ yuw  (22) 

If branch 3 is aligned, too, then we have ( ( ) ) 01
3 =+⋅ yvw  (otherwise  (18) 

imposes no constraint on ( ) ( );: 13 yvy +=  and in any case additional aligned 

branches play no role in ).ψ̂  

Assume that kw  is orthogonal to any z  as in (21). If ( ( ) )2,2,1Span: wa=E  

in ,dR  by setting ( ) 0vy ==1  we see that for any E⊥u  we must have ,uw ⊥k  

so .E∈kw  Proceeding in this way, we deduce that a necessary condition for 

( )ψdIm  to be orthogonal to kw  is that ,1w  ,2w  ,kw  ( ),2,1a  ( )3,1a  all lie in the 

plane of .P  This is equivalent to a reduction to Case 3 below ( ).2=d  

Case 2. 3=k  and 2>d  

In this case ,2−= dSS  MR  is ( )2−+ dM -dimensional, and the work 

function dR→ψ Ĉ:  for the vertex ( )kp  in Γ̂  extends to a smooth function 
dU R→ψ :~  of the form: 
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( ( )
( )

( ) ( )
( )

( ) ) ( ) ( )
( )

( ) ( ) ( )( )2,1,2,1,...,,,...,,~ 11
1

122
1

11
1 121 aavvxvvvv ωβ+α++++=ωψ G

nnn
 

in some open neighborhood U of the given aligned configuration Ĉˆ
0 ∈V  in ,MR  

where ( ) ( ) vaa β+α= 2,13,1  for fixed scalars α and β, and v is the unit normal to 

( )2,1a  in the plane of .P  As before, 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )( )

∑ ∑
= =

−+−=−=

2 1

1 1

121212 .:2,1
n

i

n

j
ji vvxxppa  

Here ( )a,ωG  is result of applying the Gram-Schmidt process to the pair 

( ),, aω  so: 

( ) ( )

( )
,,

22

2

a

aaa
⋅ω−

⋅ω−ω
=ωG  

where a=:  is the constant ( )2,1g  and dR⊆∈ω S  is the rotation vector for 

the plane of P  about the edge ( )2,1aa =  as in Remark 2.6. 

Thus V̂
~ψd  is represented for ( ( ) ( ) )w,,ˆ 21 VV=V  by the ( ( ) ( ) )121 ++× nndd  

matrix: 

( ) ( )
( ) ( ) ( )

( )
( )

⎢
⎢
⎢

⎣

⎡

∂

ω∂
β+α−

∂

ω∂
β+α− ,,1...,,,1 11

1 1n

dd
GIGI

v
a

v
a  

( )
( )

( )

( )
( )

( ) .,,,...,,,
22

1 2
⎥
⎥

⎦

⎤

ω∂
ω∂

β
∂

ω∂
β+α

∂

ω∂
β+α

a
v

a
v

a GGIGI
n

dd  (23) 

Now calculate: 

( )
( ( ) ) ( ( ) )

[ ( ) ]
.

,
2322

22

a

aa
a

⋅ω−

−⋅ω+⋅ω−
∂
∂

⋅=
∂
ω∂ jji

j
i

j
i

aaww
w

w
G

 

Since we assumed 0=⋅ω a  at 0V̂  for ( )2,1: 0aa =  and any ,S∈ω  we have 
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( ) ,,: 2ˆ0 a
aaa T

dIGQ −=⎟
⎠
⎞

⎜
⎝
⎛

ω∂
ω∂

=
V

 

where aaT  is the dd ×  matrix with ( )qp, th entry ,qp aa ⋅  that is, Q is simply the 

projection onto ( ) .2,10
⊥⊥ = aa  Since ( ) ( ) ,2,10

dT R⊆ω= ⊥⊥
ω a∩S  we deduce 

that the image of Q applied to ( )Swx ˆT∈  is the orthogonal complement to the plane 

of P  in .dR  

Similarly, we have 

( )
( )

aa T

V
G ω

−=⎟
⎠
⎞

⎜
⎝
⎛

∂

ω∂

0ˆ1
,

V
 and ( )

( ) ,,

0ˆ2
aa T

V
G ω=⎟

⎠
⎞

⎜
⎝
⎛

∂

ω∂

V
 

(both projections onto ( )),2,10aa =  so when applied to the vector (17), subject to 

condition (19), we see that ( )
( )iV

G
∂

ω∂ a,  contributes 0 to ( ).~Im V̂ψd  

In summary, ( )ψdIm  consists of all vectors of the form 

( ) vuyz +α+= 1  

for ( ) ,1
1 wy ⊥  ( )2,1au ⊥  (since  ( ) ( ) ),: 12 yyu −=  and ⊥∈ Pv  with ( +⋅ uw2  

( ) ) .01 =y  

We see again that 3w  is in the image of ,ψd  obtained by applying (23) to 

( ) ,ˆ 2
ˆ

−+⊆ dMT RCV  except possibly if ,ω  ,1w  ,2w  ,3w  and ( )2,1a  (and  thus 

also ( ))3,1a  all to lie in the plane of ,P  again reducing to the following: 

Case 3. 2=d  

Writing 
( )

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

θθ−

θθ
=

cossin

sincos
2,1

,1

g
gA

k
 for the rotation-dilitation matrix taking 

( )2,1a  to ( ),,1 ka  we see that ,:ˆ 2RR →ψ M  for ( ) ( ),: 21 nnM +=  is now given 

by: 

( ( ) ( ) ) ( ) ( ( ) ( ) ) ( ( ) ( ) ) ( )
( )( )

∑ ∑
= =

+−+−+=ψ

1 2

1 1

21112121 ,,ˆ
n

i

n

j
jii AAAVV vvvxxx  
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and thus V̂ψd  is represented by the M22 ×  matrix 

( ) ( )

....,,,...,,
21 22

22
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−−

nn

AAAIAI  

Applying V̂ψd  to a vector of the form (17), and noting that from (20) we have 

( ) ⊥= 1
1 wy s  and ( ) ⊥= 2

2 wy t  for some ,, R∈ts  we see that ( )V̂Im ψd  consists of 

sums of the form: 

( ).121211
⊥⊥⊥⊥⊥⊥ −+=+−= wwwwwwv stAstAsAs  

Moreover, by (19) we know that ( ) ( ) ⊥⊥ −=− 12
12 wwyy st  is orthogonal to ( ),2,1a  

so that ( )⊥⊥⊥ =− 2,112 aww ust  for some ,R∈u  and thus: 

 ( ) ,2,1 1
⊥⊥ += wav suA  (24) 

subject to the condition that 

 ( ) ⊥⊥ + 12,1 wa su  is a multiple of .2
⊥w  (25) 

Now for any three vectors x, y and z in ,2R  we have 

 ( ) ( ) ( ) .0yxzxzyzyx =⋅+⋅+⋅ ⊥⊥⊥  (26) 

Therefore, setting ( ) ,2,1: ⊥= ax  ,: 1
⊥= wz  and ,2

⊥= wy  we see that ⊥
2w  is a 

multiple of ( ( ) ( )) ( ( )) ( ) ,2,12,1 1212
⊥⊥⊥⊥ −⋅+−⋅ awwwwa  and so (25) holds for 

( ) ( ) ⊥⊥ ⋅=⋅−= 22 2,12,1 wawas  and .1212
⊥⊥ ⋅=⋅−= wwwwu  Therefore, by 

(24), ( )V̂Im ψd  is spanned by: 

( ) ( ) ( ( ) ) ,2,12,1: 12120
⊥⊥⊥⊥ ⋅+⋅= wwaawwv A  

where ( ) ( ) ,,12,1 kA aa =  so ( ) ( ) .,12,1 ⊥⊥ = kA aa  

Thus (15) fails only if kw  is perpendicular to ,0v  in other words, if kw  is 

proportional to: 

( ) ( ) ( ( ) ) ,2,1,1 1212 wwaaww ⊥⊥ ⋅+⋅ k  
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or equivalently, if kw  is proportional to: 

( ) ( ) ,,12,1: 1
21

2 kaw
ww

wae −
⋅

⋅
= ⊥

⊥
 

which by (26) is precisely the vector connecting the meeting point 

( ) ( )
1

21

21 2,1: w
ww

wap
⋅

⋅
+=

⊥

⊥
P  

of  ( )1Line  and ( )2Line  with the end point ( ) ( ) ( )kk ,11 app +=  of ( ),kV  so that 

kw  is proportional to e if and only if the direction line ( )kLine  passes through P, 

i.e., the configuration V  is hyper-aligned (see Figure 3 and Definition 2.1(b)). 

This completes the proof of Proposition 2.4, and thus of Theorem 2.2.  

Definition 2.7. A mechanism ( )PXL ,,=Γ  is called generic if none of its 

configurations are hyper-aligned (cf. Definition 2.1). 

Remark 2.8. The moduli space M  of all possible mechanisms of a given 
combinatorial type – i.e., feasible choices of the parameters ( )PXL ,,=Γ  – is a 

semi-algebraic subspace of 
( )∑ = ++k

i
i dkn1 IR  determined by a set of linear 

inequalities. The “generic” mechanisms will indeed be generic in the sense of (real) 
algebraic geometry, since mechanisms which can have singular configurations form 
a subspace of M  of positive codimension. 

Corollary 2.9. The configuration space ( )Γ= CC  of a generic polygonal 

mechanism ( )PXL ,,=Γ  in dR  is a smooth closed orientable manifold of 

dimension ( ) ,1 I−−dN  where k is the number of vertices of ,P  

( )∑ =
= k

i
inN 1 ,:  and I  is given by (2). 

3. Morse Functions for Planar Mechanisms 

From now on we shall concentrate on the simplest type of polygonal 
mechanism, namely, planar mechanisms ( )2=d  having triangular platforms 

( )3=k  and exactly two links per branch ( ( ) ( ) ( ) ).2321 === nnn  These 

mechanisms are known in the robotics literature as 3-RRR (rotational) mechanisms. 
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Recall that a smooth real-valued function on a manifold is called a Morse 
function if all its critical points are non-degenerate (cf. [17, I, Section 2]). Such 
functions may be used to deduce the cellular structure of the manifold, and thus 
recover its homotopy type (see [17, I, Section 3]). Our goal is to describe a Morse 
function for the configuration space of a 3-RRR mechanism. 

Theorem 3.1. The function ( ) ( )∑ =
= 3

1
2: j

jf vV  is generically a Morse 

function on ( ),ΓC  where ( ) ( ) ( ) ( ) ( ).: 21
jjjjj xpvvv −=+=  

Proof. In order to show that the critical points of f are non-degenerate, we must 
choose a local coordinate system near each such point. 

 
Figure 5. Local coordinates. 

Unfortunately, there is no uniform choice of such a system, so we must 
distinguish three cases: 

Case I. Let ( ),,,: 321 φφφ=Φ  where jφ  denotes the angle between the vectors 
( )j
1v−  and ( )j

2v  for .3,2,1=j  Then 

( ) ( ) ( ) ( ) ( ) ( ( ) ) ( ( ) ) ( ) ( )
121

2
2

2
121 cos2: φ−+=+==φ jjjjjjj

j
jh vvv  (27) 

and thus ( ) ( )( )∑ =
φ=Φ 3

1
2,j j

jhf  so that 

( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ))3
3

2
3

12
2

2
2

11
1
2

1
1 sin,sin,sin2 φφφ=∇=∇ Φ ff  

(( ( ) ) ( ) ( ( ) ) ( ) ( ( ) ) ( ) ),,,2 3
2

3
1

2
2

2
1

1
2

1
1 vvvvvv ⋅⋅⋅= ⊥⊥⊥  (28) 

where ( )ab −=⊥ ,:w  for ( )., ba=w  
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Thus Φ is a critical point if and only if: 

( )321 1,1,1
2

σ+σ+σ+π=Φ   for { }.1,, 321 ±∈σσσ  (29) 

Computing the Hessian at a critical point Φ yields: 

( ) ( )

( ) ( )

( ) ( )
,

00
00
00

3
2

3
13

2
2

2
12

1
2

1
11

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

σ

σ

σ

=ΦH  

which is non-degenerate, with index ΦInd  equal to the number of negative values in 

{ }.,, 321 σσσ  Such critical points will be referred to as Type I. 

 

Figure 6. Type I critical point. 

Case II. As we saw, critical points of f appear when all three branches are 
aligned. However, for some mechanisms this will never happen, because one or two 
branches can never fully stretch or fold, that is, 3φ  (say) takes values in a proper 

subset [ ] [ ]1221 ,, aaaa −−∪  of [ ]ππ− ,  (see Example 3.3). Clearly, 3φ  cannot then 

serve as a local coordinate at a point ( ).,, 21 ka±φφ  

However, if the first two branches can both be aligned, then in the vicinity of 

doubly aligned configurations we take ( ),,,:ˆ
121 θφφ=Φ  where ( )2,1=φ jj  as in 

Case I, and jθ  is the angle between ( ) ( ) ( )jjj
21: vvv +=  and the vector ( )2x  (we 

assume for simplicity that ( )1x  is at the origin). 

Since 

 ( ) ( )( ),sin,cos jj
jj h θθ=v  (30) 
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using (27), we have 

 ( ( ) ( ) ( ) )
( ( ) ) ( )

( )( )
( ) ( ( ) ) ,,0,,, 2

21
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

φ

⋅
=∂∂∂ ⊥

⊥

θφφ ′
jj

j
j

jj
jjj

hjjj vv
vv

vvv  (31) 

for { } { }.2,1, =′jj  

However, since 2θ  is a dependent variable, we may differentiate the norms in: 

 ( ) ( ) ( ) ( )221 2,1 xvav =−+  (32) 

implicitly and deduce that: 

 ( ) ( ( ) ) ( ) ( ( ) )
( ) ( ( ) )

( ( ) ) .
2,1
2,1 2

2

1
2

2
2

11
⊥

⊥

⊥
⊥

θθ
⋅

⋅
−=θ−∂=∂ v

va
vavv  (33) 

Differentiating (32) itself and using (31), (33), and (26) yields: 

( )2,1ˆ aΦ∇  

  
( ( ) ) ( )

( )( )
( ) ( ( ) ) ( )

( )( )
( )

( ) ( ( ) )
( ) ( ( ) )

( ( )) .2,1
2,1

,, 2

21
2

2
2

2

2
2

2
11

2
1

1

1
2

1
1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅

⋅

φ

⋅
−

φ

⋅
−= ⊥

⊥

⊥⊥⊥
a

va
vvv

vv
v

vv

hh
 (34) 

Since ( ) ,1 0x =  we see ( ) ( ) ( ) ( ) ,3,1 313 xavv −+=  so: 

( ( ) ) ( )
( )( ) ( ) ( ( ) ( ) ) ( ( ) ( ) ) ( ( ) )

( )( )

( ( ) ) ( )
( )( ) ( ( ) ( ) ) ( ( ) )

( )( )

( ( ) ( )) ( ( ) ) [ ( ) ( ( ) ) ][( ( ) ( ) ) ( ( )) ]
( ) ( ( ) )⎪

⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

⋅

⋅−⋅
+⋅−=∂

φ

⋅−+φ
⋅=∂

φ

⋅−+−⋅+φ
⋅=∂

⊥

⊥⊥
⊥

θ

α⊥
φ

α⊥
φ

,
2,1

3,123,12

,2

,
3,12

2

2

3121
13

2
2

2

2132
2

2
2

2
2

1

2
1

1

113312
1

1
1
2

1
1

1

2

1

va
axvvvvax

vvx
vv

vvxxav
vv

f

h

Bh
f

h
Bh

f

 (35) 

where αB  is the rotation-and-dilitation matrix taking ( )2,1a  to ( ).3,1a  

Note that we use the coordinates Φ̂  only at points where the first two branches 

are aligned, so that ( ) ( ( ) ) 012 =⋅ ⊥jj vv  for ,2,1=j  and thus the first two entries of 

( )fΦ∇ ˆ  vanish at these points. The vanishing of 
1θ∂

∂f  is equivalent to the condition: 
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[ ( ) ( ( ) ) ][ ( ) ( ( ) ) ] [ ( ) ( ( ) ) ][ ( ) ( ( ) ) ]⊥⊥⊥⊥ ⋅⋅−⋅⋅ 21213 2,13,12,1 vavavavx  

[ ( ) ( ( ) ) ][ ( ) ( ( )) ] [ ( ) ( ( ) ) ][ ( ) ( ( )) ] .03,13,1 321121 =⋅⋅−⋅⋅+ ⊥⊥⊥⊥ axvvavvv  (36) 

Note that by (26) again, the intersection of ( )1Line  with ( )2Line  is at the point: 

( ) ( ) ( ) ( ( ) )
( ) ( ( ) )

( ) ,2,1: 1
21

2
13 v

vv
vavx

⊥

⊥

⋅

⋅
++=P  

and (36) is equivalent to the colinearity of ( ),3x  P, and ( ) ( ).3,11 av +  Such critical 

points will be referred to as Type II. 

 

Figure 7. Type II critical point. 

Calculating the Hessian matrix fH  of f at a critical point, we find that it is 

diagonal, with 

( ) ( )
( )( ) ( ) ( ( ) ( ) ) ( ( ) ( ) ) ( ( ) )

( )( )
,3,122 2

1
1

113312
1

1
1
2

1
111 φ

⋅−+−⋅+φ
⋅−=∂ α

φφ
h

Bhf vvxxavvv  

( ) ( )
( )( ) ( ( ) ( ) ) ( ( ) )

( )( )
,2 2

2
2

2132
2

2
2

2
2

122 φ

⋅−+φ
⋅−=∂ α

φφ
h

Bhf vvxvv  

[ ( ) ( ( ) ) ]
( [ ( ) ( ( ) ) ][ ( ) ( ) ][ ( ) ( ( ) ) ]⊥⊥

⊥θθ ⋅⋅⋅−
⋅

=∂ 2121
22

2,13,12
2,1

2
11 vavavv

va
f  

[( ( ) ( )) ( ) ][ ( ) ( ( ) ) ]2213 2,13,1 ⊥⋅⋅−+ vavax  

[ ( ) ( ) ][ ( ) ( ( ) ( ) ) ][( ( ) ( ) ) ( ( )) ]⊥⊥ ⋅−−⋅⋅+ 3,12,1 312121 axvvvavv  
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[ ( ) ( ( ) ) ] [( ( ) ( ) ) ( ( ))]3,131221 axvvv ⋅−⋅+ ⊥  

[ ( ) ( )][( ( ) ( )) ( ( ) ) ][( ( ) ( )) ( ( ) ) ]).3,12,12,1 13122 ⊥⊥ ⋅−⋅−⋅+ vaxvavva  

If we solve (35) to find explicitly the critical points of f in the coordinates ,Φ̂  

and then substitute into the expression we have found for fH  at these points, we 

obtain a polynomial expression of degree 6 in the parameters ( )GXL ,,=Γ  for the 

mechanism. Thus the critical point we identified is degenerate only when this 
polynomial vanishes, so generically f is indeed a Morse function. 

Case III. Note that the work space W  for each vertex of P  is the intersection 
of three annuli (so it is compact), and thus the boundary of W  must intersect at least 
one of the bounding circles of the annuli. Therefore, at least one of the three 
branches (say, the first) can be aligned. 

Thus, at critical points of f where neither Φ nor Φ̂  can be used as local 
coordinates, the first branch is aligned, and we take ( )ψφθ=Ψ ,,: 11  as our local 

coordinates, where 1θ  and 1φ  are as in Case II, and ψ denotes the angle between 

( )2,1a  and ( )2x  (see Figure 5). Note that this will not work when the second branch 

is also aligned, since these coordinates only determine the length of ( ),2v  and not 

“elbow up/down” near ( ).12 22 σ+π=φ  

Here 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,3,12,1 23122121
2

1
1 xavxavvv −++−+++=Ψf  

and since ( ) ( )( ),sin,cos2,1 2,1 ψψ= ga  we have 

( ( ) ) ( ( ) )
( ( ) ) ( )

( )( )
( )

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

φ

⋅
−=∇

⊥
⊥

Ψ 0,, 1
2

1
1

1
2

1
111 v

vv
vv

h
 

and ( )( ) ( ( ) )⊥Ψ −=∇ jj ,1,0,0,1 aa  for ,3,2=j  so 

( ( ) ) (( ( ) ( ) ) ( ( ) ( ))),3,12,12 321
1 aaxxv +−+⋅=∂ ⊥
θ f  

( ( ) ) ( )
( ) ( ( ) ( ) ( ) ( ) ( ) )

( ) ,3,12,14
21

3211
1
2

1
11 v

xxaavvvv −−++⋅
⋅−=∂ ⊥

φ f  
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( ) ( ( ) ( ) ) ( ) ( ( ) ( ) ).3,12,1 1312 vxavxa −⋅+−⋅=∂ ⊥⊥
ψ f  (37) 

We are using the coordinates Ψ because the first leg is aligned, so indeed 
.01 =∂φ f  In order for this to be a critical point, we have two additional geometric 

conditions: the vanishing of f1θ∂  implies that the vector connecting the midpoints 

of sides of the fixed and moving platforms opposite the first vertex, that is, 

( ( ) ( ) ) 2: 32 xx +=A  and ( ( ) ( )) ,232: aa +=B  are aligned with ( )1v  (see Figure 8). 

On the other hand, the vanishing (in addition) of fψ∂  is equivalent to: 

 ( ( ) ) ( ) ( ( ) ) ( ) ,03322 =⋅+⋅ ⊥⊥ xvxv  (38) 

which means that the areas of the triangles spanned by ( )jv  and ( ) ( )3,2=jjx  are 

equal. Such critical points will be referred to as Type III. 

 

Figure 8. Type III critical point. 

Now, calculating the Hessian of f at the critical points, we have 

( ) (( ( ) ( ) ) ( ( ) ( ))),3,12,12 321
11 aaxxv +−+⋅−=∂ θθ f  

,0111 =∂=∂ ψφθφ ff  

( ) ( ( ) ( )),3,12,12 1
1 aav +⋅=∂ψθ f  

( ) ( )
( ) ( ( ) ( ) ( ) ( ) ( ) )

( ) ,3,12,14
21

3211
1
2

1
111 v

xxaavvvv −−++⋅
⋅=∂ φφ f  

( ) ( ( ) ( ) ) ( ) ( ( ) ( ) ).3,12,1 1312 vxavxa −⋅+−⋅=∂ψψ f  

Again, generically the critical point is non-degenerate.  
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3.2. Identifying the critical points 

Since we usually have no explicit description of the configuration space C  as a 
manifold, it is hard to calculate the Morse function R→C:f  directly. However, 

in the course of proving Theorem 2.2 we gave a geometric description of each of the 
possible critical points of f, which are the main ingredient needed for analyzing the 
topology of ,C  in terms of the work space .W  We can use this geometric 
information in order to identify all possible candidates for critical points, and then 
we need only calculate df in local coordinates at these points (also provided in the 
proof above) to check if they are indeed critical, and find their indices. 

Recall that W  (Definition 1.6) is the space of all possible locations of the 
moving platform ,P  whose vertices must be situated in the respective work spaces 

iW  ( )3,2,1=i  of (the end points of) the three branches. Each iW  is an annulus 

centered at the ith vertex ( )ix  of the fixed triangle. 

Also recall the concept of the coupler curve γ of a planar four-bar linkage, that 

is, a degenerate polygonal mechanism with 2=k  linear branches ( ( ) =1n  
( ) ),12 =n  but having a triangular platform :P  the coupler curve is the work space 

for the third (unattached) vertex of .P  See [7, Ch. 4]. We consider the coupler 

curves for two vertices ( )ix  ( )2,1say =i  of a triangular mechanism 

( )PXL ,,=Γ  as above, in which the two corresponding branches are aligned, so 

that each can be replaced by a single linear branch of length ( ) ( ) ( )iii
21: +=  or 

( ) ( ),21
ii −  as the case may be. 

(1) The critical points of Type I (all three branches aligned) correspond to 
placements of P  with all three vertices on the (inner or outer) boundary circles of 
these annuli. Determining these is a straightforward geometric problem, which can 
be described as intersecting the coupler curve for the first two vertices, say, with the 
two boundary circles of .3W  

(2) For critical points of Type II, we need also a line field V along the coupler 

curve γ, where ( )( )tV γ  is the line from ( )tγ  to the intersection point ( )tP  of ( )1Line  

with ( ).Line 2  This line field is readily calculated from γ. The critical points are then 

those configurations for which ( )( )tV γ  passes through ( ).3x  
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(3) For critical points of Type III, the first vertex ( )1v  of P  must lie on one of 

the two boundary circles of .1W  Given ( ),1v  the possible positions of P  are 

determined by its rotation angle θ around its first vertex, and at most two values 
θ′′θ′,  of θ satisfy condition (38). Thus we can define on 1W∂  two line fields 

VV ′′′,  which associate to ( )1v  the line between the midpoints of the (2, 3)-side of 

the fixed and moving triangles in the positions corresponding to ,θ′  ,θ′′  

respectively. The critical points are those for which the vector ( )1v  lies on one of 
these two lines. 

Example 3.3. In general, the critical points of a Morse function on a manifold 
do not determine its topology, though together with their indices they impose certain 
restrictions on its homology, via the Morse inequalities. However, in the simplest 
cases the geometric considerations described above limit the possible critical points 
so severely that the configuration space C  can be recovered in full. Note that there 
are two connected components in ,C  determined by the orientation of the moving 
platform. 

For example, consider a triangular mechanism with one branch ( )3say, =k  

having one very large link, so that the work space for the vertex ( )3p  contains those 

for all points of the moving platform, and thus imposes no restriction on the allowed 
configurations. We assume the moving platform is a small triangle, and that the 
work space for (the vertex of) the first branch is a small annulus, intersecting that of 
the second branch in a crescent-shaped lune, which is the approximate “work space” 
for the moving platform (i.e., for its barycenter). Finally, assume that the fixed 

vertex ( )3x  is far to the left (see Figure 9). 

Now we may analyze the possible critical points as follows: 

(1) Since the two small annuli above are wholly contained in the large one, and 
the moving platform is small, there are no critical points of Type I. 

(2) Note that there are exactly two cases where ( )1Line  meets ( )2Line  on the 

inner boundary circle of the work space for vertex 2. Since ( )23g  is very small, any 

critical points of Type II must occur nearby, so that the edges a(12) and a(13) 

(which nearly coincide) are aligned with ( )1v  (see Figure 10). 
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Figure 9. Work spaces for the three moving vertices. 

 
Figure 10. A critical point of Type II. 

By choosing appropriate generic values for the parameters, we can ensure that 
there are exactly two critical points of Type II in each component of .C  

(3) Consider the three dashed lines ( )kL  in Figure 11, each connecting ( )kx  
with the midpoint of opposite (fixed) edge ( ).3,2,1for =k  Because the moving 

triangle is so small, the vector ( )kv  must approximate the direction of ( )kL  in order 
to obtain a critical point of Type III, but since these lines do not pass near the 
approximate work space for the moving platform, no such critical points can occur. 

 
Figure 11. Potential critical points of Type III. 
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Thus each component of the configuration space ( )ΓC  has exactly two critical 

points in this case (both of Type II), so it is homeomorphic to .3S  
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