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Abstract 

The present paper is a natural continuation of a previous paper of the 
author [5], which introduced the Epsilon-Skew Exponential Power 
distribution family (ESEP). In the previous paper, we introduced a new 
distribution family that we named the Epsilon-Skew Exponential Power 
distribution (ESEP). We defined basic properties and highlighted special 
members of the ESEP distribution. We also derived general expressions 
for the mean, variance, skewness, kurtosis, general moments about zero 
and about a location parameter, and maximum entropy. In this paper, we 
derive a stochastic representation, Fisher information matrix, test score for 
symmetry, and maximum likelihood estimators to an ESEP random 
variable. 

1. Introduction 

In [5], we defined the ESEP distribution as 
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where the parameters θ, σ, α and ε are the location, scale, shape and skewness 
parameters, respectively. The distribution function was defined as 
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We also derived in [5], general expressions for the mean, variance, skewness, 
kurtosis, general moments about zero and about a location parameter, and maximum 
entropy. Research, based on (1), has been developed, in particular, examples on (1) 
were applied in [3], special cases of (1) were studied in details in [2], and similar 
distributions to (1) were developed in [4]. The remainder of the paper is organized as 
follows. We present a stochastic representation for ESEP random variables in 
Section 2. In Section 3, we derive Fisher information matrix for the ESEP random 
variables. In Section 4, we derive a test score for symmetry within the ESEP. We 
next derive the maximum likelihood estimators to an ESEP random variable in 
Section 5 and in Section 6 we give a brief discussion of our results. 

2. A Stochastic Representation for ESEP Random Variables 

In this section, we present a representation of an arbitrary ESEP random 
variable. We make use of a representation of the symmetric case that is well known 
[6] and develop a stochastic representation that can be used for computer simulation 
of ESEP random variates. 

Remark 2.1. Using (2), we can show that the cdf of ( )εα,,1,0ESEP~X  is 
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Theorem 2.1. If ( ),,,1,0ESEP~ εαX  then X admits the stochastic 

representation ,
1
α= IWX d  where W has a gamma distribution with density function 
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and I has a uniform distribution with density function 
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Proof. For ,0>x  we have 
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where ( )xg  is as defined in (4). Similarly, for ,0<x  we have 
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where ( )xh  is as defined in (5). We now compare (8) and (9) to (3) in Remark 2.1 

and therefore find that ( ) ( ).XFXG ≡  We now obtain a stochastic representation for 

the general case where ( ).,,,ESEP~ εασθX  

Corollary 2.1. If ( ),,,,ESEP~ εασθX  then ,
1
ασ+θ= IWX d  where W and I 

are (6) and (7), respectively. 

We can use Corollary 2.1 to generate random variates from an ESEP 
distribution. We need to generate only a standard gamma random variate and a 
binary discrete random variable. The following algorithm is an ( )εασθ ,,,ESEP  

random-variate generator based on the ( )εασθ ,,,ESEP  random variable 

representation given in Corollary 2.1. 

• Generate a gamma 





α

Γ 1,1  random variate W. 

• Generate a standard uniform random variate U. 

• If ,
2

1 ε−<U  set ( ),12 ε−←I  else set ( ).12 ε+−←I  

• Set .
1
ασ+θ← IWX  

• RETURN X. 

3. Fisher Information Matrix 

Before we consider the problem of testing distributional hypotheses, we first 
compute the Fisher information matrix ( )εασθ ,,,I  for an arbitrary ESEP random 

variable. Under regularity conditions, we have ( ) ( )
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′εασθ=′γγγγ=γ  After lengthy calculations, the Fisher 

information matrix is 
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where ,1
α
−α=υ  ( )•ψ  is the digamma function and ( )•ψ′  is the trigamma function. 

4. Score Test for Detecting Asymmetry within the ESEP 

The score or Lagrange multiplier test is a general asymptotic parametric test. 
Score test statistics are often relatively simple to determine because the statistic 
requires one to estimate parameters, if necessary, under only the null hypothesis [9]. 

In the case of multi-dimensional parameters, such as with the case with the 
ESEP family of distributions, the null hypothesis can be composite because of the 
presence of nuisance parameters [1]. In this case, the determination of an appropriate 
score test statistic is more complex. We can develop a score test statistic that is based 
on the estimation of all parameters, even though we may be interested in testing only 
a subset of these parameters [7, 10]. 

In this section, we consider a statistical test for asymmetry within the ESEP 
distribution family. The score test accounts for nuisance parameters in an explicit 
fashion. That is, estimators of all nuisance parameters explicitly appear in the score 
test statistics. 

For simplicity, let 

( ) ,δ−=δ− + xx    for  [ )( ),, xI ∞δ  (11) 

and 

( ) ,xx −δ=δ− −    for  ( )( ),, xI δ∞−  (12) 

where .R∈δ  
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Theorem 4.1. Let nXX ...,,1  be a random sample from an ( )εασθ ,,,ESEP  

distribution. Then, under the null hypothesis, we have ,0:0 =εH  which corresponds 

to symmetry, versus ,0: ≠εAH  which corresponds to asymmetry. A score statistic 

for detecting asymmetry within the ( )εασθ ,,,ESEP  family is 
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where ,θ̂  σ̂  and α̂  are the MLEs of θ, σ and α, respectively, and ( ) ,ˆ +θ−x  

( )−θ− ˆx  are as defined in (11) and (12), respectively, with .θ̂=δ  Note that 
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Also from (10), we have ( ) ( ) ( ).1ˆ,,,
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a score test statistic for detecting asymmetry within the ( )εασθ ,,,ESEP  family is 

given in (13). Note that, 2
2χ→

d
T  as ,∞→n  [8]. 

5. Maximum Likelihood Estimators for the ESEP Parameters 

The likelihood of a set of data is the probability of obtaining that particular set 
of data given a chosen probability model. The parameter values that maximize the 
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sample likelihood function, provided they exist, are known as the maximum 
likelihood estimators (MLEs). In many cases, computation of a MLE is usually 
straightforward when one knows the characteristics of the data generating 
distribution. However, in the case of multi-parameters, the mathematics needed to 
determine MLEs is more complex. 

5.1. Maximum likelihood estimation of σ 

In this section, our main focus is the estimation of σ when 
( ).,,,ESEP~ εασθX  We assume that the mode of the distribution is zero, that is, 

,0=θ  then the log-likelihood function yields the estimating equation 
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 and ( )σL  increases on ( )nσ̂,0  and decreases on ( )∞σ ,ˆ n  

so that nσ̂  indeed maximizes (16). 

Theorem 5.1.1. Let nXXX ...,,, 21  be iid ( )εασ ,,,0ESEP  random variables 

with unknown dispersion parameter .σ  Then the MLE of ,σ  given by (17), is: 
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(1) Consistent; 

(2) Asymptotically normal, where ( ) ;,0ˆ
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Thus, nσ̂  is asymptotically normal. 

From (10), we see that ( )[ ] 1
2

−σ=
α
σ I  and thus, nσ̂  is asymptotically efficient. 

5.2. Maximum likelihood estimation of ε 

In this section, our main focus is the estimation of the skew parameter .ε  If we 
again assume the mode of the distribution is zero, that is, ,0=θ  then the log-

likelihood yields the estimating equation 
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that nε̂  indeed maximizes the likelihood function (18). 
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Theorem 5.2.1. Let nXX ,,1 …  be iid ( )εασ ,,,0ESEP  random variables with 

an unknown value of .ε  Then ,ˆ nε  given by (19), is: 

(1) Consistent; 

(2) Asymptotically normal, where ( ) ;
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Proof. The proof of this theorem is similar to the proof of Theorem 5.1.1. We 
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Thus, nε̂  is asymptotically efficient. 

5.3. Maximum likelihood estimation of α 

In this section, we assume that the mode is zero, that is, ,0=θ  and estimate α 

by maximum likelihood. The estimation of α is relatively complicated and requires a 
numerical estimation. Here we need to maximize the log-likelihood function 
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We can optimize the function (22) numerically to approximate ,α̂  the maximum 

likelihood estimator of .α  More precisely, to determine ,α̂  we solve 
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Once we compute the value of α that maximizes the likelihood (22), we can graph 
(22) as well. 

6. Discussion 

In the last paper [5], we introduced a new distribution family that includes the 
normal and Laplace distributions and can be used for analyzing data from skewed or 
symmetric distributions. We have also derived in [5] expressions for the density 
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function, distribution function, mean, variance, moments and entropy for the new 
distribution family. In this paper, we derived a stochastic representation, Fisher 
information matrix, test score for symmetry, and maximum likelihood estimators to 
an ESEP random variable. Much additional work can and should be done on this 
new family of random variables. 
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