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Abstract 

Normal distribution underlies the premise for inference for many popular 
statistical models, especially for longitudinal data analysis such as the 
mixed-effects model. Validating the normality assumption is crucial for 
applications of such normal-based models to yield correct inferences. 
However, most of the current methods for testing the assumption of 
normality focus on univariate analysis. Although a few methods apply to 
multivariate outcomes, they do not address missing data. In this paper, we 
propose a new approach to test the normality assumption for longitudinal 
data analyses that simultaneously addresses missing data. We consider the 
two most popular missing data mechanisms in practical studies, the 
missing completely at random (MCAR) and the missing at random 
(MAR), and develop the corresponding methods to address them. We 
illustrate the approach with real as well as simulated data. 
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1. Introduction 

Normal distribution is the most widely used assumption in theoretical and 
applied statistics. It forms the foundation for many classic multivariate tests as well 
as cutting-edge mixed-effects models for longitudinal and multi-level clustered data 
and structural equations model for inference of causal pathways (Diggle et al. [7]; 
Bollen [4]; Cole and Maxwell [5]). Applications of normal based models provide 
reasonably good estimates in many studies, however, severe departures from this 
assumption can lead to invalid inference and misleading conclusions. As Geary [13] 
points out, ‘Normality is a myth; there never was, and will never be, a normal 
distribution.’ His statement may be especially true for outcomes derived from most 
assessment instruments in mental health and psychosocial research. Since most 
instruments used in psychosocial research are based on item scores, they are 
intrinsically discrete. The treatment of such variables as though they were 
continuous is purely for analytic simplicity. For variables with a relatively large 
range such as the Hamilton rating scale for depression, such a treatment is 
convenient and sensible. However, because these variables are inherently discrete, 
they usually do not follow the normal distribution assumption. Thus, the use of 
parametric models is problematic and not justified in most applications. For this 
reason, the assumption of normality should not be taken for granted and must be 
checked routinely to ensure valid inference. 

Over the past two decades, studies in biomedical and behavioral sciences have 
evolved from simple cross-sectional study designs to modern day longitudinal trials. 
As longitudinal study designs use subjects as their own controls, they provide a 
unique opportunity to study changes of outcomes of interest over time, causal effects 
and disease progression, in addition to providing more power for assessing treatment 
differences. In longitudinal data analysis, the generalized estimating equations 
(GEE) or weighted GEE (WGEE), and linear mixed-effects models (LMM) are 
among the most popular data analysis methods (Diggle et al. [7]). Since the 
estimation LMM is based on maximum likelihood method, it places very strong 
assumptions on the data and the model such as the observations from same 
individual over time have a multivariate normal distribution and the random effects 
is independent of the error term and have normal distributions. Thus, testing 
normality is crucial for valid inference and interpretation of results from such normal 
based models. 

Missing data is one of the most important issues for longitudinal studies. Indeed, 
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this issue has been a major driving force behind the development of several ground-
breaking statistical methods in the past two decades (e.g., Laird and Ware [18]; 
Liang and Zeger [21]; Zeger and Liang [42]; Wu and Carroll [40]; Lavori [19]; 
DeGruttola and Tu [6]; Follman and Wu [11]; Robins et al. [30]; Hogan and Laird 
[17]; Wulfsohn and Tsiatis [41]; Diggle et al. [7]). Methods of great complexity have 
been developed to address missing data, most such developments are centered 
around data analysis based on the assumed model (either parametric or semi-
parametric model), but no methods have been developed to test normality with 
missing data in a longitudinal analysis setting. 

In this paper, we develop a novel approach for testing normality for longitudinal 
study data that address the inherent missing data issue under the framework we 
recently developed for modelling second- and higher-order moments (Tu et al. [in 
press]). This approach provides a useful tool to validate the underlying assumption 
for normal-based models for longitudinal analysis and investigate causes of 
discrepancy arising when applying normal and non-normal based models. 

The paper is organized as follows. In Section 2, we first briefly review existing 
methods for testing normality for univariate outcomes. In Section 3, we present our 
approach for longitudinal data. We first consider the complete data case and then 
discuss generalizations of the proposed approach to missing data under the two most 
popular missing data mechanisms in applications: the missing completely at random 
(MCAR) and missing at random (MAR) assumptions. In Section 4, we illustrate the 
proposed methods with real study data and investigate the size and power of the tests 
by Monte Carlo simulation. In Section 5, we discuss limitations of the work and 
directions of future research. 

2. Tests for Normality for Univariate Outcome 

Testing for normality is an age-old problem with many proposed solutions. For 
example, Mecklin and Mundfrom [27] reviewed dozens of procedures currently 
available for testing the normality assumption. They listed 106 references in their 
report and broke them down to four major categories: (1) methods based on 
graphical plots and correlation coefficient; (2) nonparametric goodness-of-fit 
methods; (3) methods based on skewness and kurtosis; and (4) methods based on 
empirical characterization. While this list is impressive, most methods are focused 
on univariate analysis. Since the 1970s, many attempts have been made to extend the 
univariate tests to a multivariate setting. However, none existing approach addresses 
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the issue of missing data, one of the most prominent and difficult problems in 
modern longitudinal data analysis. 

In this section, we propose a new approach to address this fundamental 
limitation in existing approaches. In particular, we generalize the class of Lin-
Mudholkar’s z-tests of univariate normality to a longitudinal data setting (Lin and 
Mudholkar [22]; Mudholkar et al. [28]; Mudholkar et al. [29]). Although some of 
their tests also apply to multivariate outcomes, they fail to address missing data. 

Following their work, our proposed test is premised on the following 
fundamental property of the normal distribution: 

Proposition. For an i.i.d. (independently, identically distributed) random 
sample, the sample mean and sample variance are independent if and only if the 
sample is from a normal population. 

Lukacs [24] later gave another justification using characterization function and 
extended the conclusion to multivariate outcomes. 

Consider an i.i.d. random sample ( ).1 niXi ≤≤  Let ∑ =
= n

i iXnX 1
1  and 

( )∑ =
−

−
= n

i i XXnS 1
22
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1  be the sample mean and sample variance, respectively. 

By the proposition, testing for normality is equivalent to ascertaining the 
independence between X  and S. Thus, the null 0H  that iX  are from a normal 

distribution is the same as the null of a zero correlation between X  and S. Since 
only one pair ( )SX ,  is available from the sample, we cannot apply standard 

methods and test the null by using say the Pearson correlation estimator. One 
approach to this problem is to construct a sample by using reassembling methods 
(e.g., Efron and Tibshirani [9, Chapter 10]). For example, in Lin and Mudholkar 
[22], they constructed a sample by Jackknifing the original data sample, i.e., 
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In the above, the Pearson correlation ρ̂  is computed based on the Jackknified-

sample, ( ( ) )ii UX ,  ( ).1 ni ≤≤  By further applying Fisher’s z transformation to r, 

,ˆ1
ˆ1log2

1
ρ−
ρ+=Z  it is shown by Lin and Mudholkar [22] that under the null 

hypothesis of normality the normalized Z has an approximate standard normal 
distribution, 

 ( ),1,0~ˆ1
ˆ1log2

1
33 approx NnZn

ρ−
ρ+=  (2) 

for large samples. 

The T statistic and its approximate distribution above forms the basis for 
inference when using the transformed Jackknife-based Pearson correlation estimator 
Z to test the null of zero correlation between the sample mean and variance. 
Simulation studies have shown that this test statistic has good coverage (type I error) 
and power for small and moderate sample sizes (Lin and Mudholkar [22]). 

3. Tests for Normality for Multivariate Outcome 

In this section, we develop a test statistic for testing normality for longitudinal 
studies with missing data. Although tests for normality for multivariate outcomes are 
available, none addresses missing data. We start with the complete data case. 

3.1. Complete data case 

Consider a longitudinal study with n subjects and m assessments. Let =iX  

( )imii XXX ...,,, 21  be the response vector from the ith subject with itX  denoting 

the observation at the tth assessment ( ).1 mj ≤≤  We assume that the i.i.d. sample 

iX  follows an m-variate multivariate normal distribution ( )Σμ,mN  with mean 

vector μ and variance matrix ( ).1 ni ≤≤Σ  We assume that Σ full rank so that Σ is 

positive definite. Let 21Σ  be the symmetric square-root of Σ and 

( ) ( ) ....,,, 21
21

imiiii YYY=μ−Σ= − XY  Then, ( ) ,Var mi I=Y  the mm ×  identity 

matrix. Under the null hypothesis, i.i.d.~iY  ( )., mm IN 0  For the normalized ,iY  

the components itY  of iY  are now stochastically independent, which form the 

premise for our test statistic. 

First, assume that μ and Σ are both known. Let ( )njjjt YYY ...,,,~
21=Y  denote 
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the observations at time ( ).1 mtt ≤≤  Then, by applying (1) and (2) to each ,~
tY  

we obtain the z-test statistic tZ  for each t. Further, tZ  are i.i.d. since tY~  are such 

random variables under the null. Thus, under the null hypothesis of multivariate 
normality, it follows from (2) that 

 ∑
=

χ=
m

t
mtZnT

1

2
approx

2 ,~3  (3) 

where 2
mχ  denotes a chi-square distribution with degrees of freedom m. 

In most applications, neither μ nor Σ is known. To compute the statistic T in (3), 

we must estimate μ and Σ. To this end, let μ̂  and Σ̂  be the usual sample mean and 

variance based on the random vectors ( ).1 nii ≤≤X  Then, we can apply (3) to 

( )μ−Σ= − ˆˆ 21
ii XY  and obtain a similar statistic T. Since both are consistent 

estimators of their respective parameter vector and matrix, we have: 

 ( ) ( ) ( ) ( ),1ˆ,1ˆ pp nn OO =Σ−Σ=μ−μ  (4) 

where ( )⋅pO  denotes the stochastic ( )⋅O  for random vectors (matrices) (e.g., 

Serfling [33, Chap. 1]). It then follows from (4) that 

 ( ) ( ) ( ),ˆˆ 212121 −−− +μ−Σ=μ−Σ= npiii oXXY  (5) 

where ( )⋅po  denotes the stochastic ( )⋅o  for random vectors (e.g., Serfling [33, Chap. 

1]). Thus, it follows from (5) that the revised statistic, T when computed based on 

the estimated μ̂  and ,Σ̂  also follows an approximate 2
mχ  in (2). 

3.2. Missing data case 

In longitudinal studies, missing data are inevitable, even for well planned trials. 
In longitudinal cohort studies, subjects may simply quit the study or they may not 
show up at follow-up visits because of problems with transportation, weather, health 
conditions, relocations, etc. In clinical trial studies, missing data may also be the 
results of patients’ deteriorated or improved health conditions due to treatment, 
treatment-related complications, treatment response. Some of the reasons such as 
patients’ deteriorated or improved health conditions due to treatment are clearly 
treatment related, while others such as subject’s relocation may not. Treatment-
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related missing data will impact the properties of estimators such as bias and 
consistency when ignored and thus must be carefully studied and addressed. 

Within our setting, one approach is to simply apply the approach in the 
complete data case discussed in the preceding section to the sub-sample of subjects 

with complete data, i.e., those with response vector ( )imiii XXX ...,,, 21=X  

observed at all m assessment times. Such a complete-data approach is at best 
inefficient. More importantly, it is likely to yield biased estimators if missing data 
does not satisfy the missing completely at random (MCAR) assumption (Rubin 
[31]). We first address efficiency under MCAR and then turn our attention to bias 
when MCAR fails. 

As in the complete data case, we first discuss the case when both μ and Σ are 
known. Let iX  be i.i.d. m-variate random vectors with mean vector μ and variance 

matrix ( ).1 ni ≤≤Σ  In the presence of missing data, some of the components of 

iX  are not observed. Let o
iX  denote the im -dimensional subvector consisting of 

the observed components, and o
iμ  and o

iΣ  denote, respectively, the im -dimensional 

subvector of μ and the ii mm ×  submatrix of Σ corresponding to .o
iX  Then, under the 

null of normality, it follows from the properties of multivariate normal distribution 

that o
iX  are independently and normally distributed with mean o

iμ  and variance o
iΣ  

(Seber [32, Chap. 1]). Thus, the normalized vector, ( ) ( ),21 o
i

o
i

o
i

o
i μ−Σ= − XY  are 

independently distributed with an im -variate normal distribution with mean 0 and 

variance .imI  

For each ( ),1 mtt ≤≤  let ( ) ,...,,,~
21 tititi

o
t jnYYY=Y  where tniii ...,,, 21  

index the tn  subjects with the response tikY  observed at time ( ).1 tnkt ≤≤  Then, 

as in the complete data case, by applying (1) to each ,~ o
tY  we obtain the z-test 

statistic .tZ  Since under the null o
tY~  are independent, it follows that tZ  are also 

independent and 

 ∑
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j Z
n

T
1
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approx
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for large { }.1;min mtnn t ≤≤=  
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When o
iμ  and o

iΣ  are unknown, we must replace them by consistent estimators. 

We consider estimation for the two most popular missing data mechanisms arising in 
applications next. 

3.2.1. Missing completely at random (MCAR) 

In statistics, we characterize the impact of missing data on model estimates 
through assumptions or missing data mechanisms. Such assumptions allow 
statisticians to ignore the multitude of reasons for missing data and focus on 
addressing their impact on estimation of model parameters. The missing completely 
at random assumption (MCAR) is used to define a class of missing data that do not 
affect model estimates when completely ignored. For example, in a treatment study, 
most treatment unrelated missing data such as patient’s relocation and conflict of 
schedules all fall into this category. The MCAR corresponds to a lay person’s notion 
of random missing, i.e., missing data are completely random with nothing to do with 
treatment conditions. 

To define consistent estimators of μ and Σ to address missing data, define a 
vector of binary variables for indicating missing (or rather observed) data as follows: 

( ) ( ) ,1,diag,...,,,
otherwise0

observedisif1
1 nirRrr

X
r itiimii

it
it ≤≤==

⎩
⎨
⎧

= r  

 (7) 

where itX  is the tth component of iX  and ( )irdiag  is an mm ×  diagonal matrix 

with itr  on the tth diagonal. For convenience, denote the baseline by 1=t  and 

assume no missing data at this time, i.e., ( ).111 niri ≤≤≡  

Now, define our estimator of μ as follows: 
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Under MCAR, it follows from the weak law of large numbers (LLN) that 
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Thus, (8) is a consistent estimator of μ. 
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The construction of a consistent estimator of Σ of iX  is more complex since 

unlike the mean μ, Σ involves second-order moments. To reduce algebraic 
complexity and effectively address the analytic difficulty, we utilize the theory of           
U-statistics to construct such an estimator (Hoeffding [16]; Serfling [33, Chap. 5]; 
Tu et al. [38]; Ma et al. [25]). 

For ,1 mts ≤≤≤  consider the following U-statistic: 
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 (9) 

where ( ){ }jinjijiCn ≠≤≤= ,,1:,2  denotes the set of all distinct pairs ( )ji,  from 

the integer set { }n...,,2,1  and ( ) ( )( )jtitjsisjtjsitisjist XXXXrrrrh −−= 2
1, XX  is 

a symmetric kernel (with respect to i and j) of the U-statistic. Under MCAR, 

[ ( )] ( ) ( ) ( )⎥⎦
⎤

⎢⎣
⎡ −−==θ jtitjsisjtjsitisjistst XXXXErrrrEhE 2
1, XX  

 ( ) ( ) ( ) .,Cov 22
stitisitisitis rrEXXrrE σ==  (10) 

It thus follows from the theory of U-statistics that stU  in (9) is an unbiased and 

consistent estimator of ( ) .2
stitisst rrE σ=θ  Then, in the absence of missing data, 

1== itis rr  for all i and t ( )mtni ≤≤≤≤ 1,1  such that stU  is a consistent 

estimator of the variance .stσ  In general, however, stU  is not an estimator of Σ 

since ( ) .12 ≠itisrrE  

Now, let 
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Under MCAR, it follows from (10) and Slutsky’s theorem (Serfling [33, Chap. 1]) 
that 

( )

( )
( )
∑

∑ ∈

−
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p

rrE
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rrE

hE
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XX
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Thus, stσ̂  defined in (12) is a consistent estimator of stσ  and [ ]stσ=Σ ˆˆ  is a 

consistent estimator Σ. 

3.2.2. Missing at random (MAR) 

In many clinical trials, missing data are often associated with the treatment 
interventions under study. For example, a patient may quit the study if he/she feels 
that the study treatment has deteriorated his/her health conditions and any further 
treatment will only worsen the medical or psychological problems. Or, a patient may 
feel that he/she has completely responded to the treatment and does not see any 
additional benefit in continuing the treatment. In such cases, the missing data do not 
follow the MCAR model since they are predicted by treatment related responses. 
This class of missing data reasons are modeled by the MAR that posits that the 
occurrence of a missing response at an assessment time depends on the response 
history or observed pattern prior to the assessment point. Thus, MAR postulates a 
plausible and indeed applicable missing data condition that encompasses many 
treatment related missing data and constitutes a sensible statistical approach to 
address bias in such situations. 

Under MAR, the missing data indicator ir  becomes dependent on the response 

vector .iX  We must model this dependence in order to define consistent estimators 

of μ and Σ. To this end, let 

[ ] [ ],1,1Pr,1Pr iitisistiitit rrr XX |===π|==π  

 .1,1 nimts ≤≤≤≤≤  (13) 

We first assume that itπ  and istπ  are known and derive consistent estimators of μ 

and Σ and then discuss how to model and estimate itπ  and istπ  under MAR. 
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These inverse probability weighted (IPW) estimators generalize those defined in (8) 
and (11) to account for response-dependent missingness under MAR. We assume 
that itπ  and istπ  are bounded away from 0. By applying LLN and Slutsky’s theorem, 

it follows that 
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By (13) and the iterated conditional expectation (Billingsley [3, Chapter 6]), we have 
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Thus, it follows from (15) and (16) that tμ̂  is a consistent estimator of ( ).1 mtt ≤≤μ  

As in the discussion of MCAR, ( )( )∑ ∈

−

⎟
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n
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ˆ XX  is a U-statistic 

with a symmetric kernel ( )., jisth XX  Further, 
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( ) ( ) ( )⎥⎦
⎤

⎢⎣
⎡ |−−ππ= −−

jijtjsitisjtitjsisjstist rrrrEXXXXE XX ,2
1 11  

( ) ( ) .2
1

stjtitjsis XXXXE σ=⎥⎦
⎤

⎢⎣
⎡ −−=  

It then follows from the theory of U-statistics that stσ̂  is an unbiased and consistent 

estimator of .stσ  

In most applications, itπ  and istπ  are unknown. It is difficult to model itπ  and 

istπ  as a function of iX  in general because of missing data responses (Little and 

Rubin [23]). As in the literature, we consider MAR, in which case itπ  ( )istπ  only 

depends on the observed part of .iX  For nonparametric analysis, it is still quite 

complex to model the occurrence of missing data even under such an ignorable 
missingness assumption (Little and Rubin [23]). A common approach is to further 
impose the monotone missing data pattern (MMDP) assumption. MMDP eliminates 
a potentially large number of missing data patterns and makes it practical to model 
the occurrence of missing data under MAR (Robins et al. [30]). 

Under MMDP, the response of the ith subject at ,, itXt  is observed if and only 

if the subject’s responses prior to time ( )11 ...,,, −tii XXt  are all observed. In terms 

of the missing data indicator vector, ir  follows the pattern that it has value 1 for the 

first im  and 0 for the remaining ( )imm −  components ( ).1 mmi ≤≤  Under MMDP, 

it is straightforward to model the binary missing data indicator itr  as a function of 

observed responses as well as other covariates using logistic regression. More 

specifically, let ( ( ) )11 ...,, −= tii
o
it XXX  denote the subvector of observed 

responses of o
iX  up to and including time .1−t  Then, under MMDP and MAR, it 

follows from (13) that 

[ ] [ ],1Pr1Pr o
ititiitit rr XX |==|==π  

[ ] [ ] ,1Pr1,1Pr itiitiitisist rrr π=|==|===π XX  

.1,1 nimts ≤≤≤≤≤  (17) 

Under MAR and MMDP assumption, MCAR can be viewed as a special case when 

itπ  is functionally independent of .o
itX  
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To estimate itπ  in (17), we can first model the one-step transition probability of 

the occurrence of missing data using a logistic regression model: 

( ) [ ( ( ) )] ,1,,11Prlogitlogit 01 mtrrp o
ittt

o
ittiitit ≤≤β+β==|== − XX  (18) 

where tα  and ( ( ) )tttt 11 ...,, −ββ=β  are parameters of the model. By MMDP and 

the assumption of no missing data at ,1=t  we have for :ts ≤  

[ ] [ ( ) ] [ ( ) ( ) ] ∏
=

−−− =|==|==|==π
t

s
is

o
titi

o
ittiit

o
ititit prrrr

2
111 .1Pr,11Pr1Pr XXX  

In many applications, the one-step logistic model in (18) may only depend on the 
most recently observed response ( )1−tiX  and the predictor of the logistic model 

under this Markov condition is simply: ( ).110 −β+β titt X  

4. Applications 

In this section, we illustrate the proposed approach with both real and simulated 
data. We first present applications of the tests to data from two studies in 
psychosocial research and then follow up with investigations of the performance of 
the tests with finite sample sizes. In all the examples, we set the statistical 
significance for inference at .05.0=α  The approach is implemented in R and the 
software is available for download from our website: 

http://www.urmc.rochester.edu/smd/biostat/service/index.html. 

4.1. Testing normality for two real studies 

Example 1. The study data for this example is from a PTSD (posttraumatic 
stress disorder) study conducted at the University of Pennsylvania Medical Center 
(Tu et al. [37]; Tu et al. [in press]). The goal of the study is to examine the 
longitudinal biological and psychological alterations in response to a cognitive 
behavioral therapy intervention that has been proven to induce a substantial 
reduction in PTSD symptoms in the majority of women victims of sexual and non-
sexual assault. Ninety-five patients completed treatment, with scheduled assessments 
at pre- (baseline), post-treatment (10 weeks from baseline) and three follow-up times 
(in a six month interval). 

For the two major response variables for examining symptom reductions in 
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PTSD and depression, the PTSD Symptom Scale (Foa et al. [10]) and the Beck 
Depression Inventory (BDI, Beck et al. [2]), all patients had complete data from 
baseline (pre-treatment) to the last follow-up assessment. As the linear mixed-effects 
model is the most popular in mental health and psychosocial research, it is important 
to assess the normal distribution assumption for these key outcomes before such 
models can be applied. 

Since there is no missing data for the two key outcomes of interest, we applied 
the test for complete data discussed in Subsection 3.2 to the longitudinal data from 
each of the outcomes and obtained the chi-square test statistics, 24.19=T  and 

,09.16=T  and associated p-values, 0.0017 and 0.0066, for the PTSD symptom 
scale and variable and BDI variables, respectively. The highly significant findings 
provide little support for normality for either of the outcomes and thus the linear 
mixed-effects model may not be an appropriate choice for examining the trajectories 
of the outcomes over time. Our conclusion agrees with the test results (p-values 

)01.0<  from the Henze-Zirkler and Mardia tests for normality based on skewness 

and kurtosis implemented in a SAS macro which can be downloaded from the SAS 
website (Henze and Zirkler [15]; Mardia [24]). 

Example 2. Data for this second example is from a longitudinal study in 
examining whether clinically significant physical pain was associated with worse 
treatment outcomes of an interpersonal psychotherapy among 59 depressed women 
with childhood sexual abuse (Talbot et al. [35]). In the study, depression was 
assessed by the Structured Clinical Interview for DSM-IV (Spitzer et al. [34]), 
sexual abuse was assessed with a semi-structured interview (defined as any 
unwanted sexual contact, or any sexual contact with a family member 5 years or 
older than the patient, prior to the age of 18), and pain was assessed by two self-
report items on the SF-36 measuring pain intensity and interference (Ware and 
Sherbourne [39]). Assessments were conducted at baseline, 10, 24, and 36 weeks, 
with about 30% missing data in the follow-up assessments. 

Longitudinal models such as the mixed-effects model can be used to examine 
the relationship between pain and treatment outcomes. However, to ensure valid 
inference, we tested the normality for the three key depression outcomes: HAMD 
(Hamilton Rating scale for Depression, Hamilton [14]), BDI and TRMCS (level of 
physical health functioning based on SF-36). By applying the discussion in 
Subsection 3.2.2, we modeled the occurrence of missing data using the logistic 
model (18) with the predictor ( )110 −β+β tiX  under the Markov assumption to 
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determine whether the missing mechanism is MCAR. For the three depression 
outcomes, the dependence of missingness on outcome was found for TRMCS; 

030.0ˆ
1 =β  (standard error )017.0=  and p-value .08.0=  We then applied the test 

statistic to TRMCS under MAR and HAMD and BDI under MCAR as discussed in 
Subsection 3.2.2. The test yielded a chi-square value of 11.13 with p-value 025.0=  

for TRMCS, indicating that the normal assumption is questionable. The tests were 
not significant for the other two variables. 

4.2. Simulation study 

We conducted simulation studies to examine the empirical size and power of the 
proposed test with finite sample sizes under complete data, MCAR and MAR. For 
space consideration, we only report results for two sample sizes, 50=n  and 200. 
All simulations were performed with a Monte Carlo sample of 1000 using the R 
software (Free Software Foundation [12]). 

4.2.1. Empirical size 

To study the empirical size of the proposed test, we generated data from a 3 
dimensional normal distribution ( )Σ,3 0N  with the mean vector 0 and variance 

( ),ρ=Σ C  a compound symmetry correlation matrix with the correlation 5.0=ρ  

(Diggle et al. [7]; Tu et al. [36]). The nominal size of the test was set at .05.0=α  

The empirical size is calculated as ,1000
81.7timesof#ˆ >

=α
T  where 7.81 is 95th 

percentile of the 2
3χ  distribution. The standard error of empirical size α̂  is 

( ) .007.0100095.005.0 =×  

Shown in Table 1 are the estimated empirical size from the simulations for the 
complete and missing data under MCAR and MAR. For the complete data case, the 
empirical size is a bit underestimated when ,50=n  but closer to the normal value 
for the large sample .200=n  For the missing data case, we assumed no missing 
data at baseline 1=t  and modeled the missing data mechanism according to MCAR 
or MAR using the methods discussed in Subsection 3.2.2. For MCAR, the missing 
probability ( )itrp Pr=  indicates the percentage of missing responses at time 2=t  

and 3. Thus, when ,1.0=p  there is 10% missing data at times 2 and 3. For MAR, 

we modeled and used the missing data indicator itr  as a function of the response at 

the previous time ( ),,1 1−− tiXt  using a logistic regression with a predictor of the 
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form ( ),5.0 10 −+β tiX  where ( )plogit0 =β  is determined by the missing data 

probability p in the absence of the predictor ( ).1−tiX  Thus, for 1.0=p  for example, 

( ) .2.21.01
1.0log1.0logit0 −=⎟

⎠
⎞⎜

⎝
⎛

−
==β  

Table 1. Empirical size for the proposed test for normality under complete data and 
missing data with MCAR and MAR as a function of sample size 50=n  and 200 

n Complete data  Missing data 
  Missing probability (p) MCAR MAR 

50 0.03 0.1 0.03 0.04 
  0.2 0.02 0.04 
  0.3 0.04 0.04 

200 0.04 0.1 0.05 0.04 
  0.2 0.04 0.05 
  0.3 0.04 0.05 

4.2.2. Empirical power 

To study empirical power, we considered two non-normal family distributions 
as alternatives for testing the null of multivariate normality: the multivariate t 
distributions and the two-component normal mixture distributions. We first briefly 
review these two classes of distributions. 

1. Multivariate t 

Let ( )Σ,~ 0U mN  and 2~ νχV  be independently distributed. Let +μ=X  

( ) ,2
1

U−νV  where μ is an 1×m  constant vector. Then, X follows an m-variate                  

t-distribution with degrees of freedom ν. The probability density function of X is 
given by (Andersen [1]; Tu et al. [37]): 

( ) ( )( )
( ) ( )

( ) ( )
( )

.11
2

2 2
1

212

m

mMT
mf

+ν−
− ⎟

⎠
⎞⎜

⎝
⎛ μ−Σμ−

ν
+

ΣνΓπν

+νΓ
= xxx  

It is readily shown that ( ) μ=XE  and ( ) Σ
−

= 2Var v
vX  (Tu et al. [37]). Like the 

normal distribution, the multivariate t has a unique mode at μ. However, t has a 



... LONGITUDINAL STUDIES WITH MISSING DATA 149 

larger variance and a thicker tail than the normal distribution, although this 
difference diminishes as the degree of freedom v becomes larger. 

2. Two-component multivariate normal mixture 

The probability density function of a two-component normal mixture is given 
by: 

( ) ( ) ( ) ( ),,1, 2211 Σμφπ−+Σμπφ= mmNMf x  

where ( )Σμφ ,m  denotes the probability density function of ( )., ΣμmN  Unlike the 

multivariate t, the two-component normal mixture is generally not symmetric and 
bimodal with the two modes at 1μ  and .2μ  Thus, the multivariate t and the two-

component normal mixture provides a symmetric and non-symmetric alternative to 
the normal distribution to evaluate the power of the proposed test. 

As in the investigation of normal coverage, we fixed the dimension at 3 and 
simulated data from a 3-variate multivariate t with ( ).5.0,3, C=Σ=ν=μ 0  By 

using the hierarchal representation of the t distribution, we first generated 
independent normal vectors iU  from ( )Σ,3 0N  and independent variables iV  from 

2
νχ  and then formed the desired t vectors by setting ( ) iii V UX 2

1−ν=  ( ).1 ni ≤≤  

For the normal mixture, we set ( )5.0, 121 C=Σμ=μ  and considered two mixture 

distributions: 

( ) ( ),9,2.0,8.0:1mixtureNormal 1313 Σ+Σ 00 NN  

( ) ( ).16,1.0,9.0:2mixtureNormal 1313 Σ+Σ 00 NN  (19) 

With the different choice of ,2Σ  the two normal mixtures in Subsection 4.2.2 

provided different degrees of skewness in the data distributions. We generated each 
of the mixture normal samples defined in Subsection 4.2.2 also in a hierarchal 
fashion. We first simulated iu  from ( ),1,0U  a uniform between 0 and 1 ( ).1 ni ≤≤  

Corresponding to each ,iu  we then sampled ( )13 , Σ0N  if π≤iu  and ( )23 , Σ0N  if 

otherwise. For each random sample, the test statistic T was calculated as discussed in 
Subsection 3.2.2, depending on the complete or missing data case. The empirical 

power was computed as .1000
81.7timesof# >T  
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Shown in Table 2 are the results of empirical power when the true distribution is 
the 3-variate t. For the complete data case, the empirical power is 0.56 when .50=n  
The powers for the missing data case under MAR and MCAR range from 0.47 to 
0.57 as the missing probability changes from 0.1 to 0.3. When ,200=n  the 
empirical power is significantly increased to 0.85 for complete data. The powers for 
the missing data case under MAR and MCAR are comparable to those the one 
obtained for complete data. 

Table 2. Empirical power for the multivariate t alternative under complete data and 
missing data with MCAR and MAR as a function of sample size 50=n  and 200 

n Complete data  Missing data 
  Missing probability (p) MCAR MAR 

50 0.56 0.1 0.54 0.57 
  0.2 0.47 0.54 
  0.3 0.50 0.50 

200 0.85 0.1 0.85 0.84 
  0.2 0.83 0.84 
  0.3 0.82 0.84 

The empirical powers for the two normal mixtures are shown in Table 3. We 
can see that the test has less power for the first mixture distribution than for the 
second in both sample sizes. This is expected as the second normal mixture is more 
skewed than the first one. As in the t case, power significantly increased as the 
sample size became larger. 
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Table 3. Empirical size for the two normal mixture alternatives under complete data 
and missing data with MCAR and MAR as a function of sample size 50=n  and 
200 

n Mixture Complete data Missing data 
   Missing probability (p) MCAR MAR 

50 1 0.55 0.1 0.54 0.56 
   0.2 0.54 0.55 
   0.3 0.49 0.54 
 2 0.72 0.1 0.70 0.71 
   0.2 0.63 0.67 
   0.3 0.62 0.70 

200 1 0.63 0.1 0.64 0.75 
   0.2 0.63 0.77 
   0.3 0.65 0.77 
 2 0.85 0.1 0.84 0.91 
   0.2 0.83 0.89 
   0.3 0.85 0.89 

An interesting observation is that the power estimates for the missing data case 
are consistently larger under MAR than under MCAR for both multivariate t and 
normal mixtures. One plausible explanation is that although the increasing amount of 
missing data negatively affects power, the decreasing amount of observed data at the 
same leads to reduced information to ascertain the assumed analytic distributional 
structure of the data simulated, thus increasing the power to reject the null of 
normality. Also, unlike MCAR, missing data is not completely ignored under MAR 
and is accounted for by weighting the observed data using the inverse probability of 
the occurrence of missing data. Thus, it is not surprising that power is generally 
higher under MAR than MCAR. 

5. Discussion 

The normal distribution assumption underlies the premise for inference for 
many classic as well as modern statistical models. Although testing for normality is 
an age-old problem with many proposed solutions, modern longitudinal study 
designs involving multiple assessments over time have completely changed the 
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complexity of the underlying analytic issues. As a result, none of the existing 
methods can be applied to validate this key assumption which is the basis for a wide 
variety of normal-based mixed-effects models. Many published studies especially in 
psychosocial research use such models without even acknowledging this 
fundamental issue, yielding study findings that may misinform the public with 
misleading conclusions about treatment effects, disease etiology and progression. 
The proposed approach attempts to fill this important gap in the literature on 
longitudinal and clustered data analyses. 

In developing the test, we generalized the inverse probability weighting (IPW) 
approach to address missing data under MAR. This approach is widely used in 
longitudinal data analysis using distribution-free models such as the WGEE (Robins 
et al. [30]). Our approach is novel in that we integrated IPW with the theory of              
U-statistics to address MAR when modeling the second-order moment based 
variance, rather than the mean response as in most applications of IPW. 

The proposed approach is limited when applied to normal-normal based mixed-
effects models, both the outcome and random effects following normal distributions, 
since it only addressed the normal assumption for the data distribution, not the 
distribution of the random effects. Thus, even if this assumption is valid, 
applications of such models may still yield incorrect results if the random effects fail 
to follow the normal distribution assumption. Current work is underway to address 
this latter issue. 
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