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Abstract

We give a comprehensible and quick proof of Euler’s (resp. Ferro and
Tartaglia’s) formula for roots of algebraic equations of degree 4 (resp. 3).
We use certain polynomial identities.

1. Roots of Algebraic Equations of Degree 4

Let A be a commutative ring, and let X, y, z, u € A. One has

C N < X

y
X
u
z

X < N C

z
u
X
y
4

=ut—2u?x? - 2u2y2 —2u?2? + 8uxyz + x* — 2x2y2 —2x%2% + y4 - 2y222 +z*
= x* + (-2y% - 222 — 2u%)x? + 8yzux + (u* — 2u?y? — 2u%2% + y* -2y + 1Y)

=(X+y+z+uW)(X+y-z-uw)(X-y+z-u)(x-y-z+u).
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We use this. In Section 1, we give our method. We describe Euler’s original
method in Remark 1. There have been no publications of our method. Let K be a
field and let a, b, ¢ e K. Let us treat any polynomial x* + ax? + bx + ¢ e K[x]. If
the system of equations

2, uz),

a=-2(y’+z
b = 8yzu, 1)

c=u*—2u’y? —20%2% + y* —2y%7% + 2

4
= (y? + 22 + U?)? —4(y?2% + 2% + y2u?)

has a solution (y, z, u) = (yq, Zg, Up) € K'3 with some field extension K’ of K, we

have

x* +ax? +bx + ¢

= x* + (=2y8 - 223 — 2u3) x? + 8ypzoUoX
4 2.2 2.2 4 2.2 .4
+(Ug —2ugYg — 2u§zy + Yo — 2Ye20 + Zp)
=(X+Yo+129+U)(X+Yg—2g—Ug)(X— Yo+ 2o —Up) (X~ Yo~ 2+ Up)
Then all the roots of x* + ax?> + bx + ¢ = 0 are given by
—Yo—Z0—Up, —YotZptUp, Yo—20+Up, Yo+ Zo— U

Assume char.K = 2. The equations (1) are equivalent to

2,2, ,2_—a
yoHzt Ut = —,
22,22, . 22_1 2 1
y°z© + z°u +yu—16a 40, 2
=2
y _8'
222 (b
We will find a triple (yq, zg, Ug) satisfying (2). Note y“z°u“ = (@) . We consider
3 a-2 (1 5 1 b2 _
T +§T +(Ea —ZC)T—(g) =0. (3)

Let o, B, y denote all the roots of (3).
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Case 1 of b = 0.

b
Let resp. denote any square root of resp. B). Put 1 = ———.

2
Then aft? = (%j = ofy. Therefore, t =+/y or t=—y. Hence we can take

b 4 2

. 29, Up) = | Vo, B, ———— |. And all the roots of x* +ax® + bx +c =0 are
(yO 0 O) ( \/E Sﬁx/ﬁj
gotten.
Case20of b =0.

Let vo. (resp. y/B) denote any square root of o (resp. B). We may assume
2,2 2

u

v =0. We see yzu = 0 is equivalent to y“z = 0. We can take (Y, zg, Ug)

= (Wa, B, 0). Andall the roots of x* + ax? + bx + ¢ = 0 are gotten.
Now we treat X* + AX® + BX2 +CX + D = 0 where {A, B, C, D} = K and

Kis a field with char.K = 2. Put x = X + A. As a polynomial, we have X4+ Ax3

4

+BX2+CX + D = x* + ax? + bx + ¢ with a:%3A2+B, b:%A3—%AB+C

and c=_—3A4+iAZB—lAC+D Let (yg, Zg, Uy) denote the triple defined
256 16 4 ' 070 -0

above for x* + ax® + bx + ¢ = 0. We have proven

Euler’s formula. All the roots of X* + AX3 + BX2 +CX + D = 0 are

—%A—yo—zo—uo, —%A_yo“'ZO"’UO: _%A+y0—zo+u0, _%A"‘YO"'ZO_UO'

Remark 1. Euler’s original method of solving x* +ax® +bx+c =0 where
{a, b, ¢} = K and K is a field with char.K = 2 is as follows. Write X =r + s +1.
Then one has

x* +ax? +bx +c

= (r2 452 +12)2 4+ 4(r%s2 + %2 +t2r?) v a(r? + 2 +tH) + ¢

2,2 ,42, @ @
+4{r° +s° +t +3 (rs+st+tr)+ (8rst +b)(r +s+t)
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As a sufficient condition satisfied by r, s, t for (4), one has
(r? +s%2 +t2)? + 4(r%s% + s%t? + t2r?) v a(r? + s> + t?)+ ¢ = 0,

a
r2es?4t2=-2

5 (5)
b
rst = -3
From the first equation of (5) one has
2.2

2.2 | .22 a2
res® + st +tr° =

1

Mo

Hence rz, 52, t2 are all of the roots of

2 2
3 a2 a c b
W= W +(E"ZJW_H_O'

This is the same equation as (3). If a, b, ¢ are distinct letters which are algebraically
independent over the prime field of K, then one has distinct four roots of x* +ax?

+bx+c=0. Let a, B, y denote the roots of (3). Put s =+/B, t=+y and

b .
r= ~ 85t They satisfy (5). Put

[ vs s e B e i)

The number of S is 4. Any element of S satisfies x* + ax® + bx + ¢ = 0. Hence all

the roots of x* + ax> +bx + ¢ = 0 are equal to all the elements of S.
Euler’s original method has difficulty in finding the polynomial identity

(r+s+t)+ar+s+t° +b(r+s+t)+c

= (2% + 2 +4(r%% + 22 + 2r%) v a(r? + 2 + t2) + c

+4(r2 +2 412 +%)(rs+ st+tr)+ (8rst+b)(r+s+t)

in (4). Therefore our method is more comprehensible than Euler’s.
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Algebraic equations of degree 4 were solved first by Ferrari. His method was
introduced in Cardano’s ARS MAGNA. It is described in [1].

Remark 2. In [2] we have given another proof of Euler’s formula. In [2],
putting X* + AX3 + BX2 +CX + D = (X2 + pX + q)(X? + rX +5s), we have
gotten p® — 3Ap® + (3A% + 2B) p* — A(A? + 4B) p® + (2A%B + AC + B2 — 4D) p?
— A(AC + B?2 —4D)p — A?D + ABC —C2 = 0. Therefore, if A=0, we have

p® + 2Bp* + (B% — 4D) p? — C? = 0. From this we have given Euler’s formula.

In [3], by the method of [2] we have shown that the discriminant of X 44 ax3
+BX? +CX + D is equal to the discriminant of X2 + 2aX? + (a® — 4c) X — b,

_ 82 I _ Sty lpg 1
Herea =2 A%+B, b= 2 A’ ~ 2 AB+C and ¢ = oz A + 7 A’B - 7 AC +D.

2. Roots of Algebraic Equations of Degree 3

Let A be a commutative ring, and let X, y, z € A. One has

X 'y z
z X :x3—3xyz+y3+z3
y z

(X+y+2) (X2 —xy — xz — yz + y% + 7).

We use this. In Section 2 we give our method. We describe Ferro and
Tartaglia’s method in Remark 3. There have been no publications of our method. Let

K be a field with char.K # 3 and let p, q € K. Let us treat any polynomial X3 + pXx
+q e K[x]. Let ® denote a primitive cubic root € K of 1€ K. (0® + ®+1=0.) We
have (X + Y +2)(X? = xy — Xz — yz+ Y2 + 22) = (X + Y + 2)(X + 0y + 0°2)(X + 02y + 02).

If the system of equations

p =-3yz
X (6)

q=y"+z
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has a solution (y, z) =(yy, 71) € K2 with some field extension K’ of K(w), we

have
X3+ px+q=(X+ Y+ 2) (X + oy + 0°7) (X + 02y + 07).
Hence all the solutions of the equation X3 + px + g = 0 are given by
—Y1— 74, -0y — (0221, —mz)& — 0Zy.
We will find a pair (y;, 1) satisfying (6). By (6), pd = —27y%z%. We consider

3 3
t2 - qt —% =0. Let 8 and ¢ denote all the roots of this. (6+ g=(and 6c = —%]

Let ¥/5 (resp. ¥&) denote any cubic root of & (resp. ). Put yp = 5. Thereis a

unique element z; of e, Yew, Yew?} such that yyz; = —%. We have (yq, 7).

Now we treat X3 + PX? + QX + R =0 where {P,Q,R}c K and K is a

field with char.K = 3. Put x = X +%. As a polynomial we have X3+ PX2 +

QX + R = x® + px + q with p:Q—%PZ, q:%P3—%QP+R- Let (yy, 77)

denote the pair defined above for X + px + g = 0. We have proven

S. Ferro and N. Tartaglia’s formula. Let char.K = 3. All the roots of

X3+ PX2+QX +R =0 are

_lp_yl_zlv —EP—O)Yl—(DZ

1 2
3 3 7 and - P -y —0y.

3

Remark 3. We explain Ferro and Tartaglia’s method to solve x3 + px+q=0
where {p, g} = K and K is a field with char.K = 3. Let p and q be algebraically

independent over the prime field of K. Put x = u + v. Then

U+ +pu+v)+g=ud+v¥+q+@u+p)(u+v)=0.



SIMPLE PROOFS OF THE FORMULAS OF ROOTS ... 201

As a sufficient condition satisfied by u and v for xS+ px+qg =0, one has

3
ud v+ g =0 and 3uv = —p. Therefore ud+v8 = —q and udvd = —%. Let ¢
o3
and y denote all the two roots of t + qt — o7 =0. Let o= 3o = any cubic root

of ¢. Let ® € K denote any primitive cubic root of unity 1. Let B be a unique

element of &y, Yy o, Yy w?} such that ap = —%. Therefore, as u + v one has

oa+pB, oo+ Bco2 and o’ + Bw. They are three. Hence they are all the roots of

X3 + px + g = 0. This method was introduced in Cardano’s book ARS MAGNA.
Since this method does not explain why one has to put x = u + v, our method given
in this section is more comprehensible than Ferro and Tartaglia’s.

Remark 4. In [4], the formulas of roots of algebraic equations of degrees 4 and
3 are treated systematically by Field Theory and Galois Theory. The treatment is not
S0 easy as our methods in the present article, but theoretical.

Remark 5. The usual method of solving x2 + ax +b =0 where {a, b} c K

and K is a field with char.K = 2 is regarded as an application of X2 -y? =

2
2 2
(X +Y)(X —Y) since X2 +ax +b:(x +%j - ""T_b _
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