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Abstract

To decrease the drag of an object under Oseen flow, a shape optimization
system based on the adjoint variable method is presented. The adjoint
variable method is based on a constrainted variational principle, and
consists of the state equation, the adjoint equation and the sensitivity
equation. Comparing to the initial shape, the optimal shape (rugby ball)
can be reduced by about 25% under Oseen equation.

1. Introduction

The study of the optimal shape to reduce the surface force under a constant

volume in viscous flow (as shown in Figure 1) started in 1971 [2, 15, 19-21]. Most

studies focused on the theoretical formulation. The reduction of the surface force

was tried by minimizing the energy dissipation. These optimization problems only

could be applied in the case the surface can be described by a continuous function.

In 1980’s, in order to construct complicated optimal structures which cannot be

described by continuous functions, the optimal shape was obtained by using the

computer analysis technique [3, 17]. In 2000’s, due to advances in high performance
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computing, using complex high-resolution meshes became possible [4, 7, 13]. When
using such mesh, besides the main optimization techniques (e.g., the adjoint variable
method), auxiliary techniques such as mesh smoothing or deformation become
necessary.

The adjoint variable method is a sensitivity analysis method based on the
Lagrange-Multiplier Method. The Lagrange-Multiplier Method is based on the
calculus of variations under constrains, which is based on the variational principle.
In the stationary point of the action |, the first variation 8l produces no change even
if the variables of the functional (1) would change. In the adjoint variable method,
the Lagrange function L is similarly formulated and the optimal shape can be
constructed by obtaining the stationary point (5L = 0) based on the variational

principle [5, 16].

In this paper, the cost function is defined as the surface force and the adjoint
variable method based on the continuous sensitivity equation is formulated. The
shape optimization algorithm is divided into five phases: the state equation (the
Oseen equation), the adjoint equation, the sensitivity equation, the mesh relocation
and the constraint volume. The state variable data is saved at every time step in the
state equation phases, and the adjoint variable data is saved at every time step in the
adjoint equation phases. By using the saved data, the sensitivity is calculated. By
using this algorithm containing such techniques, the smooth sensitivity distribution
can be constructed and the optimal shape can be robustly converged to form the
arbitrary shape. We verify the results obtained using the proposed shape
optimization technique under Oseen flow by comparison to the literature
(Pironneau’s results under Stokes flow) [15].
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Figure 1. Computational domain and boundary conditions.
2. Adjoint Variable Method

2.1. Problem

To minimize the cost function under constraints, we formulated the Lagrange
function by introducing the adjoint variables. The adjoint variable method is based
on the variational method. By introducing Lagrange multipliers called adjoint
variables, the constrained optimization of the cost function is transformed to the
unconstrained optimization of the Lagrange function. A circular cylinder is placed in
the computational domain €, as shown in Figure 1. I is the N-S-E-W-U-L boundary
at the north side, the south side, the east side, the west side, the upper side and the
lower side. y represents the surface of the object under optimization. A fluid flows in

on the boundary I', and flows out on the boundary I'r. The origin of coordinates is

at the centre of the cylinder. Here, the equation is defined as follows:
Y=Tg+ILy+Ig+Iy+Ty +I +y=T+1. (1)

The domain [] shows the internal domain in the object. The variables t and
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(X1, X2, X3) show the time and the space coordinates, respectively. In this paper, the

cost function is defined as:
J—_Jte'[ — n+L %_F%n_FL a&_}_%n
-, PN+ Relax " ax )™M TRelax, ok, )™

1 (ou3 au [ 1

The cost function is the traction force on the surface y with respect to X;
direction. The variable n; (i =1, 2, 3) shows the normal vector on the surface. The
variables Uj, U,, U3 and p show the velocities and the pressure, respectively. The
variables Ty, T, and T; show the tractions with respect to the X;, X, and X3
directions, respectively. The constants ty and t, show the start of the test time and
the end of the test time in the optimization. The constant Re represents the Reynolds
number as follows:
pLU,

n

Re =

A3)
The constants L, U;, p and p represent the representative length, the
representative flow, the density and the viscosity coefficient, respectively. The

equations considered in this paper are dimensionless. We formulated the Lagrange
function by introducing the adjoint variables as follows:

L=J+B+V +FeR!, 4)

t t
F- I ° I Mt x) f(t x, WL, x))det+I ° j Ja(t, X) Fo (t, x, W(t, x))dQclt

59 Q tg 4 Q
t

; j ° j 2 (t, x) Fa(t, x, W(t, x))dQdt
tsd O
t

. I j %a(t, %) F4(t, x, W(t, x))dQt e R, )
ts d Q

! t
B= J. ej As(t, x)Ty(t, x, W(t, x))dydt +J. eJ. g (t, X)U (t, x)dydt
tS FN +r5 tS rN +FS
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t, o
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te
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tepe t
; j [ 20 ) x) = 0.01)dydt + j j Ms(t, X)Uy(t, x)dydt
ts J Ty ts /Iy

+

t. o
j [ 2t x)us(t, x)dyt
ts J Iy

te ¢ t
+I ) A7 (t, x)up(t, x)dydt +J. eJ. Mg(t, x)u,(t, x)dydt
tsdy tsdy
te |
; j I Mo, X)Us(t, x)dydt € R, ©)
tsdy
te .
V:KJ I d[Idt e R, (7
ts v I1

where the variable F shows the constraint function by the governing equation and
the variable B shows the constraint function by the boundary condition for the

governing equation. The variable A; shows the adjoint pressure corresponding to the

pressure p and A, ~ A4 show the adjoint velocities corresponding to the flow
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velocities U; ~ Uz. The variables A5 ~ Aj9 represent the undetermined adjoint
variables. For example, the variables A5, Ag and A, show the introduced adjoint
variables to set the boundary conditions Ty =0, U, =0 and T3 =0 on the
boundary I'y and boundary I's in Figure 1, respectively. The control variables used

to deform the shape are the coordinates of the node points on the surface in the
analytical model. The objective function consists of the cost function (J) and the
function (V) which represents the constant volume constraint on the object.
The shape is deformed to minimize this objective function. The function
f(t, x, W(t, x)), consists of the continuity equation f;(t, x, W(t, x)) and the Oseen

equations f,(t, x, W(t, x)), f3(t, x, W(t, x)) and f4(t, x, W(t, x)). The stationary

conditions (the state equation, the adjoint equation and the sensitivity equation) are
derived by using the first variation. The Lagrange function is formulated as follows:

L=J+B+V +J' J xl(aul My 6u3dedt
tg OX; 0%y,  0OX3

(0 a0 (a an), 0 (%
{2 8X1 8X1 T 8X2 (aXl * 8X2 * 8X3 8X1 * 8X3 dQat

BN TV PRI

I .[ >\‘3{ 6X2 Ul 8X1 Uz 8X2 U3 6X3

[0 (), 0 an 0 (o an
* Re {8X1 (GXZ * axl j 2 8X2 aXZ * 8X3 6)(2 * 8X3 det

1 6u1 8U3 0 aU2 8u3 0 6U3 1
— |+ ==+ = ——(rdQdt e R". (8
" Re Re {aXl (8X3 * 8X1 ) * 8X2 (6X3 * 6X2 * 6X3 6X3 < ( )
The constants U;, U, and Us denote the representative flow (constants). In

order to derive the adjoint equation and the sensitivity equation, equation (8) can be
transformed as follows (see appendix A for details regarding this transformation):
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t
+ J. 7L5T1d'\{dt + J. eJ. }\.6U2d'ydt
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e te

t
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L ts FU +r|_ tS FU +r|_
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+ ej k“Tldydt+J‘ e_[ Jopo T dydt + j ) j Ay3Tsdydt
tsJIE tsJ I tsJ I
ot te

+ J. )\14U1d'\{dt + I J. 7\,15U2d'ydt
ts J Iy ts ¢ Ty

ot t t
; ej AygUsdydt + J' ° J' DUy iyt + J' eJ' U chyt
ts J Iy tsdy tsdy

et t
N e'[ JroUsdydt — .[ [xi+1ui]§edQ+KJ' e'[ dITdt. ©)
tgdy Q S ts ¢ I1

The functions S;-S; are as follows:

O\
S| =7\.|+1an] — AN +L(%+—J+1

Rel B 5 ]nj=o, =123 (10

In the case of a subscript being used more than one time in the same term, it

should be interpreted according to the summation convention.
2.2. State equation

We express the function that minimizes the Lagrange function (equation (9))
using the adjoint variables A(t, X). The comparison function A(t, X) is defined as
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follows [5, 16]:

A|((X,, t, X1, Xo, X3) = }\.|(t, X1, Xo, X3)+ (X,T“(Xl, X9, X3), | = 1, 2, 3, 4 in Q,

(1D
where o is the parameter and m(x) is an arbitrary differentiable function. The
comparison function A(t, X) represents the domain around the variable A; by
changing the parameter a. Replacing the variable A; by the variable A;, equation
(9) becomes L(A| + an). When the parameter o in L(X; + an,) is zero, it becomes
equivalent with equation (9). When the variable A gives the stationary condition
with respect to the Lagrange function L, the function L(A; + an) should satisfy the
stationary condition with respect to the arbitrary function n;. To derive the variable
A which gives the extremal value with respect to the function L(A; + an,), the
function L(A; + an) is differentiated with respect to the parameter o and the

parameter o in L(A + an;) is set to zero as follows:

5L = {lim LA +omy) = L(M)}a _ [5L(7n| + Oml)} Cl=1~19. (12)
a—0 o oa. 0=0

The integral (equation (9)) is minimized with respect to o for the value o = 0
and A(t, X) is the actual minimizing function. All three variables a, t and X are

independent. By using the fundamental lemma of the calculus of variations, the state
equation is derived from the above equation as follows:

6V(k| +(XT]|) aFO\.| +0LT]|) 1.
{—6& L—o+[—5a L:o’ I =1~19. (13)

The state equations consist of the continuum and the Oseen equations. The
Oseen equations consist of the time derivative term, the convective term, the
pressure term and the diffusion term as follows:

ot = (= 1) inQ, (14)
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+L 0 au1+au1 +i 8u_2+% +i %4_%
Re 5X1 5X] 5X1 6)(2 6)(1 6)(2 6X3 6X1 6X3
=0(=f,) in Q, (15)

8 6u2 8U2
ER (Ul 2 Y25, TUs 6x3)

Re |0x; \ 0%y 0% OXy \ OXy  OXy OX3 \ OXy  OXj3

—0(=f3) in O, (16)
ous op ous 0 Ous
ot oxg (Ul x V25, TYin,

P L0 [ Q) 0 (% M), 0 (U,
e | ox L ox 8x1 Xy \ OX3 0%y OX3 \ OX3  OX3
=0(=f;) in Q. (17)

In the state equations, the boundary conditions are shown in Table 1.

Table 1. Boundary conditions

Domains State equations Adjoint equations
Ly Uy =0.0L uy; =0, u3 =0 Ay =0, A3 =0, A4 =0
e T=0 S=0

'y, Is Uy =0, Ty =0, T3 =0 A3 =0, Sy =0, S3=0

Iy, L u3 =0, T; =0, T, =0 Ag=0,5=0,5=0
Y uy=0,uy=0,u3=0 A =1L A3 =0, Ay =0

2.3. Adjoint equation
The comparison function W, (a., t, X, X5, X3) is defined as follows:
Wi (o, t, Xp, X9, X3) = W (L, X;, Xo, X3)+ 0M410(X1s X2, X3), 1=1,2,3,4 in Q.

(18)
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The adjoint variable is calculated by solving the adjoint equation, the stationary
condition which is obtained by taking the first variation of the Lagrange function
with respect to the state variable w; as follows:

oL(W +amjy9) _[93(wy + omyyg9) L [9B(W +omyug9)
@OL a=0 aa a=0 aa a=0

+[M} {M} - (19)
oo 0=0 oo a=0

The adjoint equation is derived as follows (see appendix B for details regarding

this transformation):

Ohy  Ohy  Ohy . .
, + 7 + s 0 in Q, (20)

R N
Bt S (G2

In the adjoint equations, the boundary conditions are shown in Table 1.
2.4. Sensitivity equation

Adjoint formulations can employ either a discrete or a continuous approach. In
the discrete approach, the sensitivity, the gradient of the Lagrange function, must be
calculated using only nodal information. Therefore, programming techniques for
computing the sensitivities, such as automatic differentiation [12], are demanded. In
this study, the adjoint formulation is based on the continuous approach so such

methods are not needed. The comparison function X|(a, X;, X5, X3) is defined as

follows:
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X|((X,, X1, Xo, X3) =X (Xl, X7, X3)+ Q,T]|+23(X], X7, X3), | = l, 2, 3 in Q. (24)

The first variation of the Lagrange function with respect to X represents the
sensitivity equation. The first variation is as follows:

oL(x + anjy03) _[93(x + omyy03) L [9B + omyg;)
ool 0=0 oo, 0=0 oo, 0=0

N [5F(X| + 0”]|+23)} . FV(X| + 0“1|+23)}
dal a=0 dau a=0

I=1,2 3R> (25)

The above equation is as following (see appendix C for details regarding this
transformation):

{}\.z(U]nl +U2n2 +U3n3)+(—7\.] + 2“%)”1
1

6k2+6k—3n+ 6k2+6x4n ouy
Hlax, Tax )2 "M ks T ek ) 3 ax

O\ oA
+{03(Un +Uyn, +Usn )+p(—3+—2jn
{3 1 +Unp +Usn; o, )M

_ 87\.3 6k3 67&4 8U2
+( Al +2p axzjnz + “(6x3 + 7 n; £

g O\,
+{}\.4(U1n1 +U2n2 +U3n3)+;,t( aXl + 6X3 jn]

Ohy O3 B Ohy ouz 3
+ p( % + o jnz +( AL+ 20 o ns 2 kN =G; on vy, (26)

{}\.z(U]nl +U2n2 +U3n3)+(—7\.] + 2“%)”1
1

oy P2, PNy (O Ol L Oy
Mo, "ax )2 "M ax; Tk ) 3 axg

O\ oA
+403(Un +Uyn, +Usn )+p(—3+—2jn
{3 1 +Usnp +Usn; o, )"

_ 6X3 6k3 67&4 6U2
+( A +2p axzjnz +H(6x3 + 7 n; 2
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ohy Oy
+ {7\.4(U1n1 + U2n2 + U3n3)+ H(a_)(l +E)n1

O\ o\ oA ou
+ “(aT;—i_Wjjnz "r(— 7\,1 + Zuwijn?,}ﬁ—l(nz = Gz on v,

{7\,2(U1n1 +U2n2 +U3n3)+ (—7\.1 + 2“%)”1
1

B2 B, (0 B o
Mo, Tax )2 TH ks T ax ) 3 oxg

+ {}\.3(U1n1 + U2n2 + U3n3)+ H(% +m—2jn1

6X1 8)(2
67»3 6?»3 67\.4 8u2
_ 3 AL 92
+( )\41 T 6X2 jnz * M( 6X3 * 6)(2 N3 6X3

O\ oL
+h4(Ugn +Usny +U3n )+p(—4+—2)n
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Figure 2. Smoothing on the surface of the object.
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3. Techniques Used in the Shape Optimization Algorithm

3.1. Smoothing

In shape optimization, meshes have been mainly analyzed by using 2D low
resolution models. Shapes were optimized by controlling the nodes located on the
surface. This approach is called the mesh point approach [9]. Unfortunately, in the
case of 3D high resolution unstructured grids (especially using tetrahedral elements),
the mesh point approach does not work so well. As a node on the boundary in a
finite element is moved along the sensitivity, the smooth shape is lost and an
irregular shape is constructed [14]. As the surface becomes irregular, it partly causes
a numerical vibration in the fluid analysis and negative volumes of mesh elements.
In this study, the smoothing method is applied to the surface shape, as this method
can be easily implemented [1],

_ 9 * Ok Fmb ()

9i).m = 3
20 0A))
J
gl a+1) = Z—
Aj)
j

The surface is shown in Figure 2. [i], [k], [m] show the node numbers. The

. on vy, (29)

1=1,2,3, .. ony. (30)

smoothing method is one of the methods where the averaged movement amount of
an element is converted to the movement amount of a node. The variable gfjj shows

the movement amount of a node point [i]. The variable g¢j) represents the movement
amount at gravity position of element (j). The variable A< i) stands for the area of
an element (). The lower subscript (I) is the iteration number. By updating the
movement amount iteratively (I = | +1), the deformed surface mesh is constructed.
3.2. The relocation of nodes in a mesh

The relocation of nodes to deform from the initial shape to the optimal shape
causes negative volume in some elements around the surface. Therefore, the nodes in
the computational domain should be relocated according to the relocation of nodes
on the surface. To robustly relocate nodes, the biharmonic equation consisting of the
fourth derivative is applied to deforming the mesh [8],

viO(x)=0 in Q (31)
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O(x) =B gx) on 7, (32)
O(x)=0 on Iy, 'y, g, Is. (33)

The variable ©(x) shows the movement of nodes. The variable 9(k) shows the
movement on the surface with respect to the shape step (k). B shows the coefficient.
If g() is large, it often causes negative volume. Therefore, the coefficient {3 is
empirically set to a small value.

3.3. Constant volume constraint

By using only the sensitivity from the initial shape to the optimal shape, due to
the volume becoming negative, the object may cause an unrealistic deformation.

This problem can be overcome by considering constraints. The function h(x) is

defined as follows:
h(x)) =V (x) = V(x@):. k=0,1..eR" onvy, (34)

where V (x(k)) represents the volume with respect to the shape step (k). Minimizing

the function h(x) means satisfying the constant volume constraint. To minimize
h(x) while maintaining the surface shape, the surface shape is deformed along an

outward normal vector of the object as follows:
X(k), (j+1) = X(k),(j) T ¥ = Xk),(j) + ah(X(k)j(j))n, j=0,1,..€ R? on v. (35)

The lower subscript (j) is the iteration number of the mesh deformation. As
this () is increased, the volume of the deformed shape gets closer to the volume of

the initial shape. n(x(x)) remains constant while the subscript () is increased. The

deformation amount is set to be small by multiplying a coefficient a in the second
term. The constant volume mechanism is shown in Figure 3. In the beginning, the
shape is deformed using sensitivity analysis based on the adjoint variable method. In
case the deformed volume is smaller than the initial volume, the volume is slowly
increased along an outward normal vector of the object surface by expanding the
shape. In case that the deformed volume is larger than the initial volume, the
deformed volume is slowly decreased along an inward normal vector of the object
surface by suppressing the shape. In other words, this algorithm is repeated until the

deformed shape is in good agreement with the initial volume.
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4. Discretization

In this section, we describe the discretization of the sensitivity equation and the
gradient method. More about the discretization of the state equation used here can be
found described in literature [22]. The discretization of the adjoint equation is done
using the same approach as for the discretization of the state equation.

4.1. Sensitivity equation
In this paper, the discretization method used is the finite element method. The
shape function of the first order triangular elements is defined as follows:
N[i1 = agi] + bripx + ¢ipXe + dfiXs. (36)
[i] shows the node number. &}, bjj, C[i}, d[ij show the coefficients (see [22]). The

interpolation function of the velocity is defined as follows:
Ui, (my = NmuLm + N[Z]ul,[Z] + N[3]U|’[3] + N[4]U|,[4], =12, 3. (37)

(m) shows the number of elements. [1], [2], [3], [4] show the internal numbers of
nodes with respect to the number of elements (m). The value of the partial

differentiation is obtained by equation (37). For example, the value of the partial
differentiation U; with respect to X; is obtained as follows:

ou ) _
(8_x1)<m> = Dy, 1) + Braju, (2] + bsjun, [3] + BLaju, a} (38)

In the calculation of the sensitivity, the value of the elements has to be

transferred to the value of the nodes. The value of the number of element (m) is

divided by three in proportion to the element area (m).

For example, the node [1] is connected to six elements as shown in Figure 4.
[1], [2] and [3] show the node numbers on the surface y. [4] shows the node number
in the domain Q. By selecting the three nodes [1], [2] and [3] related with the
surface, the part value of the node [1] can be obtained by the connectivity
information. The part value is then added to the number [1], [2] and [3],

%) Am) 39
(6X1 <m> 3’ ( )

where Ay indicates the surface area in element (m). If the area of element (m) is
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large, the value of the partial differentiation for element (m) is dominant at node

(11,

Am)
. 4
! (40)
The partial differentiation of U; with respect to X; is obtained as follows:
5
Z ( oup j Am-n)

ou Y _ AN meny 3
2 - , (1)
aXl 1]

5
A(m+n)
275

where the value of the node [1] can be obtained by summing parts of the value after
finishing the process equations (39)-(41). The other terms in the sensitivity equations

are obtained in a similar way. The sensitivity G at every node is calculated. G;, for

example, is determined as follows:

Gy = {M,[l](ulnl,[l] +Uany iy +Usng [17) = A, ), 1]

axz) (axzj (am)
2 & —_— —_ 2
" “( OX [1]n1’[1] ’ “{ RSWN " 2SN 2.1
+ M{( % j[l] + ( o, )[1]}%’[1]}(8)(1 j[1] + {7»3, [1](U1ﬂ1,[1] + Uzl’lz, [1]
O\ O\
+Usn3 1) = Ao, ) + “{(6722)[1] + (a_xfjm}nl, [1]
ax3) {(%j (an } }(auzj
20 == | M+ == +|=— n ==
“( oy I T Ua [0 Uy
+ {14, Wiy g +Yang oy +YUsns i) = A s, o]
o, oy oy s
(52 (G (5, (B2, e

Ohy Ous
+ Zu(m)m”& [1]} (a—xl)m- (42)
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The adjoint variables A ] etc. are calculated by using the saved files containing

the adjoint and state variables. This approach is also applied to the drag on the
surface and the normal vector on the surface.

4.2. Gradient method

Variables G;-G3 from equations (26)-(28) represent the sensitivity. The shape
is modified so that the sensitivity becomes zero. The superscripts (1) to (n) show

the start of the test time and the end of the test time, respectively. The surface in the

shape step (k + 1) can be obtained as follows:

X ] [ Xk B(G|(,l()k),[1] +GI(,2()k),[1] + "‘+G|(,n()k),[1])
XL (keu[2] | [ X1 (k) [2) B(G|(,l()k), 2] +GI(,2()I<),[2] ot Gl(,r&),[z])

REN(SSINTI I RN (SN (1 _B(GI(,l()k),[i] +GI(,2()k),[i] e +G|(,n()k),[i])

xcao.m ] [ 9w

X|’ k), gl, k),
(.) (2] (.)[2] , 1=1,2,3 k=0,1,... ony. (43)

XL L9, [l

The value B is decided based on a heuristic search method [18]. B+ g represents

the amount of the movement on the surface. The value B is empirically decided as
not to produce negative volumes in the mesh.

5. Algorithm

As described before, we used Oseen’s approximation to derive the first variation
in the convective term. Before executing the algorithm, the Oseen equations are
solved until the flow field reaches steady state.

In the first phase of the algorithm, the state variables (W) are calculated by using
the state equations. The state equations are solved from the test of start time to the
test of end time. All the nodal values of the state variables (W) are stored at every
time step.
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In the second phase of the algorithm, the adjoint variables (A) are calculated by
equations (20)-(23) from the test of end time to the test of start time. The adjoint
equations, which include the time derivative, are also solved until the adjoint flow
field reaches the steady state. All the nodal values of the adjoint variables () are

saved at every time step. This data is stored as files.

In the third phase, the sensitivity at every time step is calculated by using the
saved files containing the adjoint and state variables. The sensitivity represents the
displacement of the nodes on the surface of the object and must have a small value in
order to robustly converge to the optimal coordinates and to avoid collapse of the
mesh topology.

In the fourth phase, the shape is modified by using the time integral sensitivity.
The optimization method is the gradient method. After that, the nodes of the mesh
are relocated according to the time integral sensitivity. The node relocation is
performed by using the biharmonic equation.

In the fifth phase, the shape is modified in order to satisfy the constraint of

constant volume.

In case the shape converges to the optimum, the result is outputted. In the case
that the shape does not converge to the optimum, the algorithm returns to the first
phase.

6. Shape Optimization Objects in Flow

6.1. Calculation model and conditions

The mesh is shown in Figure 5. The mesh resolution is 15009 nodes and 67855
elements. The radius and the height of the cylinder are 0.5 and 0.3, respectively. We
choose the element type to be a 4-node tetrahedron. The P1-P1 element with linear
shape functions for velocity and pressure is used. Therefore, the tractions on the

boundary I'g are treated as “p = 0” and the adjoint tractions on the boundary I'g
are treated as “A; = 0” while computing the shape optimization. The inflow velocity
in the boundary Tz is 0.01. The representative flow is set as (U, Uy, U3) =
(0.01, 0.0, 0.0) in the adjoint and sensitivity equations. The test of the start time and
the test of the end time are set as 1600(s) and 1601(s), respectively. In the adjoint

analysis, the time condition in the test of the end time is set as A(tg) = 0.
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Figure 5. The computational domain and boundary conditions.
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Figure 6. The drag coefficient.

6.2. Calculation results

Figure 6 shows the time history of the surface force (the cylinder). The
horizontal axis and the vertical axis show the time and the drag coefficient,
respectively. The drag coefficient is constant with respect to time because the flow is
slow. This coefficient is 13.65, and this value is almost in agreement with literature

[11].
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The sensitivity distribution is shown in Figure 7. The sensitivity with respect to
the cylinder is not present on the upstream side and the downstream side, while it is
present on the side of the cylinder. The sensitivity distribution disappears with the
converge to the optimal shape. Figure 7 shows the shape variation with respect to the
shape step. In order to reduce the surface force, the cylinder shape deforms to an
elliptical shape. Furthermore, as deformation continues, the elliptical shape
converges to the optimal shape which has sharp ends both on the upstream and the
downstream side. This optimal shape is similar to Pironneau’s results [2, 3, 7, 13, 15,
17, 19, 20].

The cost function is shown in Figure 8. The horizontal axis shows the shape
step. The vertical axis shows the normalized cost function with respect to the initial
cost function. Comparing to the surface force of the initial shape, the surface force of
the optimal shape is reduced by 25%. This ratio is almost in agreement with the
literature [17].

Shape step 2 Shape step 5 Shape step 20
Sensitivity
distribution |Upstream Downstream
C"’»a, &‘{ " 7 R
Shape

Figure 7. The sensitivity distribution and the shape deformation with respect to
shape steps.

7. Conclusion

In order to reduce the surface force under the Oseen equation, the adjoint
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variable method is formulated. The stationary condition (the state equation, the

adjoint equation, the sensitivity equation and the boundary condition) is derived

from the Lagrange function. To derive the boundary condition by the first variation,

the natural boundary condition and the fundamental boundary condition could be

identified by utilizing the arbitrary function mn. Under the constraint of the Oseen

equation, the optimal shape was successfully constructed by this algorithm. We

confirmed that this shape is almost in agreement with the Pironneau’s result under
Stoke’s flow.

(1]

02 frr — e —— —

Normalized cost function (Jy/ Jg) )

Shape step

Figure 8. Cost function.
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A. Transformation of the Lagrange Function

The Lagrange function (equation (8)) is transformed to derive the adjoint
equation and the sensitivity equation. By applying the Gauss-Green theorem,
equation (8) becomes as follows:

.[tj xla“—kdgdt—_[tj s dyrdit — Lj axluo|Qo|t (44)
S S S

The time derivative term (the fifth term-the seventh term) in equation (8) is as
follows:

j I x,H( ou )det— j' Aot | dQ+j' J' ax'+1uo|Qo|t 45)

The pressure term (the fifth term-the seventh term) in equation (8) is as follows:

ijm( apdedt jjk,+1pndwdt+jj ”k“ pdQdt.  (46)

The convective term (the fifth term-the seventh term) in equation (8) is as follows:

t t t .
J. eJ. 7\|+1U aul dQdt = It EIW )\'i+1U juinjd\udt + J.t eJ.Q 62‘)2-:1 U Juldet
S S

(47)

The viscous term (the fifth term-the seventh term) in equation (8) is as follows:

te ou Oou:
J i
.[ .[ +1 Re Re oxj (8x, X ]det
fe ou; o\ uj  ou;
_J b i+1 J + &
J' H'l(@ jn dydt I JQ o (ax, 6ijdet
t ou
= ej |+1( i, jn dydt — ! Itj isy (u i + ujnj)dydt
S

te 0 a7‘|+1 0 Ohjy
I ( o B T et w foadt (48)

The fourth term and the fifth term in equation (8) is as follows:

1 J‘teJ‘ O\ig
-— uin; + u;n; )dydt
i Jy ox (uj i i i)dy
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o\ ;
J. (67\44—1 uin i a_)J(Huln]\dedt
i

_ 1 te aki+1 a}"j+l .
- R_e-[tsv[w[ o Jumidvat (49)

Equation (9) is derived after the transformation and the arrangement.

B. Derivation of the Adjoint Equations

Using the first variation with respect to the state variable w = (p, uj, U,, Us3),

equations are derived. These equations are called as adjoint equations. The index
| =1 in equation (18) is as follows:

Wi(a, t, Xp, X2, X3) = p(t, X1, X2, X3) + amag(X;, Xa, X3). (50)

To derive the first variation L with respect to p, the function 1, is introduced.

This function is the continuity condition, an arbitrary differentiable function which is
defined on the set of spatial coordinates over the analytical domain. Its boundary
depends on the boundary p. Arbitrary functions are defined with respect to each state

variable. In the Lagrange function (equation (8)), the first term in the right side is as

{ aJ'teJ‘T( )ddt}
-— (p+a
oo .y i(p Moo ) AY o

fe 1 8u1 ou
= |: J. { (p + (ano)n] [aX + lenl}dydtl‘o (51)

Each variable is independent. Exchange of the order between the integral

follows:

domain x and the differential a is possible,

o [t
_G_I j Ti(p + anyg ) dydt
a tsdy a=0

{ I I { (p + angp)ny + (S)l:} +88Lx1] }d“/dt}
a=0

te
=] nmaothet. (52)
tsdy
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The second term in equation (8) is as follows:

o [t kg1
|:a(1, J.ts J‘Q(p + (X,T]zo) an dQdt o

“ I 82'“111 det} j J' axk“n dQdt. (53)
Q OXg ts

The other term in equation (8) is also a similar approach. Equations (51)-(53) are

summarized as follows:

oL(p + any)
dot a=0

t t t
= I EJ' nmzodydt + J. eJ‘ agk_H nzondt —I ej }»i_'_lninzod I'dt
tgdy s dQ OXg tsd v

cto o

- k5n1n20drdt - j J X7n3n20drdt
Jitg J I+ ts @ I'y +Ig

oo o

- 7\,8n11’]20d Idt — I I )Mgnznzod I'dt
Jtg J Iy +IL ts J Iy +IL

A

t
- kllnlnzodrdt - j e‘[ klznznzodrdt
Jig JIE tsJIE

- 7»13n3n20d I'dt = 0. (54)
Jtg JrE

By the fundamental lemma of the calculus of variations, equation (54) becomes as
follows:

oy Ny Oy .
OX;  OXp = OX3 0 in (55)
= 7L2n1 - 7»3”2 - 7»4“3 =0 on Y. (56)

The above equation should be consistently satisfied with respect to the arbitrary

surface. Therefore, the boundary vy is set as follows:

(7\.2 7\.3 7\.4) = (1 0 0) on v. (57)
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Similarly, the boundary I't and I'g are as follows:
—(ky +A5)n; —A3ny —(Ag +A7)N3 =0 on Ty, Is. (58)
The above equation is also as follows:
Ay =0, As =—Ayp, A7 =—Ay4 on Iy, I5s. (59)

The other boundary condition is similarly derived as follows:

7\.8 = —7\.2, 7\.9 = —7\.3, 7\.4 =0 on Fu, FL’ (60)
7\,11 = —7L2, 7L12 = —7L3, 7L13 = —7L4 on FE, (61)
7\.2 = 0, 7\.3 = O, 7\.4 =0 on FW (62)

The first variation with respect to U; is derived. Equation (18) in the index

1 =2 is as follows:

W2(oc, Xl’ X2, X3) = Ul(t, Xl, X2, X3)+ (X,T]zl(xl, X2, X3) in Q. (63)
The function m,; is the arbitrary function to take the first variation. However,
the function 15, has to satisfy u; = 0 on the boundary y, I',. In the boundary v, the
velocity U; has to be zero. Therefore, U; + an,; (the perturbation or,; is added to
U;) has to be zero as well. In this boundary, W, and u; are zero and the function

My; is naturally derived as follows:
M21(X1, X2, X3) =0 on v, Tyy. (64)

The same approach is used for the boundary I',. Using the above equation, the

first term in equation (9) becomes as follows:

[M} :[M} =0 ony. (65)
oo 0=0 dot a=0

The third term in equation (9) is as follows:

o [ Oy Oh ., Oy 1 3 (Ohjn  ah,y
{aaItSJ‘Q(””““”){at o0 "o TR oy Tax )[4

o [t Ohy A, Ok 1 0 (Ohju1  Ohs
+{6a.[ts.|.gu2{8t OXy +U16Xj+R68Xj 00Xy +6Xj dQadt =0
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te g axl Oy 1 0 O\ 1 L O
{8&_’._’. { e T T | L

ef fohy M, Ok 1 0 (Ohju Oy
_Jtsjg{ ot _a_X]+Ujo+ﬁWj X o Xj n2,dQdt. (66)
The fifth term is as follows:
0 te te
— %I J‘ (U] + (XnZl)Sldet = —‘[ J. Sanldet (67)
v a=0 tsdy

The function S; represents the adjoint traction. The twenty-first term in

equation (9) is as follows:

0
—[aj'g o (t, X, Xo, X3){Up(t, Xp, X, X3) + anay(Xg, Xp, X3)}

t
+A3(t X1, X, X3)Ua (b, X5 X, X3) + Rg (L X4, Xo, X3) U3 (t X1 X, X5)J¢ dQ}

a=0

t
= _|:J.Q [7\’2(1:7 X1, X2, X3)n21(xla X2, X3)]t§ dQ:|

a=0
—IQ Malte, X, X2, X3) = Ao (s, X1, X, X3)i 21 (Xg, Xa, X3)AQ (68)

In a similar way, the other term is obtained by taking the first variation. Using
equations (64)-(68), equation (9) is as follows:

OL(uy +amy)
da a=0

e [on, on My 1 0 (Ohjy Oy
‘Jtsfg{—at T Ui TReax oy ok )| et

- Q{Kz(te, X> Xo, X3)N21 (X1, X2, X3) = Aa(ts, X15 Xo, X3)Mo1(X), X, X3)}dQ

r te Ohil O\
_ . jw {7\.2U jn Xlnl Re ( a)J(:— + asz 1’]2]d\|ldt
¢l

r L te
+ I X14T121d\vd'f+_[ _[ A7z dydt. (69)
s ¥ Iw tsoy
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By the fundamental lemma of the calculus of variations, the domain Q is as
follows:

M, M, 1 0 (GMH oy

ot a_xl+ JEJ’_R_eE 6X1 +aTjj=0 on Q. (70)

Equation (70) causes inverse diffusion problems because the viscosity term in
equation (70) has the same positive sign as the time derivative [6, 10]. Inverse
diffusion problems cause numerical oscillations and cannot converge. For stability
reasons [12], the backward time is defined as follows:

t=-1 on Q. (71)
The second term is as follows:
Ao(te, Xpr X2, X3) — Ao(ts, X1, X5, X3) =0 in Q. (72)
Using equation (64), the third term in equation (69) is as follows:
o a5 G+ (G- (0 B
=$,=0 on Iy, Ts, Iy, I, TE. (73)
The other term is derived as follows:
AMg =0 on Iy, A7 =0 ony. (74)

The adjoint equation in the domain and the boundary with respect to the

variable U; are derived. Adjoint equations with respect to the variable U, and uj;

are also derived in a similar way.
C. Derivation of the Sensitivity Equation

By using equations (59)-(62), (74) etc., the Lagrange function (equation (9))
becomes as follows:

j ITldydt+ '[ I p‘”a”k+1 dQt
tg Xk

i % COhisg 10 (M Ahiy
J. J. { Xi +U] aXJ +Re aXJ aXi * aXJ dCdt
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t t t
—I ej uS;dydt + J' ¢ J' A, Tydydlt + J' ¢ J' JosTodhyclt
tsdy ts ¢ Ty +v tg ¢ Iy +I'y +Ts +y

t t
+I e_[ ATyt —I iy e o + KJ ejdl‘[dt eR. (75)
tg o Iy +Iy +IL +y Q s tg ¢ IT

The sensitivity is calculated by solving the sensitivity equations, the stationary
conditions which are obtained by taking the first variation of the Lagrange function
with respect to the spatial coordinate X. In the beginning, the first variation is derived
with respect to X; as follows:

Xi(on Xp, X, X3) = X+ anpg (X, X, X3), Xo(o Xp, Xp, X3) = %o,
X3(a, X;, X3, X3) = X3 in Q. (76)
The boundary I is fixed as X = x;. Therefore, the function n,4 is as follows:
N24(X1, X2, X3) =0 on T. (77)

The first term in (75) is as follows:

- T (X (o, X;, X9, X3))dydt
A NS

a=0

o [l
= {—a _[ {— P(X (o, Xp, X, X3))M (X (e, X1, X2, X3))
tsdy

L ou; (X (o, Xj, Xz, X3)) N auy (X (o, Xp, Xp, X3))
Re 6X1 6X|

x i (Xq(a, X;, X9, X3 ))}dydt} : (78)

a=0
The integral domain y*, Q*, W* shows the domain with respect to X. The

boundary y* depends on the parameter o. Exchange of the order between the

integral domain x and the differential a is impossible. Therefore, an integral domain
is converted. The surface domain dy on the object, and the projected areas with

respect to the X;X, -plane, the X,X; -plane and the X;X3-plane are shown in Figure 9.

The surface domain dy” containing the perturbation, and the projected areas with
respect to the X;X,-plane, the X,X5-plane and the X;Xj;-plane are shown in
Figure 9.
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X3
exy U X

a(xlax3) a(x29x3)

X, (X{)

Figure 9. The small surface area y and the projected area.

The unit normal vector (n;, Ny, N3) on the domain dy is defined. The relation

becomes as follows:
nl(Xl, X2, X3)d'Y = ddeX3, nz(xl, X2, X3)d'Y = dX3dX1,
n3(X1, X9, X3)d'Y = XmdXZ, (79)
(X + ompg, X, X3)dy" = dXdX3,  No(X) + amngg, X, X3)dy" = dX3dX;,
N3(X) + omag, Xg, X3)dy" = dX(dX,. (80)

The Jacobian to transform the coordinate from the projected area on the
X3X; -plane to the X;X| -plane is as follows [5, 16]:

6)(3 6X1 81]24
il 0 l+oa—=
‘a(x3, XD|_| o o | _ N |y N2 (81)
o(x3, X1) Ky Xy 1 am 0%y

6X3 8X3 6X3
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The Jacobian to transform the coordinate from the projected area on the

XX, -plane to the XX, -plane is as follows [5, 16]:

Xy Xy PCLL R
‘a(xl, X)| |0 x| X a2 (g
(X, Xp) Xy 0Xy o T4 1 ™
Ny Xy *ox,

The Jacobian to transform the coordinate from the projected area on the

X, X3 -plane to the X, X3 -plane is as follows [5, 16]:

Xy X
‘8()(2, X[ _[xg x| |10 L 83)
a(xz, X3) Xy X3l o 1

8X3 8X3

Equation (78) is as follows:

aJ‘feJ' .
- T,(X (o, Xq, Xy, X3))dy dt
{ 30 oy 1( 1( 1> A2 3)) Y }

a=0

t
2{__6 J.e { p(X,(at, X, Xy, x3))+ 2 aul(xl(aa;((l’ X2, X3))}dX2dX3dt
ts Y

te 1 (uy(Xy(a, Xp, Xp, X3)) | Uy (X(o, X;, X, X3))
~2 J' Re( % ; . )dx3dxldt

te aus(Xy(a, X1, X9, X3)) . Uy (X;(a, X;, Xo, X3))
_ 2 I Re( % N % )Xmdxzdt

_ [% f L{_ B(X,(ct X, X, X3)

L2 ou(Xy(e, X, X, X3)) | 8(X3, X3)
Re 8X1 8(X2, X3)

_ij‘tej‘ 1 (ouy(Xy(a, Xj, Xp, X3)) N au (X (o, Xy, Xp, X3))
Re 6X1 6X2

a=0

dx, dx;dt

X‘a(xm X1)
6(X3, 1)

N ouy (X (e, X1, X2, X3))\| 8(Xq, X5)
8X3 a(Xla X2)

0 te 1 6U3(X1(0L, Xl, Xz, X3))
gt ‘%J‘ J‘ R—e( %

dxldxzdt}

a=0
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2 our(Xi(ot, X, X5, X
_[ J. I { p(X (oc X[, X2, X3)) 1( 1( aXl 2 3))}n1dydt

_9 teJ' Uy (X X1, X5 %3)) - U(Xy (0 Xi, Xa, X3))
Re X, X,

Moy __J‘teJ' ouz (X (e, X, Xz, X3))
(1 + o — a jnzd’ydt Re ax]

ou; (X (o, Xp, X9, X3)) Mg
+ X I+a 2 nydydt L (84)

The first term in (84) is as follows:

L s

2 au X (X,, X > X 4 X
e 1(X4( axi 2 3))}n1(X1(0u X, X9, x3))dydt}

a=0

J‘ J‘ _Op(X (o, Xp5 Xp, X3)) Xy (0L, Xp, Xp, X3)
X, B

2 0 (ou(Xi(a, X, Xa, X3)) OX(0t, X1, Xo, X3)
X, p

te 2
x N (Xi(o, Xp, Xo, X3))d“/dt} + {—J. J. {— p(X;(at, X;, Xa, X3))+R—
a=0 tsdy €

y ouy (X (o, X, X9, X3))} ony (X (o, X, X9, X3)) OXj(0t, Xp, Xo, X3)

X X - dydthO. (85)

The second term in equation (84) is as follows:

0 teJ‘ 1 (uy(Xi(a Xi, Xa, X3)) N ouy (X (o, Xp5 Xp, X3))
Re X, X,

X (1 + o %24(X1(0;XX1, X2, X3))jn2(xl(0(,, X1, Xg, X3))d'ydt:|
1

a=0

={ J j - {8X (auz(xl(aa)éa X, X3)) 5X1(X1(0La;1, X2, X3)))
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L0
X

{5

ouy (X (a, X, Xa, X3)) OXy (X (0, X, Xa, X3)) Moy
X, 7 I+a £ n,dydt

J' (A (Xy(e X, Xp, X5)) | Oup(Xy (e X, Xp, X3))
Y Re 6X1 6X2

x(l+0c
te

1
tS

Mg (X (0, X1, X9, X3))j any (X (e, Xp, Xa,5 X3)) OXq(a, Xp, X, X3)dydt}

ox, X, Bl

J' 1 (aup(Xy(0s X, Xp, X5)) AUy (Xy (e X, Xp, X3))
Y Re 6X1 6X2

% 81124()(1((1, X1, X2, X3)) nz(xl(a’ X(, Xy, Xﬂ)dydt}

The

0% =0

third term in equation (84) is as follows:

X, X

_iJ’teI 1 (aus(Xy(a, X1, X, X3)) |, 0ui(Xy (@, X, X, X3))
oo Ji Jy Re

five
S

onpa(Xq(a, Xp, X, X
n24( 1( axll 2 3))jn3(X1(0L, X]; X27 XS))dydt:|

a=0

J' 1[0 (ous(Xi(a, X1, Xy, X3)) OXi(X(a, X1, Xp, X3))
YRe 6X1 8X1 oo

. 0
0X5
te
T
.
x(l+0t

y 8X1(0c

ouy (X (oL, X1, X2, X3)) X (Xy(at, X, X9, X3)) I+ ONy4
X, o

J‘ 1 (uz(Xq(o, Xi5 X, X3)) N auy (X (o, Xp5 Xp, X3))
,Re X, X

Maa(Xq(a, Xp, X9, X3)) “ a3 (Xy(a, Xp, Xp, X3))
% X,

Ll

» X5 Xo, X3)
E™ dydt}

a=0

J' 1 (aus(Xy(a, X1, Xp, X3)) |, 0ui(Xy (@, X5 Xg, %3))
YRC 6X1 6X3

y Maa(Xq(a, X;, X, X3))

X, N3 (Xq(aL, X1, %o, X3))det}

a=0

a=0

a=0

(86)

n dydt}
% j 3 w0

(87)
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Using equation (76), it is derived as follows:

Xy (o, Xp, X, X3)
oo

0 .
= @(Xl +ampg(X), X, X3)) = Mag(X), X, X3) in Q. (88)

Equation (76) at o = 0 is as follows:

X100, X, X, X3) =%, 1=1,2,3 in Q. (89)

Equation (85) is as follows:

E L e s

+iaul(xl(as X1, Xp, XS))}nl(xl(a’ X;, Xo, X3))d’Ydt:|

Re 6X1 a=0
2 0 (oy
J. _[ { a0 "2 Re 2, (ax 1124)}“1‘1}’0“
2 oup| omy
J. J. { Re axl}ax Na4dydt. ©0)

Equation (86) is as follows:

0 tej’ 1 (auy (X (e, Xp5 X, X3)) N ouy(Xi(a, i, Xp, X3))
Re 6X1 6X2

X (1 + o %24()(1(05)()(1’ X2, X3)))n2(xl(0(,, X1, Xg, X3))d'ydt:|
1

ou, 0 (o
j. -[ Re {5X1 (axl n24j "ok, (@(1 n24)}n2dydt
te 6u2 aul 8”2 te 6u2 aU] 61]24
1
_[ _[ Re(@xl axzj o, N2edvat - I J Re(@xl " axzj ax vt D
Equation (87) is as follows:

0 tej 1 (ou3(Xy (e, X1, Xa, X3)) N auy (X (o, Xp5 Xp, X3))
Re 6X1 6X3

a=0

9 (1 o T2aalee %, Yo, X3))jn3<x1<a, X, ¥a, xg»dydt}
1

a=0
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8U3 0 aul
-[ J. Re {5X1 (axl j+ 0X3 (5X1 ﬂ24]} nydhyt

6U3 6u1 8n3 Itej. 8u3 aUl 67]24
dydt — — == mydydt. (92
J. J. Re(@xl 6X3j 6X 24 Yd Re 6X1 T OX X3 6X1 N3y (9 )
Therefore, the first term in equation (75) is as follows:

ajtef
- T (X (o, X;, X9, X3))dydt
{6(1 oy 1( 1( 1> A2 3))Y}

a=0

1 0 (oup odu)
f f { “Re axl(axl +a—xi)”l}”24de‘
(le ony 1 (oup oy
‘.Jy{ Pox ¥ Re(a_xﬁax.ja et

(lef 1 (0uj onpq  Oup ONyy
IYE(a_xl % T ox ox )“idy‘“

o te 1 (ou, aul 51124 te ous 6u1 57124
RS J‘vﬁ( Xy axzj 2ox dyelt = .[ J Re ( oy axJ 370x, dydt. (93)
The second term in equation (75) is expanded. The domain Q is as follows:

0% 0% x|

A X0 Xs) _| Xy X X
B(Xl, X3, X3) B (3X2 6X2 axz

OoXp  0Xy  0Xj

0X3 0%z X,

0 OX OX
6_)(1()(1 +ama4 (X1, X2, X3)) 6—)5 8_)(?

0 OX OX
= %(M + a4 (X, X2, X3)) ﬁ ﬁ
0 OXy  OX3

%3 (X1 + angs(Xy, X2, X3)) s OXs

Maa (X, X, X3) 0 0

I+a
X
o Oaal Xos %) g In2a(X X, X5) 94)
6X2 aXl

o Maa (X, X, X3) 0 1
0X3
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The second term in equation (75) is as follows:

A1 (Xp)
Ls J' j 1, ! dethO

ax
- j J‘ “1( 1)(1+a—an24jd£2dt}
ts j 5‘X1 a=0

_ J. j ap(Xl) 6X1 67\']+1(X1) +a8n24 dodt
Q 6X1 oo, GXJ axl
a=0

U IRC (a”g;(lxl)%ﬁ j(lmgTz;)detLo

{ (X
+U ej' p(Xl)—g;(_ 1)—‘9;‘24 det}
s JQ ] X a=0

1

op Ohji te o (i
'[ J.Q X @Xj 1124det+jts JQ ij o Noa |dQdt

J J i1 Mg ooy

oXj 0%
t oA
J‘ eJ‘ gp Thal T]24det +J‘ an24d\|1dt
Q 0
r op Ohjsl Ohj1 dnpg
I IQ s nz“deHItJ T o (95)
Using equation (20), equation (95) is as follows:
t
|:ij‘ eJ‘ *p(X j+1( l)det:|
oo ts (@) 0=0
e op Ohjyy
I I Jn24d\th I J.Q o o, n240Qdt. (96)

The domain X;(a, X;, Xo, X3) is abbreviated to X;. This abbreviation is same

in other equations. The time derivation in the third term is as follows:

o [l o jy1(Xy)
[ELS qu,(xl)—at dodt

a=0
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{aaj.j ](Xl)akjﬂ( 1)( ocﬁgle“)d!)dtlo

{ a”i(xl)%a}‘i”(xl)(naﬁnz“)dgdt}

Q oX 1 oo, ot 6X1 0=0

[t 5 P 2ot a0

te Mjn(X) e
T e 2020t g
S a=0

e axm bp a0k
j IQ aXl n24det+ItS IQUJ ot 8x —— N4 dQdt

Ohj41 OMyg
j' J' S ot
tef Ouj oA Iy e
j+1 j+l
_ : 0
LSIQ x o ——— N24dQdt + IQ|:UJ % ﬂ24ld
S
8u OA
j j ”‘ n24det+_[ j ‘“ 6:;24 dQdt.
tg X

The pressure term in the third term is as follows:

t
_ﬁj eJ‘ ui(xl)Mdet
oo tg o an 0=0

T B 0 et e |

. jt ¢ OU: (X1)6X1 57»1(X1)(1+aan24jd9dt}
tg o -

)

0 X, oo X %,
(e o (0n(Xy) OXy o4
Q j 1 1 =0

Mt e

®

IN
J

oM (Xy) Ongg
u;i(X dQdt
Jida D=5 &,

flef OUj ony Ny
_—. J.Q aXl 6x n24det j J. JaX (aX n24)det

a=0

o=

07
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te Ok Moy
—J'I | et dat

ter OU; oA
= J‘t J J 21 4det J. J‘ 8 UJnJ'I’]24d\|ldt
S

Q axl 6x

ter OU; O o\ O
i oM OA ONp4
+_[ J-Q oXj 0% Tx, Moad€dt - .[ .[ J OXj OX deadt.

The convection term in the third term is as follows:

teJ‘ ) |(X1)U 6X|+1(X1)

det}
J

a=0

: I IR e Rl

_ J’ j' uj (Xl)axlu ‘97w+1(x1)(1+a gzﬂdet}

o 0X; oo X X,

a=0

1

_ Ohi1(X1) OX, M4
U J ”(Xl)ulax ( e e 1 e Jacat .

te aul a7‘|+l 0 (i
j IQ@XI — N2 det'i“[ I UUJaT[ aXl T]24)dgdt

J' J‘ " Ohist 24 4yt
Xj OX 1

poou ax,ﬂ Nt
I IQ S Ui B et + I J Sz

U J Ui (XU ax,+1(x1)agxz4 detLO

er oy Ohivy Ohiv1 OMog.
_Ls-gax U St magoct + IIUU; ot et dadt

The viscous term in the third term is as follows:

el da OX; OX

te (X :
1 ije 0 (X) -2 i) (X)) g
R Jo* an =0

j

e| oo j OXj oX X1 00

39

(98)

(99)
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_ L au(X) X, @ it (X1) | Ohin(Xy) Moy
_ReU J.Q X, oo oxj | ox o ey e

t oA X
+L J‘eJ‘ ui(X,) 0 J+1( 1) a}V|+1(X1) Moy dodt
Re|JiJa E3) OXi OX | x a=0

Njr(XD) X, ) 8 (hig(Xy) aX
ReUJ ui(X l)ax, {ax,( Jaxl aajJer( (;»1(1 1 a_alj}

(1 . amj det}
X =0

a=0

fer ou; Ohj1 | Ohig
jga_xla_x,( T ax; el

1 [t o Ohjp1 8 Ohig
Re.tSJ. (ax, o +Wj X, njnaqdldt

L(r ouj. Oh 11 Okisg
ReJi ), & ( B Mt o M naedvet

(ler (a oup Ohjw 0w Ohiy

O M 0
olox axj  ox axJ ox;  ox ]nz“d e

1 (fer o hj+ Nit1 | ON24
+R—e.ts.Qu,E( 2 + x| o dQdt

1ol (Ohjr1 Ongg | Ohigy Onog
Wu( o + X, n;drdt. (100)

Equations (96)-(99) are summarized as follows:

Ohisi Oy Ohigr 10 (Ohju | Ohiy
I K { o ViTeg TReag | oy a0
te oh o Ohj 1 0 [0k oh
j+1 _OAp ) j+1 |+1 j+1
,[ J. Q OX; { ax; Ui o Reox | oxi i X n2qd2t

J

oA ou ; ; ou ;
it ) Mj_opoup I oo  Mj
J JQ X { oXj X Uitge ox; | ox; T N24 02t
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rlep O\ ; O\ ; O\ ;
N e UJ{ j+1 67\.1 +Ui j+1 1 0 (a}\.H_l N j+1 j} 67]24 dOdt
Q

Jig ot OXj OX; "Re oxjj | ox 0X; Xy
| ..tze..g%%n24d9dt N J' . [u j 67(;)’;1 nz‘ﬁ: do
+ -.tt:-.\v Ui{Uj ag)i(jl nj - g—i:lln Rle [6?(, 82)1(:1 + % ag)i;ljnj}ﬂmd rdt
ENIETCREYRET

— :e I Ui(agilﬂ agxzi“ + 82;(;1 a£<2j4j" ;dTdt. (101)

Using equation (20) ~ equation (23), equation (14) ~ equation (17), equation
(72), Table 1, equation (101) becomes as follows:

Ohiy1 _ OM Ohiyp 1 0 Ohje1 ki
_[ J‘ { ot 8Xi +U] 6XJ +Re 6XJ 0Xi * aXJ dCat

87\.|+1 Oh 1 (0 a)”Hl 0 Ohiy |,
J..[ { 7 M T M T Rel o +axj o ) naqdTdt

o\ ou Ou; O\;
O+ J i ) i+1
+_[ [ B T124} dQ - I _[ { (8x, o jnj} P N4yt

1 [t 0N j41 Onyy L+ Ohist Mg
* Re tsIWUI( B ox o o, n;dIdt. (102)

The fourth term in equations (75) is as follows:

0 te *
[T wesiody
oo tsdy 0=0
1 (Ohjr 0N
_[ % { jing = Agn; +R_e(6T]i++ ax'”j”.}nmd\vdt

oh oI 1 (0 O\j o O\
JJrl A0 P O it s i+1 |
I I { Rl I o e N24dydt
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on onj 1 (Ohjer Ohiyy | On;
_'ts“l/ {}LJ“U'GX Mg x| Re( % oxj ) ox; n24dydt

rle 1 akm Moa  OAjyg OMoa
- i Re N4yt
Jigdy U] Re ( oX;  OX * ox;  OK; Nina40y

(e f 1 (Okiv1 , Oh3 o4
— \VU {}\‘I+1U2n2 +—( 6x2 + aXI )nZ} aX] d\th

tef Onyy4
+ UsA(N dydt
.[ v 2072 X

e a7L|+1 Oy M4

t.
" J' [ usnn 6;)(24 dyct. (103)
tsdy 1

The calculation condition becomes Uj = 0 on the boundary y. It becomes
N, =Ny =0 on the boundary Iy, T'g. It becomes ny =n3 =0, U, =0, S, =0
and S; = 0 on the boundary I'y, I's. It becomes Ny =n, =0, u3 =0, S, =0
and S, =0 on the boundary I}y, I|. Therefore, the fifth-eighth terms become

zero. Equation (103) is as follows:

0 te *

a—_[ _[ L Ui(Xp)Si(Xp)dy dt

o sy a=0

1 (Ohjr1  Ohjy
J. a)(l{ J+1U|n| kln +Re[ aXi +8Xj+1 n; T]24d\l/dt
(le O\ j o o Oh o o\

_ I OM j+1 i+l |,
.tsjwul{ B i T 5 N Re[&x T axy o )l
rte on anj 1 a7"j+1 Ohjyp | ON

_.tsj‘w {7“1+1U'ax M T Re o Ak ) ow | vt

e 1 (Ohjer Ongy  Ohiyy 0Ny
_ J.WUJE( 6x1 aXi + aX] 8)(] ni1’]24d\|1dt. (104)

Jig
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The fifth term in equation (75) is as follows:

t
L%J. ej . (XDT(X)d (T +Y*)dt}
O Jts I Ty +y

a=0

J LW oy %ﬁf {_ Py +%(g—§: + 25}) }nud(Fw +y)dt

’ '.:'.Fw +y kz{_ g_z m RL@‘(@% ZZ 6?(, g:j(l) i}*md(l"vv +y)dt
0T el e B B S e e

i -.tt:-.rw +y ? RL@(Z_Z a2)(214 " Zz; 62X24 )n AT +pt

+ _.::_.rw 2 Rie[%qu + S)L:; j 8;(24 nd(Ly + y)dt

N .'t:e.'rw . R%(‘Z% n 2)‘2 j 02)(24 nyd(Ty + 7). (105)

Using the boundary condition A, =0 on I}y and A, =1 on Y, equation (105)

is as follows:

N
oo ts F\TV‘*’

. A (X)T(X)d(Ty + y*)dt}

=0
.[ '[Fwﬂ( 5;(12 { pMy +RLe(g§i Zilj i}nz4dvdt
R e
" ..tt:‘[y{ P 2:1 Rle (ZZ gilj %, } 240ydt
+ ..:: J-Y % (Z_ZJ(; 8(;])(214 . Zzi 8;1)(24)“ dydt
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Ouy  dup ) Ongy
dydt
.[ J.Re(6X1 6x2j X el

e Ouz  0uy ) Onyy
.[ .[ Re(@xl 6x3) Xy nachyelt (106)

The sixth term in equation (75) is as follows:

FW+FN+FS+y

J J‘ a%{ on 1 (6u, +au_2Jn_}
Iy +I'y +Ts +y aXl 2 Re 8X2 aXi !

xNpad(Lyy + Iy +Ts +y)dt

j | e L
Ly +IN+Is+y } 6Xl Re aXz 8X1 aXi aXl !

x Npad(Tyy + Ty +Ts +y)dt

a=0

5X1 Xy o OX| OX )nid(FW +Ty +Ts +y)dt

Jtg I Ty +TNy +Ts +y Re
cte e

1 (0u; , dup )} on;
* + d(Ty + Ty + T +y)dt
Jitg J Ty +Iy +Ts +v { P+ Re (8x2 GX 3 N24 ( W N S Y)

oo o

1 (ou ou OMoa
7‘{_ +—(—2+—2)}n —=td(ly + Iy +Tg +y)dt
Jtg J Ry +Ty +Tg+y 3 Reldxy, 0%, )f 2 ox (T N s +7)

rle e

_L (ous auzj M4
+ n d(yy + 'y +Ic +v)dt. 107
Jitg J Iy +Iy +Is +y 3Re(aX2 0X3 3 6)( ( W N S Y) ( )

Using the boundary condition A3 =0 onvy, Iy, I'y and I's, equation (107)

is as follows:

{aaj I 7»3(X1)T2(X1)d(1"v"(/ + T + T8 +V*)dt}
Ty +TN +T5+7"

,[ J‘ gy {_ on, +-L 1 (6u, +au_2j”'}
Ly +Ty +Ts +y OX| Relox,  ox )"

xNyd(Lyy + Iy + g +y)dt. (108)

a=0
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The seventh term in equation (75) is as follows:

t
[—a‘ijej* . *M(xl)Tg(xl)d(rv*er+rt+y*)dt}
tS rw+ru+FL+y

04 By (80 B0
tgd Ty +Iy +TL+y X 3T Reldxg o5 )"
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+Itej A {_a_pn +L(i%+i%jn}
o ST v (T Re\0x3 Ox  0x ox )"

X 1’]24d(rw + FU + FL + ’Y)dt

a=0

45

fe ony 1 (6u- ous )| on;
+ hgy— P—=—= + — —'+—3j}—' dMyy + Ty + T +y)dt
»[ts j.rw Iy +TL+y 4{ P o ' Reldxs  ox )f o 12 (T + Ty + T+ 7)

(e L, (%57124 L Ou3 Onyy

— nd(Lyy + Ty + T +y)dt
Jidnymper sy Re "M ax axg  ax o ) AT + Ty 1)

flep 1 (6U2 8U3) 81']24
+ A= ==+=—|n,—===d(Iy +Iy + I +y)dt
Jidnymyerey TRelag  axy ) 2y (T + Ty + T+ )

rle e

2 5U3} M4
Agi—p+——2rn —d(Iyy +I}; +I} +y)dt.
-tS- FW+FU +F|_+Y 4{ p Re 6X3 3 6)(1 ( W v - Y)

(109)

Using the boundary condition A4 =0 onvy, Iy, Il and I3y, equation (109)

is as follows:

t
[—a‘ijej* . *M(xl)Tg(xl)d(rv*er+rt+y*)dt}
tS rw+ru+FL+y

_ﬂ Ohg {_pn +L(%+%jn.}
tg 9 Ty +Iy +T1 +7 OX| 3T Reloxy  ox )

X 1’]24d(rw + FU + FL + ’Y)dt

a=0

The eighth term in equation (75) is as follows:

0 t
_|:£IQ* [iuil dQ}

a=0

(110)
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__| 0 ot Maa(Xy, X, X3)
=~ 7 a J.Q (iU ]ts (l + a—axl dQ .

I R ST o
- J {ax1 do Ui T B e ), 9 .
o=

B ‘[ M, qui]e Moa (X5 Xa5 X3) 4o
Ja ts 8X1 =0

i au; Tte
= —IQ{ a)'(lﬂ i T hiv 2, } Naa (X, X2, X3)dQ

- J.Q[ i+1Uj ]te —@‘r]24(xé, 1X27 X3) dQ. (111)

The ninth term in equation (75) is as follows:

{% Lt:jn*dndt} _{ JoJ (e m“)d“‘“LO

fer Ny e fe
=K det—KI J. nn dydt—KJ. J. 0 1ysd]1dt
-[ts -[H o, ,mas ¥

t
= K‘[ ej NyMpqdydt. (112)
ts oy
Using equations (93)-(112), the first variation with respect to X; is summarized.

Using equations (14)-(17), (20)-(23), (72) and Table 1 (the boundary condition) is as
follows:

6L(X1+0m24) Gu 1 Oh; 1 a}\‘j+l
[ o j —higUjn; kln,+— a):++ o nj

t
X 1’]24d rdt + K,L eJ. nm24dydt =0. (1 13)
s Y

The sensitivity equation with respect to X; is derived as shown in equation (26).
The sensitivity equations with respect to X, and X; are also derived in the same

operation.



