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Abstract 

In this study, we consider to solve the general linear second order partial 
differential equations with non-constant coefficients by using the double 
Laplace transform. In a special case, we provide solutions for the wave 
equation where the non-constant coefficients are polynomials. 

 

The partial differential equations (PDEs) are very important in mathematical 
physics and occur in several places. In general, PDEs are two types: the homogenous 
equations with constant coefficients where they might accept many classical 
solutions such as: separation of variables, see [9]; the methods of characteristics, see 
[10] and [3]; integral transform methods, see [5]; and the non-homogenous equations 
with constant coefficients also might be solved by integral transform methods as 
well as operation calculus, see [11], [4], [2] and [6]. 
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Definition 1. Let ( )yxF ,1  and ( )yxF ,2  be integrable functions. Then the 

convolution of ( )yxF ,1  and ( )yxF ,2  is defined as 

( ) ( ) ( ) ( )∫ ∫ ηζηζη−ζ−=∗∗
y x

ddFyxFyxFyxF
0 0

2121 ,,,,  

and known as double convolution with respect to x and y, see [11]. 

We apply double Laplace transform to solve the linear second order partial 
differential equations with non-constant coefficients, and discuss the non-
homogenous wave and heat equations with non-constant coefficient by using the 
same techniques. For example, it was proved that if F and G are solutions for the 
wave equation with constant coefficients and non-constant coefficients, respectively, 
then the double convolution GF ∗∗  is a solution for the following type of 

equations: 

( ) ( ) ( ) ( ) ( ) ( )∑
=

+∈∗∗=−−
n

i
ixxtt xttxgtxftxhtxutxu

1

2 ,,,,,,, R  

where ( )txh ,  is called remainder function. 

In [7], the double Laplace transform is defined as 

( )[ ] ( ) ( )∫ ∫
∞ ∞

−−==
0 0

,,,, dtdxtxfeespFsxfLL stpx
tx  (1.1) 

where ,0, >tx  and p and s are complex values and further the first order partial 

derivatives are given by 
( ) ( ) ( ).,0,, sFsppF

x
txfLL tx −=⎥⎦
⎤

⎢⎣
⎡

∂
∂  

Similarly the double Laplace transform for second partial derivative with respect to x 
is given by 

( ) ( ) ( ) ( )
x

sFspFspFp
x

txfLxx ∂
∂

−−=⎥
⎦

⎤
⎢
⎣

⎡

∂

∂ ,0,0,, 2
2

2
 

and with respect to t is given by 

( ) ( ) ( ) ( ) ,0,0,,, 2
2

2

t
pFpsFspFs

t
txfLtt ∂

∂−−=⎥
⎦

⎤
⎢
⎣

⎡

∂

∂  

see [11]. 
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Next we study the uniqueness and existence of double Laplace transform. First 
of all, let ( )txf ,  be a continuous function on the interval [ )∞,0  which is of 

exponential order, that is, for some ,, R∈ba  

( )
.

,
sup

0
0

∞<
+

>
>

btax

x
t e

txf
 (1.2) 

In this case, the double Laplace transform of 

( ) ( )∫ ∫
∞ ∞

−−=
0 0

,, dxdttxfespF pxst  

exists for all ap >  and bs >  and is in fact infinitely differentiable with respect to 

ap >  and .bs >  All functions in this study are assumed to be of exponential order. 

The following theorem shows that ( )txf ,  can uniquely be recovered from ( )., spF  

Theorem 1. Let ( )txf ,  and ( )txg ,  be continuous functions defined for 

0, ≥tx  have Laplace transforms ( )spF ,  and ( ),, spG  respectively. If ( )spF ,  

( ),, spG=  then ( ) ( ).,, txgtxf =  

Proof. If α and β are sufficiently large, then the integral representation by 

( ) ( )∫ ∫
∞+α

∞−α

∞+β

∞−β
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ππ

=
i

i

i

i
stpx dpdsspFe

i
e

i
txf ,

2
1

2
1,  

for the double inverse Laplace transform can be used to obtain 

( ) ( )∫ ∫
∞+α

∞−α

∞+β

∞−β
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ππ

=
i

i

i

i
stpx dpdsspFe

i
e

i
txf ,

2
1

2
1,  

( )∫ ∫
∞+α

∞−α

∞+β

∞−β
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ππ

=
i

i

i

i
stpx dpdsspGe

i
e

i
,

2
1

2
1  

( )txg ,=  

and the theorem is proved.  

In the next theorem, we study the existence of double Laplace transform as 
follows: 
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Theorem 2 (Existence of the Laplace transform). If f is of exponential order, 
then its Laplace transform ( )[ ] ( )spFtxfLL tx ,, =  is given by 

( ) ( )∫ ∫
∞ ∞

−−=
0 0

,,, dtdxtxfespF stpx  

where ω+η= is  and .μ+ζ= ip  The defining integral for F exists at points 

τ+η= is  and φ+ζ= ip  in the right half plane K>η  and .L>ζ  

Proof. Using τ+η= is  and ,φ+ζ= ip  we can express ( )spF ,  as 

( ) ( ) ( )∫ ∫
∞ ∞

η−ζ−τ+φ=
0 0

cos,, dxdtetxtxfspF tx  

( ) ( )∫ ∫
∞ ∞

η−ζ−τ+φ−
0 0

.sin, dxdtetxtxfi tx  

Then, for values of K>η  and ,L>ζ  we have 

( ) ( ) ( ) ( )∫ ∫∫ ∫
∞ ∞

ζ−η−
∞ ∞

η−ζ−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤τ+φ

0 00 0
cos, dtdxeeMNdxdtetxtxf xLtKtx  

⎟
⎠
⎞⎜

⎝
⎛

−η⎟
⎠
⎞⎜

⎝
⎛

−ζ
≤

K
N

L
M  

and 

( ) ( ) ( ) ( )∫ ∫∫ ∫
∞ ∞

ζ−η−
∞ ∞

η−ζ−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤τ+φ

0 00 0
sin, dtdxeeMNdxdtetxtxf xLtKtx  

⎟
⎠
⎞⎜

⎝
⎛

−η⎟
⎠
⎞⎜

⎝
⎛

−ζ
≤

K
N

L
M  

which imply that the integrals defining the real and imaginary parts of F exist for 
values of ( ) Lp >Re  and ( ) ,Re Ks >  completing the proof.  

Theorem 3 (Inversion formula). A function ( )txf ,  which is continuous on 

[ )∞,0  and satisfies the growth condition (1.2) can be recovered from ( )spF ,  as 

( ) ( ) ,,!!
1lim,

11
⎟
⎠
⎞⎜

⎝
⎛Ψ⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛−= +

+++

∞→
∞→ t

n
x
m

t
n

x
m

nmtxf nm
nmnm

n
m
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where nm+Ψ  denotes ( )nm + th mixed partial derivatives of ( )spF ,  defined by 

( )
nm

nm
nm

sp
spF

∂∂

∂
=Ψ

+
+ ,  for ,0, ≥tx  since the above theorem obtains ( )txf ,  in 

term of ( )., spF  

Of course, the main difficulty in using Theorem 3 for computing the inverse 
Laplace transform is the repeated symbolic differentiation of ( )., spF  However, we 

apply Theorem 3 in the next example. 

Example 1. Let ( ) ., btaxetxf −−=  Then the Laplace transform is easily found 

to be 

( ) ( ) ( ) .1,
bsap

spF
++

=  

It is also simple to verify that 

( ) ( ) ( ) ( ) .1!!, 11 −−−−+
+

++−=
∂∂

∂ nmnm
nm

nm
bsapnm

sp
spF  

Putting this expression for ( )
nm

nm

sp
spF

∂∂

∂ + ,  into Theorem 3 gives 

( )
11

11

11
lim,

−−−−

++

++

∞→
∞→

⎟
⎠
⎞⎜

⎝
⎛ +⎟

⎠
⎞⎜

⎝
⎛ +=

nm

nm

nm

n
m t

nb
x
ma

tx
nmtxf  

.11lim
11 −−−−

∞→
∞→

⎟
⎠
⎞⎜

⎝
⎛ +⎟

⎠
⎞⎜

⎝
⎛ +=

nm

n
m n

bt
m
ax  

The last limit is easy to evaluate, take the natural log of both sides and write the 

result in the form of ( ) ( ) .11

1ln

11

1ln

+

⎟
⎠
⎞⎜

⎝
⎛ +

−
+

⎟
⎠
⎞⎜

⎝
⎛ +

− n
n
bt

m
m
ax

 L’Hopital’s rule reveals that the 

indeterminate from approaches .btax −−  The continuity of the natural logarithm 

shows that ( )( ) ,,ln btaxtxf −−=  then ( ) ., btaxetxf −−=  

Properties of the double Laplace transform 

In this part, we consider some of the properties of the double Laplace transform 
that will enable us to find further transform pairs ( ) ( ){ }spFtxf ,,,  without having 

to compute. 



ADEM KILIÇMAN and HASSAN ELTAYEB 262 

  (I) ( ) [ ( )] ( ).,,, sptxfeLLcsdpF ctdx
tx

−−=++  

 (II) ( )[ ] ( ),,,,1 sptxfLLspF
k tx βα=⎟

⎠
⎞

⎜
⎝
⎛

βα
 where .αβ=k  

(III) ( ) [( ) ( )]( ).,,1, sptxftxLL
sp

spF nmnm
txnm

nm
+

+
−=

∂∂

∂  

The three properties above are very useful for the proof of Theorem 3. 

The proof of Theorem 3. Let us define the set of functions depending on 
parameters m and n, 

( ) ntmxnm
nm

nm etx
nm
nmtxg −−

++
=

!!
,

11
,    so   ( )∫ ∫

∞ ∞
=

0 0
, ,1, dxdttxg nm  (1.3) 

and 

( ) ( ) ( )∫ ∫
∞ ∞

∞→∞→
ϕ=ϕ

0 0
, ,1,1,,limlim dxdttxtxg nm

nm
 (1.4) 

where ( )tx,ϕ  is any continuous function, let us denote its Laplace transform as a 

function of p and s by ( )[ ] ( ).,, sptxLL tx ϕ  Now we define the function ( ) =Ψ tx,  

( )00, ttxxf  and using the property (II), we have 

( )[ ] ( ) ( )[ ] ( ) .,1,,,,
0000

00 ⎟
⎠
⎞

⎜
⎝
⎛==Ψ

t
s

x
pF

tx
spttxxfLLsptxLL txtx  (1.5) 

We apply the property (III), (we must evaluate the nm +  mixed partial derivatives 

of ( )spF ,  at the points 
x
mp =  and )t

ns =  

( )[ ]( ) ( ) .,1,,
001

0
1

0
⎟
⎠
⎞

⎜
⎝
⎛

∂∂

∂=Ψ
∂∂

∂ +

++

+

t
s

x
pF

sptx
sptxLL

sp nm

nm

nmtxnm

nm
 (1.6) 

Let ( ) ( ).,, txetx stpx Ψ=ϕ −−  By using equations (1.4) and (1.3), we have 

( ) ( ) ( )00 ,1,11,1 txfee spsp −−−− =Ψ=ϕ  

( )∫ ∫
∞ ∞

−−−−
++

∞→∞→
Ψ=

0 0

11
,

!!
limlim dxdttxeetx

nm
nm ntmxstpxnm

nm

nm
 

[ ( )] ( ).,,
!!

limlim
11

sptxetxLL
nm
nm ntmxnm

tx
nm

nm
Ψ= −−

++

∞→∞→
 (1.7) 
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Using the above properties (I) and (II) of double Laplace transform, equation (1.6), 
and the definition of ( ),, txΨ  we have 

[ ( )] ( )sptxetxLL ntmxnm
tx ,,Ψ−−  

( ) ( ( ( ))) ( )sptxeLL
sp

ntmx
txnm

nm
nm ,,1 Ψ

∂∂
∂−= −−

+
+  

( ) ( )( )( ) ( )nsmptxLL
sp

txnm

nm
nm ++Ψ

∂∂
∂−=

+
+ ,,1  

( ) ( )( )( ) ⎟
⎠
⎞

⎜
⎝
⎛ ++

∂∂
∂−=

+
+

00
00 ,,11 t

ns
x

mpttxxfLL
spz txnm

nm
nm  

( ) ,,11
00

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ++

∂∂
∂−=

+
+

t
ns

x
mpF

spz nm

nm
nm  (1.8) 

where ,11
1

0
1

0
++

= nm txz
 from equations (1.7) and (1.8), with ( ) ( ),1,1, 00 ϕ= +spetxf  

we have yield 

( ) ( ) 1

0

1

0
00 !!

1limlim,
+++

∞→∞→
+ ⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛−=

nmnm

nm
sp

t
n

x
m

nmetxf  

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ++

∂∂
∂×

+

00
, t

ns
x

mpF
sp nm

nm
 

for any p and s. The statement in Theorem 3 is actually just the special cases 0=p  

and .0=s  

Now consider a linear second order partial differential equation with constant 
coefficients 

( ) ( )∑
=

∗∗=+++++
n

i
iiyxyyxyxx yxgyxfuauauauauaua

1
654321 ,,,  (1.9) 

where ia ’s are constants and further assume that equation (1.9) has a solution which 

can be obtained by using the Laplace transform, then in order to produce an equation 
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with non-constant coefficients we may use a convolution method and multiply the 
left hand side of equation as follows: 

( ) ( )uauauauauauayxp yxyyxyxx 654321, +++++∗∗  

( ) ( )∑
=

∗∗=
n

i
ii yxgyxf

1

,,  (1.10) 

under the boundary conditions 

( ) ( ) ( ) ( ),,0,0, 21 yfyuxfxu ==  

( ) ( ) ( ) ( )yhyuxhxu xy 21 ,0,0, ==    and   ( ) .00,0 =u  

Thus equation (1.10) has also a solution found by using the double Laplace 
transform, see [8]. 

Now consider a linear second order partial differential equation with non-
constant coefficients in the form of 

( ) [ ] ( ),,, yxfuuuuuuyxp yxyyxyxx =+++++∗∗  (1.11) 

where ( ) ∑∑
= =

=
m

j

n

i

ji yxyxp
1 1

,  is a polynomial and the boundary conditions are given 

by 
( ) ( ) ( ) ( ),,0,0, 11 ygyuxhxu ==  

( ) ( ) ( ) ( )yg
y

yuxh
x

xu xy 11 ,0,0,
∂
∂=

∂
∂=   and  ( ) ,00,0 =u  (1.12) 

then by taking double Laplace transform and using single Laplace transform for 
equation (1.12), we obtain 

( ) ( )
( ) ( )

⎥
⎦

⎤
⎢
⎣

⎡

+++++
= −−

1,
,, 22

11

qpqpqpqpP
qpFLLyxu qp  

( ) ( )
( )

⎥
⎦

⎤
⎢
⎣

⎡

+++++

++
+ −−

1
1

22
111

qpqpqp
qGqpLL qp  

( ) ( )
( )

⎥
⎦

⎤
⎢
⎣

⎡

+++++

++
+ −−

1
1
22

111

qpqpqp
pHqpLL qp  



PDEs WITH VARIABLE COEFFICIENTS 265 

( ) ( )
( )

⎥
⎦

⎤
⎢
⎣

⎡

+++++

−
+ −−

1
0

22
1111

qpqpqp
GqqGLL qp  

( ) ( )
( )

⎥
⎦

⎤
⎢
⎣

⎡

+++++

−
+ −−

1
0

22
1111

qpqpqp
HppHLL qp  

provided that the double inverse Laplace transform exists. 

In particular, consider a non-homogenous one dimensional wave equation 

( ) ( )∑
=

∗∗=−
n

i
ixxtt txgtxfuu

1
,,  (1.13) 

and the conditions 

( ) ( ) ( ) ( ),0,,,0 11 xhxutgtu ==  

( ) ( ) ( ) ( ),0,,,0 11 xh
t

xutg
t

tu tx ∂
∂=

∂
∂=  

then by using the double convolution, we can obtain a wave equation with non-
constant coefficient in the form 

( ) [ ] ( ) ( )∑
=

∗∗=−∗∗
n

i
ixxtt txgtxfuutxp

1
,,,,  (1.14) 

where ( )txp ,  and ( )txgi ,  are polynomials such that the degree ( )txp ,  is greater 

than the degree of ( )., txgi  

Now we let ( )txF ,  be a solution of 

( ) ( ) ( ) ( ) ( )∑
=

+∈∗∗=−
n

i
ixxtt txtxgtxftxutxu

1

2,,,,, R  (1.15) 

and further consider ( )txK ,  is a solution of 

( ) ( ) ( )( ) ( ) ( ) ( ) .,,,,,,
1

2∑
=

+∈∗∗=−∗∗
n

i
ixxtt xttxgtxftxutxutxp R  (1.16) 

Thus ( )txF ,  satisfies equation (1.15), 

( ) ( ) ( ) ( )∑
=

∗∗=−
n

i
ixxtt txgtxftxFtxF

1
,,,,  (1.17) 
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and similarly, ( )txK ,  satisfies equation (1.16), 

( ) ( ) ( ).,
!!

1,, txf
ji

txKtxK xxtt =−  (1.18) 

Now we can easily check whether the convolution ( ) ( )txKtxF ,, ∗∗  is a solution 

or not for equation (1.15). By substitution, we obtain 

( ) ( )( ) ( ) ( )( ) ( ) ( )∑
=

∗∗=∗∗−,∗∗
n

i
ixxtt txgtxftxKtxFtxKtxF

1

? ,,,,,  (1.19) 

by using the partial derivative of the convolution; the left hand side of equation 
(1.19) follows: 

( ) ( ) ( ) ( )txKtxFtxKtxF xxtt ,,,, ∗∗−∗∗  

( ) ( ) ( ) ( )txKtxFtxKtxF xxtt ,,,, ∗∗−∗∗=  

and then equation (1.19) can be written in the form 

( ) ( ) ( )[ ] ( ) ( )∑
=

∗∗=−∗∗
n

i
ixxtt txgtxftxKtxKtxF

1

? ,,,,,  (1.20) 

and 

( ) ( )[ ] ( ) ( ) ( ).,,,,,
1

?∑
=

∗∗=∗∗−
n

i
ixxtt txgtxftxKtxFtxF  (1.21) 

By substituting equation (1.18) into (1.20) and equation (1.17) into (1.21), we have 

( ) ( ) ( ) ( )∑
=

∗∗≠∗∗
n

i
i txgtxftxfjitxF

1
,,,!!

1,  (1.22) 

and 

( ) ( ) ( ) ( )∑
=

∗∗≠∗∗
n

i
i txgtxftxKtxf

1
,,,,  (1.23) 

and thus we can easily see from equations (1.22) and (1.23) that the convolution 
( ) ( )txKtxF ,, ∗∗  is not a solution for equation (1.15), however it is a solution for 

another type of equation as in the following theorem. 



PDEs WITH VARIABLE COEFFICIENTS 267 

Theorem 4. If ( )txF ,  is a solution of 

( ) ( )∑
=

∗∗=−
n

i
ixxtt txgtxfuu

1
,,  (1.24) 

under the initial conditions 

( ) ( ) ( ) ( ),0,,,0 11 xhxutgtu ==  

( ) ( ) ( ) ( )xh
t

xutg
t

tu tx 11 0,,,0
∂
∂=

∂
∂=  

and ( )txK ,  is a solution of 

( ) ( ) ( ) ( ) ( )∑
=

+∈∗∗=−∗∗
n

i
ixxtt xttxgtxfuutxp

1

2,,,, R  (1.25) 

under the same conditions, then ( ) ( )txKtxF ,∗∗,  is a solution for the following 

equation: 

( ) ( ) ( ) ( ) ( ) ( )∑
=

+∈∗∗=−−
n

i
ixxtt xttxgtxftxhtxutxu

1

2 ,,,,,,, R  (1.26) 

where ( )txf ,  is an exponential function and ( ) ∑∑
= =

=
m

j

n

i

jitxtxp
1 1

.,  

Proof. Since ( )txF ,  is a solution of equation (1.24), 

( ) ( ) ( ) ( )∑
=

∗∗=−
n

i
ixxtt txgtxftxFtxF

1
,,,,  (1.27) 

holds and ( )txK ,  is a solution of equation (1.25), 

( ) ( ) ( )txf
ji

txKtxK xxtt ,
!!

1,, =−  (1.28) 

is also true and by substitution, we have 

( ) ( )( ) ( ) ( )( ) ( )txhtxKtxFtxKtxF xxtt ,,,,, −∗∗−∗∗  

( ) ( )∑
=

∗∗=
n

i
i txgtxf

1
.,,  (1.29) 
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By using the partial derivative of convolution, we obtain 

( ) ( ) ( ) ( )txKtxFtxKtxF xxtt ,,,, ∗∗−∗∗  

( ) ( ) ( ) ( )txKtxFtxKtxF xxtt ,,,, ∗∗−∗∗=  (1.30) 

and then equation (1.29) is followed by 

( ) ( )[ ] ( ) ( ) ( ) ( ).,,,,,,
1
∑
=

∗∗=−∗∗−
n

i
ixxtt txgtxftxhtxKtxFtxF  (1.31) 

By substituting equation (1.27) in (1.31), we have 

( ) ( ) ( ) ( ) ( ).,,,,,
1
∑
=

∗∗=−∗∗
n

i
i txgtxftxhtxKtxf  (1.32) 

This shows that the convolution ( ) ( )txKtxF ,, ∗∗  is a solution of equation (1.26).  

In the next example, we apply double Laplace transform technique and Theorem 
4 in order to solve one dimensional wave equation as follows. 

Example 2. Consider the one dimensional wave equation in the forms 

( ) ,, 2332
+

++ ∈∗∗+∗∗=− Rxttxetxeuu txtx
xxtt  (1.33) 

( ) ( ) ,0,,0, xx
t

x exexuxexu +==  (1.34) 

( ) ( ) tt
x

t etetutetu +== ,0,,0  (1.35) 

by taking double Laplace transform for equation (1.33) and single Laplace transform 
for equations (1.34) and (1.35) and taking the double inverse Laplace transform, we 
obtain the solution of equation (1.33) in the form 

( ) txxtttxtxexttxu t 2263325 912
60
16

2
124

20
336, +++++−+=  

24222432 9
4
530

2
9

4
126 xttetxxttete xxx +++++++  

xtxtxt etteeext ++− −+++−++
2

69
4
1

420
13036

2
924 57  

242532332 9
4
3

20
1184

2
3 xextxtxtxttx t−++++++  

.
6
124369 3333 xtxexttetx txt +−++++ +  
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Now if we consider to multiply the left hand side of equation (1.33) with a non-

constant coefficient 43tx  by using the double convolution and use the same 
technique that was applied above we get the solution in the form of 

( ) .
32
1

16
1

96
7, xtxtxt eteetxv +−++ −+=  (1.36) 

If we take second derivatives of equation (1.36), and taking the difference we obtain 
a nonhomogenous term and plus a function ( ),, txh  that is, 

( ) ( ) ( ) ( ).,43 txhuuvvtx xxttxxtt +−=−∗∗  

We can also apply same method to solve non-homogenous one dimensional heat as 
well as Laplace’s equations in two dimensions. 
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