F W Far East Journal of Mathematical Sciences (FIMS)
q p Volume 34, Issue 2, 2009, Pages 257-270

\ Published Online: September 7, 2009
iy X : - - i
WLABAD = TNDIA This paper is available online at http://www.pphmj.com

© 2009 Pushpa Publishing House

ON THE SECOND ORDER LINEAR PARTIAL
DIFFERENTIAL EQUATIONS WITH VARIABLE
COEFFICIENTS AND DOUBLE LAPLACE TRANSFORM

ADEM KILICMAN and HASSAN ELTAYEB

Department of Mathematics and Institute for Mathematical Research
University Putra Malaysia
43400 UPM Serdang, Selangor, Malaysia
e-mail: adem@math.upm.edu.my
eltayeb@putra.upm.edu.my

Abstract

In this study, we consider to solve the general linear second order partial
differential equations with non-constant coefficients by using the double
Laplace transform. In a special case, we provide solutions for the wave
equation where the non-constant coefficients are polynomials.

The partial differential equations (PDES) are very important in mathematical
physics and occur in several places. In general, PDEs are two types: the homogenous
equations with constant coefficients where they might accept many classical
solutions such as: separation of variables, see [9]; the methods of characteristics, see
[10] and [3]; integral transform methods, see [5]; and the non-homogenous equations
with constant coefficients also might be solved by integral transform methods as
well as operation calculus, see [11], [4], [2] and [6].
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Definition 1. Let F(x, y) and F,(x, y) be integrable functions. Then the

convolution of F(x, y) and F,(x, y) is defined as
y X
e ) oo ) = [ RO €y - m)Ra(C mdgan

and known as double convolution with respect to x and y, see [11].

We apply double Laplace transform to solve the linear second order partial
differential equations with non-constant coefficients, and discuss the non-
homogenous wave and heat equations with non-constant coefficient by using the
same techniques. For example, it was proved that if F and G are solutions for the
wave equation with constant coefficients and non-constant coefficients, respectively,
then the double convolution F=*+G is a solution for the following type of

equations:
Uge (X, 1) — Uy (X, t) = h(x, t) = Zn: F(x *xgi(x 1) (tx)eRS,
i=1

where h(x, t) is called remainder function.

In [7], the double Laplace transform is defined as
L.L[f(x s)]=F(p,s)= '[ e_pr‘ =St (x, t)dtdx, (L.1)
0 0

where x,t>0, and p and s are complex values and further the first order partial

derivatives are given by

LXL{afg;’ t)} = pF(p, s) - F(O, s).

Similarly the double Laplace transform for second partial derivative with respect to x
is given by

oF(0, s)

2
LXX{%} = p*F(p, 5)~ PF(0, 8) -~

and with respect to t is given by

2
L{%} = s°F(p, s) - sF(p, O)‘W,

see [11].
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Next we study the uniqueness and existence of double Laplace transform. First
of all, let f(x,t) be a continuous function on the interval [0, o) which is of

exponential order, that is, for some a, b € R,

[fxO]

Su
P bt ax-+bt

t>0 €
x>0

1.2)

In this case, the double Laplace transform of
F(p,s)= I I e SUPXf (x, t)dxat
0Jo

exists forall p > a and s > b and is in fact infinitely differentiable with respect to
p > a and s > b. All functions in this study are assumed to be of exponential order.

The following theorem shows that f(x, t) can uniquely be recovered from F(p, s).

Theorem 1. Let f(x,t) and g(x, t) be continuous functions defined for
X, t > 0 have Laplace transforms F(p, s) and G(p, s), respectively. If F(p, s)
=G(p, s), then f(x,t)=g(x, t).

Proof. If a. and B are sufficiently large, then the integral representation by

; ¢ 1 0L+|oo B+ioo stF ds g
(X )_ J(x joo 27i -[B—ioo ¢ (p’ S) s |9

for the double inverse Laplace transform can be used to obtain

¢ ¢ 1 0L+|oo B+ioo StF ds |
=5 e szﬁ_iwe (p. s)ds |dp

—i oL+ioo ox LJ«BHOO st
oz (Zni i e>G(p, s)ds |dp

=g(x t)
and the theorem is proved. O

In the next theorem, we study the existence of double Laplace transform as
follows:
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Theorem 2 (Existence of the Laplace transform). If f is of exponential order,
then its Laplace transform L, L[ f(x, t)]= F(p, s) is given by

F(D,S):I0 IO e~ PX7SUE(x, t)dtdx

where s=n+io and p =+ iu. The defining integral for F exists at points

s=mn+it and p = +i¢ inthe right half plane n > K and ¢ > L.

Proof. Using s =m +it and p = £ + i$, we can express F(p, s) as

F(p,s) = J: J.: f(x, t)cos(¢x + tt)e ™ Mtdxdt

- ij j f(x, t)sin(¢x + tt)e” X Mdxdt.
0Jo
Then, for values of n > K and ¢ > L, we have

fij| f(x, t)|| cos(¢x + tt) [e" Mtdxdt < MNJ‘me(K_”)t(J‘OO e("_g)xdxj dt
0 Jo 0 0
()%
Z-L)\q-K

jij| f(x, t) || sin(¢x + tt) [e" Mdxdt < MNjwe(K”)t(jwe(Lg)xdx]dt
0 Jo 0

and

0

“(eole)

which imply that the integrals defining the real and imaginary parts of F exist for
values of Re(p) > L and Re(s) > K, completing the proof. O

Theorem 3 (Inversion formula). A function f(x, t) which is continuous on

[0, o) and satisfies the growth condition (1.2) can be recovered from F(p, s) as

L (_l)m+n m m+1 n n+1 men(M N
= S \x) o) ¥ ot
nN—o




PDEs WITH VARIABLE COEFFICIENTS 261
where ™" denotes (m + n)th mixed partial derivatives of F(p, s) defined by
m+n
pmen - o F(ps) for x,t >0, since the above theorem obtains f(x, t) in
op™os”
term of F(p, s).

Of course, the main difficulty in using Theorem 3 for computing the inverse
Laplace transform is the repeated symbolic differentiation of F(p, s). However, we

apply Theorem 3 in the next example.

Example 1. Let f(x,t) = et Then the Laplace transform is easily found
to be
1
F(p.s)= (p+a)(s+b)’

It is also simple to verify that

m+n
OF(p.s) _ mint(=1)™"(p + a) ™ (s + b) "L,
op™Mos”
m+n
Putting this expression for L(ps) into Theorem 3 gives
opmas”
m+1_n+1 -m-1 -n-1
f(x,t) = lim u(a +m) (b +ﬂ)
M—so0 Xerl,[nJrl X t
nN—oo
-m-1 -n-1
= lim (1+ﬂ) (1+E) .
m-—»o m n
n—oo

The last limit is easy to evaluate, take the natural log of both sides and write the

In(l+%j In(l+%)
Ym+1)  Yn+1)

indeterminate from approaches —ax — bt. The continuity of the natural logarithm

result in the form of —

L’Hopital’s rule reveals that the

shows that In(f(x, t)) = —ax — bt, then f(x, t) = e &Pt
Properties of the double Laplace transform

In this part, we consider some of the properties of the double Laplace transform
that will enable us to find further transform pairs {f(x, t), F(p, s)} without having

to compute.
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() F(p+d,s+c)=LLe ™% (x, t)](p, s).
1 p s
()} X F(a, B) = LyL¢[f (ax, Bt)](p, ), where k = ap.

am+nF( p S)

(1) = LeLe[(=D)™ "™ £ (x, )] (p, 5).

The three properties above are very useful for the proof of Theorem 3.

The proof of Theorem 3. Let us define the set of functions depending on
parameters m and n,

rnm+1nn+1 0 o
U (X 1) = xMtNe=Mx=Nt g j I Om (X tdxdt =1, (1.3)
' m!n! 0 Jo '
and
lim lim J j Im,n(X, t)e(x, t)dxdt = (1, 1), (1.4)
m—o N—>w

where o(x, t) is any continuous function, let us denote its Laplace transform as a
function of p and s by L,L¢[o(x, t)](p, s). Now we define the function W(x, t) =
f (xxg, ttg) and using the property (I1), we have

LeLe [ D](p, 5) = Ly [f (x5, ttg)] (p, 5) = ﬁ F(%. %j (15)

We apply the property (I11), (we must evaluate the m + n mixed partial derivatives

of F(p, s) at the points p = m and s = %)

am 1 am+n p S
oS ———— (L [P(x, DD (p, 5) = X0 Gpas” F(%: gj (1.6)

Let o(x, t) = e"P~S'y(x, t). By using equations (1.4) and (1.3), we have

oL 1) =e PP 1) =eP3(xg, tg)

mm+lnn+1 0 @
lim lim —I I xMNe ™ PX=Ste=MX=Ntwys(y t)dxdt
0o Jo

m—oo N—o m! n!

m+1.n+1

= fim fim T L [x™t"e ™ My (x, 1)](p, s). (1.7)

m—wnow  Minl
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Using the above properties (1) and (1) of double Laplace transform, equation (1.6),
and the definition of W(x,t), we have

Ly L [xMt"e ™"y (x, t)](p, s)

amn

= (™" (L Le(e™™ ™ (x, 1) (p, 5)
op™o

= (™ (L L (P, ) (p + m, 5+ )
op 0s

SE aim (Lale(F (0, o)) B, 20
e o 5)
where % = xm+t”+1 from equations (1.7) and (1.8), with f(xg,ty) =P o(1, 1),
0o o
we have yield

f (10, o) = €P** lim 1im 2 (ﬂ)mﬂ(ﬂjm

m—oo N—0 min! XO to

y omn (F(p+m s+nD
apMas” X 't

for any p and s. The statement in Theorem 3 is actually just the special cases p =0

and s =0

Now consider a linear second order partial differential equation with constant
coefficients

n
AUyy + Aglyy + Agllyy + agUy + asUy + agl = Z fi(x, y)*=*g;(x, y), (1.9)
i=1
where a;’s are constants and further assume that equation (1.9) has a solution which

can be obtained by using the Laplace transform, then in order to produce an equation
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with non-constant coefficients we may use a convolution method and multiply the
left hand side of equation as follows:

p(X, ¥) * * (qUyy + glyy + aglyy + AUy + asly + agu)

= D il V) *#gi (%, y) (110)
i=1

under the boundary conditions
u(x, 0) = fy(x).  u(0, y) = fa(y),
uy(x, 0) = hy(x), uy(0, y)=hy(y) and u(0, 0)=0.

Thus equation (1.10) has also a solution found by using the double Laplace
transform, see [8].

Now consider a linear second order partial differential equation with non-
constant coefficients in the form of

PX, Y) # # [Ugy + Uyy + Uy + Uy +Uy + U] = F(x, ), (1.11)

m n
where p(X, y) = z Z x'y! is a polynomial and the boundary conditions are given
j=li=1

by
u(x, 0) = hy(x), u(0, y) = ga(y),

uy(x, 0) = 5em00. U0 y) = 5 au(y) and u(0,0)=0, (1.2

then by taking double Laplace transform and using single Laplace transform for
equation (1.12), we obtain

_ 11 F(p. 9)
u(x, y) = Lyl {P(D,Q)(PZ +pg+q2 + p+0|+1)}

1, -1 (p+q+1)Gy(a)
+Lplg | — - 1
(P°+pa+q°+p+q+1)

1, -1 (p+9+1)Hy(p)
+ Loyl — : 1
(P +pa+q°+p+q+1)
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Lo qG(a) - G;(0)
P L%+ pg+a?+prgd)

1, -1 pH1(p) — H1(0)
+ Loyl — 1 - 1
(P +pa+q°+p+q+1)

provided that the double inverse Laplace transform exists.

In particular, consider a non-homogenous one dimensional wave equation

U — U = D TOG D *gj(x, 1) (113)
i=1

and the conditions

u(0, t) = gy(t), u(x, 0) = hy(x),

10,1 = S 010, ur(x, 0) = S hy(x)

then by using the double convolution, we can obtain a wave equation with non-
constant coefficient in the form

PO, 1) %[ — U] = D F(x, 1) % % gi(x, 1), (114)
i=1

where p(x, t) and g;(x, t) are polynomials such that the degree p(x, t) is greater

than the degree of g;(x, t).

Now we let F(x, t) be a solution of
n
Uyt (X, £) = Uyy (X, t) = Z f(x, t)**gj(x, t) (x t)eR? (1.15)
i-1
and further consider K(x, t) is a solution of
n
PO 1) % (U (%, 1) = U (6, 1) = D F(x ) *xgi(x, 1) (t, x) e RS, (1.16)
i=1

Thus F(x, t) satisfies equation (1.15),

Fe( 1) = F(x, 1) = Z (X, 1) gi(x, 1) (1.17)
i=1
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and similarly, K(x, t) satisfies equation (1.16),

K (% 1) = K (%, 1) = .ni,u F(x, ). (1.18)

Now we can easily check whether the convolution F(x, t)**K(x, t) is a solution

or not for equation (1.15). By substitution, we obtain
.
(F(x, 1) = K(x, 1)) — (F(X, t) %% K(X, 1)),y ':Z f(x, t)**g;(x,t) (1.19)
i=1

by using the partial derivative of the convolution; the left hand side of equation
(1.19) follows:

Fie (X, t) * * K(X, t) = Fyy (X, t) * % K(x, t)
= F(X, t) * * Ky (X, t) = F(X, t) * * Ky (X, t)

and then equation (1.19) can be written in the form

F(x, 1) % [Kg (X, 1) = Ky (%, t)]iznlj F(x )% gi(x, ) (1.20)

and
[Fre(x, 1) = F(X, D] %+ K(x t)"’:i F(x, 1) % gi (X, 1). (1.21)

i=1
By substituting equation (1.18) into (1.20) and equation (1.17) into (1.21), we have

F(x, t)* *..iju F(x, 1) % .Z:‘ F(%, 1) * * g; (%, 1) (1.22)

and
f(x, t)**xK(x, t) = Zn: f(x, t) * *g;(x, t) (1.23)

i=1

and thus we can easily see from equations (1.22) and (1.23) that the convolution
F(x, t) == K(x, t) is not a solution for equation (1.15), however it is a solution for

another type of equation as in the following theorem.
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Theorem 4. If F(x, t) is a solution of

U — U = D T D) % gi(x, 1) (1.24)
i=1

under the initial conditions

u(0, t) = g1(t),  u(x, 0) = hy(x),
10,1 = S 01(t), u(x 0) = Shy(x)
and K(x, t) is a solution of
P0G 1) * (U — Uxe) = Zn: fx )xxgi(x t) (tx)eRZ (1.25)
i=1

under the same conditions, then F(x, t) * * K(x, t) is a solution for the following
equation;

Ugg (X, 1) = Uy (X, t) = (X, t)zzn:f(x, )*xgi(x, 1) (L x)eR2,  (1.26)
i=1

m n
where f(x, t) is an exponential function and p(x, t) = > > x't!.
jmia

Proof. Since F(x, t) is a solution of equation (1.24),

Fie (X, 1) — Fy(X, t) = Zn: f(x, t)*=*g;(x, t) 1.27)
i=1

holds and K(x, t) is a solution of equation (1.25),

1
Kt (%, 1) = Ky (X, 1) = il f(x t) (1.28)
is also true and by substitution, we have

(F(x, t) == K(x, )y — (F(x, t) **K(x, t)),, —h(x, t)

= Z f(x, t)**g;(x, t). (1.29)
i=1
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By using the partial derivative of convolution, we obtain
Fie (%, t) * * K(X, t) = Fyy (X, t) * * K(x, t)
= F(X, t) * * Ky (X, t) = F(X, t) * * Ky (X, t) (1.30)
and then equation (1.29) is followed by

[Fie (X, t) = Fy (X, )] * % K(x, t) = h(x, t) = Zn: f(x, t) = *g;(x, t). (1.31)
i=1

By substituting equation (1.27) in (1.31), we have
n
PO )% K06 1) = h(x, 1) = ) £ 1) %% gi(x, 1), (1.32)
i=1

This shows that the convolution F(x, t)**K(x, t) is a solution of equation (1.26). OJ

In the next example, we apply double Laplace transform technique and Theorem
4 in order to solve one dimensional wave equation as follows.

Example 2. Consider the one dimensional wave equation in the forms

U — Uy = € 03?3 12X un®t (1, x) e R, (1.33)
u(x, 0) = xe*, u;(x, 0) = xe* +e*, (1.34)
u(0,t) =te', u,(0,t) =te' +e' (1.35)

by taking double Laplace transform for equation (1.33) and single Laplace transform
for equations (1.34) and (1.35) and taking the double inverse Laplace transform, we
obtain the solution of equation (1.33) in the form

_ 3 50 opety s 123 a3 1.6 2 2
u(x,t)—36+20tx 24ex+2t x° + 6t +60t +12xt° + 9x“t

+6eXt2 + 2e%3 + %t“x2 + % x2t2 + 30e*t + %tA +9x°2

97t+x_ t X i? ES_@I+X
+24xt+2e 36e" + 30e +420t +4t > e

3 .23 3 2,3, 152 3.4, ot2
+2xt+4xt +18t° + x +20tx +4tx 9e X

+ x5t + 9%t + 36t + 24x — e'x3 + %t3x3.
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Now if we consider to multiply the left hand side of equation (1.33) with a non-

constant coefficient x°t* by using the double convolution and use the same
technique that was applied above we get the solution in the form of

_l t+Xx i t+X _i —t+x
v(x, t) = %6° T1ig° t 2e (1.36)

If we take second derivatives of equation (1.36), and taking the difference we obtain
a nonhomogenous term and plus a function h(x, t), that s,

(X3t4)* * (Vi = Vyx) = (Ut — Uy ) + (X, 1).

We can also apply same method to solve non-homogenous one dimensional heat as
well as Laplace’s equations in two dimensions.
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