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Abstract

Let P be a subset of a Banach space E, where P is normal and regular cone
on E. We prove several fixed point theorems on cone metric spaces and
these theorems generalize the recent results of various authors.

1. Introduction and Preliminaries

In recent years, several authors (see [1-4]) have studied the strong convergence
to a fixed point with contractive constant in cone metric spaces. Rezapour and
Hamlbarani [4] have proved certain fixed point theorems by using self mapping in
the setting of contractive constant in cone metric spaces. We first recall definitions
and known results that are needed in the sequel.
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Let E be a Banach space, and a subset P of E is said to be a cone if it satisfies
the following conditions:

(i) P = & and P is closed;

(ii) ax + by € P forall x, y € P, and a and b are non-negative real numbers;
(iii) PN (-P) = @.

The partial ordering < with respect to the cone Pby x <y ifandonly if y — x € P.
If y— x e interior of P, then it is denoted by x < y. The cone P is said to be a
normal if a number K > 0 such that for all x,yeE, 0<x<y implies | x||<K]y].

The cone P is called regular if every increasing sequence which is bounded above is
convergent and every decreasing sequence which is bounded below is convergent.

Definition 1.1. Let X be a non-empty set, and suppose the mapping d : X x X
— E is said to be a cone metric space if it satisfies

(i) 0<d(x, y) forall x, ye X and d(x, y) =0 ifandonly if x = y.
(i) d(x, y) =d(y, x) forall x,y e X.
(iii) d(x, y) =d(x, )+ d(z, y) forall x,y, z e X.
Example 1.2. Let E=R?, P={(x,y)eE:x,y>0}, X=R and d:X xX >E
defined by
d(x, y)=(x-yl| ofx=yl),
where o > 0 isaconstant. Then (X, d) is a cone metric space [1].

Definition 1.3. Let (X, d) be a cone metric space, x e X and {x,} be a
sequence in X. Then
(i) {xn} converges to x whenever for every ¢ € E with 0 < c there is a natural

number N such that d(x,, x) < ¢ forall n > N.

(i) {x,} is a Cauchy sequence whenever for every c € E with 0 < ¢, there is

a natural number N such that d(x,, X,) < ¢ forall n, m > N.

Definition 1.4. Let (X, d) be a complete cone metric space, if every Cauchy

sequence is convergent in X.
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Theorem 1.5 [4]. Let (X, d) be a complete cone metric space and the mapping

T : X —> X satisfy the contractive condition
d(Tx, Ty) < kd(Tx, y)+ ld(x, Ty)

for all x, y € X, where k, | € [0, 1) are constants. Then T has a unique fixed point

in X. Also the fixed point of T is unique whenever k +1 < 1.

Inthispaper, we prove the theorems which are the generalization of the theorems
of Rezapour and Hamlbarani [4].

2. Main Results

Theorem 2.1. Let (X, d) be a complete cone metric space and the mapping

T : X — X satisfy the contractive condition

d(Tx, Ty) < a[d(x, Tx) +d(y, Ty)]+ b[d(x, Ty) + d(Tx, y)]

forall x, ye X, and a+b < % a, b € [0, 1/2). Then T has a unique fixed point
in X.
Proof. Forevery xg € X and n > 1, Txg = X and TX, = Xp41 = T”+1x0,
d(Xn41s Xn) = d(TX,, TXq-1)
< ald(Xy, TX,) + d(Xq_1, T%p_1)]+ b[d (X, TXq—1) + d(TXq, Xp_1)]
< ald(Xy, Xpi1) + d(Xn_1, Xy)]+ b[A(Xp, Xq) + d(Xnp1, Xn—1)]
< afd(X, Xny1) +d(Xp_, Xp)]+b[d(Xn 11, X 1)]
< ald(Xy, Xpi1) + d(Xn_1, Xy)] + blA(Xpi1, Xn) + d(Xq, Xn_1)]
< (@a+b)[d(X,, Xpe1) + d(Xn_1s Xp)],

(a+h)

d(Xn41, Xn) < Ld(Xn, Xp_1), where L= m,

d(Xn41, %) < L (%, Xo).
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For n > m, we have
d(Xn, Xm) < d(Xq, Xq-1) + d(Xq_1, Xn_2) + === + d (X412, Xm)
<[ "2 4 M d (g, %)

< (:I-Il—mL)d(Xl, Xo).

m
For given 0 < ¢, choose a natural number N; such that ﬁd(xl, Xp) < ¢ for

all m> Nj. This implies d(x,, Xy,) < ¢. For n >m, {x,} is a Cauchy sequence in

(X, d) which is a complete cone metric space, there exists p e X such that
c(l-1L)
X, — P. Choose a natural number N, such that d(x,, p) < ——5 for all

c(1l-k)

n > N,. Hence for n > N,, we have d(x,, P) < 3

, Where k = a +b,
d(Tp, p) < d(Txy, Tp) + d(Txy, P)

< a[d(xy, Txy) +d(p, Tp)] + b[d(Xy, Tp) + d(Txy, p)]+ d(Xni1, P)

< a[d(Xn, Xn41) + d(p, TP)]+ b[d(xq, Tp) + d(Xn,1, P)] + d(Xns1, P)

< a[d(Xn, Xn41) +d(p, TP)]+ b[d(xq, p) + d(p. Tp) + d(Xn11. P)]

+d(Xn41, D),
(1-Kk)d(Tp, p) < kd(xy, p) +kd(Xq,1, P)+ d(Xq41, P)
< d(Xp, p)+d(Xqy1, P)+ d(Xns1, P),

d(Tp, p) < [d(Xq, P)+ d(X(T_l,kF))) +d(Xn11, P ’

d(Tp, p) <<3+%+

<
3 3’

d(Tp, p) < c,
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for all n> N,, d(Tp, p) <<% for all m>1, we get %—d(Tp, p)e P, and as
m — oo, we get % — 0 and Pis closed —d(Tp, p) € P, but d(Tp, p) € P, hence
d(Tp, p)=0 andso Tp = p. O

The following result of Rezapour and Hamlbarani [4] is a special case of the
previous theorem.

Corollary 2.1. Let (X, d) be a complete cone metric space and the mapping

T : X —> X satisfy the contractive condition
d(Tx, Ty) < a(d(Tx, y), d(x, Ty))

for all x, y € X, where a € [0, 1/2) is a constant. Then T has a unique fixed point

in X. For each x € X, the iterative sequence {T”x}nZl converges to the fixed point.

Proof. The proof of the corollary immediately follows by putting b = 0 in the

previous theorem. O

Theorem 2.2. Let (X, d) be a complete cone metric space and the mapping

T : X - X satisfy the contractive condition
d(Tx, Ty) < rmax{d(x, y), d(x, Tx), d(y, Ty)}
forall x, y e X and r € [0, 1). Then T has a unique fixed point in X.
Proof. Forevery xg € X and n > 1, Txg = X and TX, = Xp41 = T”*lxo,

d (X412, Xn) = d(TXq, TXq-1)

IA

rmax[d(Xn, Xn_1), d(Xn, Txp), d(Xp_1, TXp_1)]

IA

rmax[d (X, Xn—1), d(Xn, Xns1) d(Xn_1, Xq)]

IA

rd(Xy_1, Xn)

IA

r"d(xq, Xo).
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For n > m, we have
d(Xn, Xm) < d(Xy, Xq_1) + d(Xq_1, Xn_2) + ==+ + d (X1, Xm)

n-2

g[l’n_l+|’ +...+rm]d(xl, XO)

r.m
< —d(X]_, Xo).

T -n

m
For given 0 < ¢, choose a natural number N; such that hd(xl, Xp) < ¢ for

all m > Nq. This implies d(x,, Xy ) << c. For n>m, {x,} is a Cauchy sequence in

(X, d) which is a complete cone metric space and hence there exists p € X such
that x, — p. Choose a natural number N, such that d(x,, p) <<%, for all
n > N,. Then for n > N,, we have d(x,, p) < %

d(Tp, p) < d(Txy, Tp) + d(Tx,, p)

IN

rmax[d(xy, p), d(xp, T%q), d(p, Tp)]+ d(Xn.1, P)

IA

rmax[d(xy, ). d(Xn, Xns2) d(P, TP)]+ d(Xn1, P)

IA

rmax[d(x,, p), d(Xn, p)+d(p, Xpi1) d(p, TP)]+ d(Xp41, P)

d(Tp, p) < ¢,
for all n > N,, d(Tp, p) <<% for all m>1, we get %—d(Tp, p)e P, and as

m — o, we get % — 0 and P is closed —d(Tp, p) € P, but d(Tp, p)e P =
d(Tp, p) =0, andso Tp = p. O
Corollary 2.2. Let (X, d) be a complete cone metric space and the mapping

T : X — X satisfy the contractive condition d(Tx, Ty) <kd(x, y) forall x,y € X,

where k €[0,1) is a constant. Then T has a unique fixed point in X. For each

X € X, the iterative sequence {T”x}nZl converges to the fixed point.
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Proof. The proof of the corollary immediately follows since
d(x, y) < max{d(x, y), d(x, Tx), d(y, Ty)}. O

Note 2.3. We prove the above theorems in the setting of normal cone with
normal constant K.

Theorem 2.4. Let (X, d) be a complete cone metric space, and P be a normal

cone with normal constant K. Suppose the mapping T : X — X satisfies the
contractive condition

d(Tx, Ty) < a[d(x, Tx) +d(y, Ty)] + b[d(x, Ty) + d(TX, y)]

forall x, ye X, and a+b < % a, b € [0, 1/2). Then T has a unique fixed point

in X. Also, for any x e X, iterative sequence {T"x} converges to the fixed point.
Proof. Choose Xy € X. Set n > 1, Txy = X and Tx, = Xp4q = T" X,
d(Xn41s Xp) = d(TXq, TXq_1)
< ald(Xp, TXq) + d(Xq_1, T%a_1)] + b[d (X, TXp_1) + d(TXy, Xq_1)]
< afd(Xy, Xni1) + d(Xq_1, X))l + b[A (X, Xn) + d (X115 Xn_1)]
< a[d(Xy, Xns1) + d(Xq_1, X )]+ bld (X1, Xq-1)]
< a[d(Xy, Xn11) + d(Xq_1, X))l + b[Ad (X411, Xp) + A (X, Xp_1)]
< (a+b)[d(Xy, Xns1) + d(Xn_1, X))l

(a+b)

(a1, %) < Ld(Xn, Xp-1). where L = "7 <

11

d(Xn41, Xp) < L'd(xq, Xo)-
For n > m, we have
d(Xny, Xm) < d(Xq, Xn_1) + d(Xq_1, Xq—2) + === + d(Xp41, Xm)
<[4 "2 4 M d (%, %)

m

< ﬁ d(Xl, Xo).
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m
We get || d(Xp, Xm )| < Kﬁ"d(xl,xo)", and hence d(xp, Xy)—>0 as n,m— oo.

Hence {x,} is a Cauchy sequence. By the completeness of X, there is p e X such

that x, > p as n - oo,
d(Tp, p) < d(Txy, Tp) + d(Txq, P)
< ald(xp, TXy) +d(p, Tp)] + b[d(X,, Tp) + d(Txy, )]+ d(Xh41, P)
< afd(xn, Xp42) + d(p, Tp)]+ b[d (xn, Tp) + d(Xn41, P+ d(Xn41, P)
< a[d(Xq, Xn41) +d(p, Tp)] + b[d(xy, p) +d(p, Tp) + d(Xns1, P)]
+d(Xn11, P),
(L-k)d(Tp, p) < kd(x,, p)+kd(X,;11, P)+ d(Xp41, P),  (where k = a +b)

< k[d(xp, p)+d(Xq41, P,

d(Tp, p) < 7 [80kn, P)+d(xn, P

d(Tp, P < K [1d 0y, D)+ ] dCtyn, P

Hence || d(Tp, p)|| =0 = Tp = p. If g is another fixed point of T in X, then
d(p, ) = d(Tp, Tq)
< a[d(Tp, p)+d(q, Tq)] + b[d(p, Tq) + d(Tp, q)]
<a[d(p, p)+d(a, q)]+b[d(p, q) +d(p, )]
< 2b[d(p, 9)].

This is contradiction, and hence T has a unique fixed point in X. O

Theorem 2.5. Let (X, d) be a complete cone metric space, and P be a normal

cone with normal constant K. Suppose the mapping T : X — X satisfies the
contractive condition

d(Tx, Ty) < rmax[d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(Tx, y)]

forall x, y € X, and r € [0, 1). Then T has a unique fixed point in X. Also, for any

X € X, iterative sequence {T"x} converges to the fixed point.
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Proof. Forevery x € X and n =1, Txg = ¥ and Tx, = Xp,1 = T" g,
d(Xn41: Xn)
=d(Txy, TXp_1)
< rmax{d(Xy, Xp—1), d(Xn, T ) d(Xq_1s TX—1)s d(Xns TX—1), d(TXq, Xq_1)]
< rmax[d(Xn, Xp—1) d(Xns Xpa1) d(Xn_1s Xp)s (X, Xn)s d(Xpi1s Xn—1)]
< rmax[d(Xy, Xq-1), d(Xq, Xn41), d(Xni1, Xn-1)]
< rmax[d(Xy, Xp—1)» d(Xns1, Xn-1)]-
Case (i). If d(Xq41, Xp) < rd(Xy, Xq_1), then we get d(Xn,1, X,) < r"d(xq, Xo).
For n > m,
d (X, Xm) <d (X, Xn1) + d(Xp_1, Xn_2)+ -+ + dXms1, Xm)

+ -+ rM]d (X, Xg)
< %d(xl, Xo).

We get [[d(xp, Xy )| < K%"d(xb Xo)|., and hence d(x, Xy, ) —> 0 as n,m — .
Hence {x,} is a Cauchy sequence. By the completeness of X, there is p € X such
that X, > p as n - oo,
d(Tp, p) < d(Txy, Tp) + d(Txy, P)
< rmax[d(X,, p), d(Xy, T%,), d(p, Tp), d(x,, Tp), d(Tx,, p)]
+d(Xn11, P)
< rmax[d(x,, p), d(Xn, Xns1) d(p, Tp), d(Xy, Tp), d(Xns1, P)]
+d (X121, P)
< rd(p, Tp),
d(Tp, p) =0 hence Tp = p.
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Case (ii). If d(Xn41, Xy) < rd(X,11, Xn—1), then

d(Xn+1, Xn) < F[d(Xqu1, Xn) +d(Xq, Xq-1)]

< 71400, 1))

<h[d(x,, X1_1)], where h = ﬁ <1,

For n > m,
d(Xy, Xm) < d(Xq, Xp_1) + d(Xn_1s Xp_2) + -+ + d(Xma1s Xm)
<[h" T+ h"2 4 h™d (%, Xo)
m

< ﬁd(xl, Xg)-

m
We get [[d (X, Xm)||< Kﬁ”d(xl, Xo)|l, and hence d(x,,Xy,)—>0 as n,m— .

Hence {x,} is a Cauchy sequence. By the completeness of X, there is p € X such

that x, > p as n — oo,
d(Tp, p) < d(Txy, Tp) + d(Txy, p)
< rmax[d(xy, p), d(x, Txq), d(p, Tp), d(xy, Tp), d(Txy, p)]
+d(Xp11, P)
< rmax[d(xy, p), d(Xq, Xn41), d(p, Tp), d(Xn, Tp), d(Xny1, P)]
+d(Xn41, P)
< rd(p, Tp),
d(Tp, p) = 0. Hence Tp = p,
d(p, q) = d(Tp, Tq)
rmax[d(p, a), d(p, Tp), d(q, Tq), d(p, Ta), d(Tp, q)]
rmax[d(p, a), d(p, p). d(q, ), d(p, ), d(p, )]

r[d(p, 9)]-

This is contradiction and hence T has a unique fixed point in X. O

IA

IA

IN
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Corollary 2.3. Let (X, d) be a complete cone metric space and P be a normal

cone with normal constant K. Suppose the mapping T : X — X satisfies the
contractive condition

d(Tx, Ty) < rmax[d(x, y), d(x, Tx), d(y, Ty)]
forall x, y € X, and r € [0, 1). Then T has a unique fixed point in X. Also, for any
X € X, iterative sequence {T"x} converges to the fixed point.
Proof. The proof of the corollary immediately follows since
max{d(x, y), d(x, Tx), d(y, Ty);
< max[d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(Tx, y)]. a

Theorem 2.6. Let (X, d) be a cone metric space, and P = X and P be a

regular cone, and let S be the class of functions o:R™ — [0, 1) satisfying

at,) >1=1t, > 0and T : X - X satisfying the contractive condition

d(Tx, Ty) < a(d(x, y))d(x, y)

forall x, y € X. Then T has a unique fixed point in X.

Proof. Let xp € X and n =1, Txg = % and TX, = Xy41 = T”+1x0,
d(Xn11, Xn) = d(TXy, TXp_1)
< ofd(Xn, Xn-1))d(Xn, Xq_1)-

If d(x,, Xo—1) =0, then {d(x,,1, X,)} is @ monotonically decreasing and bounded

below, as P is regular we have {d(x,.1, X,)} is convergent. Also if d(x,, X,_1) >0,

then 40ns1 %) a(d(Xy, Xp_1)) >1 as n— o and aeS, then we get
d(Xns Xp-1)

d(Xp41, X,) is @ monotonically decreasing and bounded below, as P is regular we

have {d(X,.1, Xn)} is convergent.
d(Tp, p) < d(Txy, Tp) + d(Txq, P)
< ofd(xn, P))d(Xn, p)+d(Xnsg, P) = 0.

This proves the theorem. O
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