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Abstract

Let G be a compact definable C" group and 1<r <. Let X be an
affine definable C'G manifold and Xy, .. X, definable C'G
submanifolds of X such that Xi, ..., X, are in general position in X.
Suppose that f : X — R is a G invariant proper surjective submersive
definable C" function such that for every 1< iy < -~ <ig <k, f I Xi, N

=N X, = Xj NN Xj, = R is a proper surjective submersion. We

prove that there exists a definable C'G diffeomorphism h = (b, f):
(X; X1, oo Xi) = (X*7 X5, .y Xg)x R, where Z* denotes Z 1 f ~2(0)

for a subset Z of X.

Moreover, we prove an equivariant definable C* version under some
conditions and its application.
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1. Introduction

Coste and Shiota [1] proved that a proper Nash surjective submersion f from an
affine Nash manifold X to R is Nash trivial, namely there exist a point a € R and

a Nash map h:X — f~%a) such that (h, f): X — fY(a)xR is a Nash
diffeomorphism.
Let M=(R, + +<,..) denote an o-minimal expansion of the standard

structure R = (R, +, -, <) of the field R of real numbers. The term “definable”

means “definable with parameters in AM?”. General references on o-minimal
structures are [2], [5], see also [15]. The Nash category is a special case of the

definable C* category and it coincides with the definable C* category based on
R [16]. Further properties and constructions of them are studied in [3], [4], [6],
[13] and there are uncountably many o-minimal expansions of R [14]. Equivariant

definable C" categories are studied in [8-11]. Everything is considered in M and
each manifold does not have boundary unless otherwise stated.

A map v : M — N between topological spaces is proper if for any compact

set C = N, y}(C) is compact.

Let X be a C" manifold, X, ..., X, C" submanifolds of X and r > 1. We say
that {X;};_, are in general position in X if for each i e | and J < | —{i}, X;

intersects transverse to M jc; X j.

The following is an equivariant relative definable C" version of [1].

Theorem 1.1. Let G be a compact definable C" group and 1< r < 0. Let X be
an affine definable C'G manifold and Xy, ..., X) definable C"'G submanifolds of

X'such that Xy, ..., X are in general position in X. Suppose that f : X > R isa
G invariant proper surjective submersive definable C" function such that for every
1<y <o <ig <k, FIX NN X 0 X NN Xj, —> R is a proper surjective
submersion. Then there exists a definable C'G diffeomorphism h = (h', f):

(X5 X1y oo X ) = (X5 XSy oy X)) x R, where Z* denotes Z N f~1(0) for a
subset Z of X.
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Let X = {(x, )|y =0}U{(x, y)Ixy =1 c R?and f : X > R, f(x, y)=x
Then f is a surjective submersive polynomial map and it is not definably trivial. Thus

even in the non-equivariant category, the proper condition in Theorem 1.1 is
necessary.

Let 1<r <o and let F:R — (-1,1) be a definable C" function such that
F(x)=x in a definable open neighborhood of 0, F|(-o, -2]=-1/2 and

F|[2, ) =1/2. Suppose that X = S xR <R3, f:S1xR >R, f(x, vy, t)=t,
X, = {0, I} xR and X, = {(x, v, t) e SLx R|x = F(t), y = v1— x2}. Then Xy,
X, are in general position in X, f, f | Xy, f | X, are proper surjective submersions
and f|X; N X5 : XN X, > R is not surjective. Since there exists no definable
ct diffeomorphism h:(h', f):(X; X3, Xp) = (X*; X7, X3)x R, even in the
non-equivariant setting, the condition that every f[X; - Xj @ X M-+ X

— R is a proper surjective submersion is necessary.

Let f:U — R be a definable C* function on a definable open subset

U c R". We say that f has controlled derivatives if there exist a definable
continuous function u:U — R, real numbers C;, C,, ... and positive integers

Ey, Ep, ... suchthat | D* f(x)| < C OL‘u(x)EW\ forall xeU and o e (NU{0})",

a\a\

where Da =
OXCL - oxCn

and |o| = g + -+ + a,. We say that M has piecewise

controlled derivatives if for every definable C* function f :U — R defined in a
definable open subset U of R", there exist definable open sets Uy, ..., U; c U

such that dim(U — U'izlui) < n andeach f|U; has controlled derivatives.
The following is an equivariant definable C* version of Theorem 1.1.

Theorem 1.2. Suppose that M is exponential, admits the C* cell decomposition
and has piecewise controlled derivatives. Let G be a compact definable C* group,
X be an affine definable C*G manifold and X4, ..., X, be definable C*G

submanifolds of X such that X4, ..., X, are in general position in X. Suppose that
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f : X — R is a G invariant proper surjective submersive definable C* function
such that for every 1<iy <--- <ig <k, f[Xj 11X, X NN Xz >R
is a proper surjective submersion. Then there exists a definable C*G
diffeomorphism h = (0, f):(X; Xq, .., Xi) = (X*; X7, ooy X)) x R, where Z*

denotes Z N f ~1(0) for a subset Z of X.

Let G be a compact definable C* group, X be a noncompact definable C*G

manifold and Xj, .., X, be noncompact definable C*G submanifolds of X in

general position in X. If M is exponential, admits the C* cell decomposition and
has piecewise controlled derivatives and X is affine, then by Proposition 3.2, we may

assume that X is a bounded definable C*G submanifold of some representation Q
of G. We say that (X; Xy, ..., Xy ) satisfies the frontier condition if each X; — X;

is contained in X — X, where X; (resp. X) denotes the closure of X; (resp. X) in
Q. We say that (X; Xy, ..., Xy ) is simultaneously definably C*G compactifiable if

there exist a compact definable C*G manifold Y with boundary oY, compact
definable C”G submanifolds Y, ..,Y, of Y with boundary oYy, ..., dY,,
respectively, and a definable C*G diffeomorphism f : X — IntY such that for
any i, f(Xj)=IntY;, each dY; is contained in oY, and Y, ..., Y, and oY are in

general position in Y. Here IntY (resp. IntY;) denotes the interior of Y (resp. Y;).
As an application of Theorem 1.2, we have the following theorem.

Theorem 1.3. Suppose that M is exponential, admits the C* cell decomposition
and has piecewise controlled derivatives. Let G be a compact definable C™ group,
X be a noncompact affine definable C*G manifold and X4, ..., X, be noncompact
definable C*G submanifolds of X in general position in X such that (X; X, ..., Xy )
satisfies the frontier condition. Then (X; Xy, ..., Xi) is simultaneously definably
C™G compactifiable.

Theorem 1.3 is an equivariant relative definable version of [1] and an

equivariant definable C" version is proved in [12] when r is a positive integer.
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2. Proof of Theorem 1.1

Let r be a non-negative integer, « or w. A definable C" manifold G is a
definable C" group if the group operations G x G — G and G — G are definable

C" maps.

Let G be a definable C" group. A representation map of G is a group
homomorphism from G to some O,(R) which is a definable C" map. A
representation means the representation space of a representation map of G. In this
paper, we assume that every representation of G is orthogonal. A definable C'G
submanifold of a representation Q of G is a G invariant definable C" submanifold
of Q. A definable C'G manifold is a pair (X, ¢) consisting of a definable C"
manifold X and a group action ¢ : G x X — X which is a definable C" map. We
simply write X instead of (X, ¢). A definable C"G manifold is affine if it is
definably C'G diffeomorphic to (definably G homeomorphic to if r = 0) a definable

C"G submanifold of some representation of G. Definable C'G manifolds and

affine definable C'G manifolds are introduced in [10].

Let G be a definable C" group, X be definable C"G manifold and Y be a

definable C" manifold. A G invariant definable C" map f : X — Y is definably
C'G trivial if there exist a point y € Y and a definable C'G map h: X — f (y)
suchthat H = (h, f): X — fY(y)xY isadefinable C'G diffeomorphism.

The following is piecewise definable C'G triviality of G invariant surjective
submersive definable C" maps [10].

Theorem 2.1 (1.1 [10]). Let r be a positive integer. Let G be a compact
definable C" group, X be an affine definable C"G manifold and Y be a definable
C" manifold. Suppose that f : X — Y is a G invariant surjective submersive
definable C" map. Then there exists a finite decomposition {T;} of Y into definable

C" submanifolds of Y such that each f | f~1(T;): f X(T;) > T; is definably C'G
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trivial. If M admits the C* (resp. C®) cell decomposition, then we can take

r = oo (resp. o).

The following provides the existence of a definable C"G tubular neighborhood

of a definable C"G submanifold of a representation of G.

Theorem 2.2 [11, 9]. Let r be a non-negative integer, o or ®. Then every

definable C"G submanifold X of a representation Q of G has a definable C'G
tubular neighborhood (U, 8y ) of X in Q, namely U is a G invariant definable open

neighborhood of X in Q and 6y :U — X is a definable C'G map with
Oy | X =idy.

Proposition 2.3 (P4 [12]). Let r be a positive integer. Let Y, Z be affine
definable C'G  manifolds, Y, .., Y, (resp.Zy, .., Z,) definable C'G

submanifolds of Y (resp. Z) in general position in Y (resp. Z). Suppose that

F :(U:(lYi; Yy, oo ij - [U!‘lzi; Z1, o ij is a definable continuous G

map. If each F|Y; is a definable C'G map (Y;;Y; Ny, ..., Y; NYig, Y; N Yis,
. Yi ﬂYk) —> (Zi; Zi ﬂ Zl’ ey Zi ﬂ Zi—ll Zi n Zi+ll - Zi ﬂ Zk), then there exist

a G invariant definable open neighborhood W of Uin=1Yi in'Y and a definable C"'G

map H : W; Yy, . Y) = (Z: Zy, .. Zi) suchthat H [ J Y = F.

Let 1<r <o and Def"(R") denote the set of definable C" functions on
R". For each f < Def"(R") and for each positive definable continuous function
e:R" > R, the e-neighborhood N(f;e) of fin Def"(R") is defined by {h e
Def "(R")||D*(h - f)| <& Va e (NU{0O)", |a| < r}, where a = (ay, .., ap)
e(NU{O)", |a|=0q++a, We call the topology defined by these
g-neighborhoods the definable C" topology. By taking the relative topology of the
definable C" topology of R", we can define the definable C" topology of a
definable C" submanifold X of R".
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Let X,Y < R" be definable C" submanifolds. Note that if X is compact, then

the definable C" topology of the set of definable C" maps from X to Y coincides
the C" Whitney topology of it [15].

Theorem 2.4 [15]. Let X and Y be definable C° submanifolds of R" and
0<s<ow. Let f:X —Y be adefinable C° map. If f is an immersion (resp. a
diffeomorphism, a diffeomorphism onto its image), then an approximation of f in the
definable C* topology is an immersion (resp. a diffeomorphism, a diffeomorphism

onto its image). Moreover, if f is a diffeomorphism, then h™t > ftash- f.

Proof of Theorem 1.1. Since X is affine, we may assume that X is a definable

C"G submanifold of a representation Q of G.

We first prove the case where k = 0. Applying Theorem 2.1, we have a partition
—m=ag <@ <a <--<aj <ajy = of R and definable C"G diffeomorphisms
w o F (@ @) > F ) < (8, ag,) with £ 7Yy, a40)) = pyow;, 0<
i < j, where p; denotes the projection f ~1(y;)x (aj, aj,1) — (a;, aj41) and y; e
(3, ajy1)-

Now we prove that for each a; with 1 <i < j, there exist an open interval I;
containing a; and a definable C'G map =; : f X(l;) »> f *(a;) such that F; =
(mi, £): £72(1;) > £ X(a;) x I; is a definable C'G diffeomorphism. By Theorem
2.2, we have a definable C"G tubular neighborhood (U;, 0f-1(y)) Of fL(a) in
X. Since f is proper, there exists an open interval |; containing a; such that
f‘l(li) c U;. Note that if f is not proper, then such an open interval does not
always exist. Hence shrinking I, if necessary, Fj = (mj, f): f72(1;) > f ()

x |; is the required definable C'G diffeomorphism.

By the above argument, we have a finite family of {J; }::1 of open intervals and

definable C'G diffeomorphisms ¢; : f 2(J;) = f X(y;)x Jj, 1<i <1, such that
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yi € Jj, U:zl‘]i = R and the composition of ¢; with the projection f‘l(yi)x Jj
onto J; is f|f71(J;).

Now we glue these trivializations to get a global one. We can suppose that
i>2 Uj3NJ=(ahb)and yjy: fUjy) > f1(y)xU;; is a definable
C'G diffeomorphism with f|f ~(U;_;) = proji_y o yj_y, where U;_; = U':lJS
and proj_; denotes the projection f Y(y;)xUj; > U; ;. Take z e(a, b)=
U; ;N J;. Then since fX(yy)= fYz)= fX(y;), fY(y) is definably C'G
diffeomorphic to f‘l(yi). Hence we may assume that ¢} is a definable C'G
diffeomorphism from f2(J;) to f(y;)x J;. Then we have a definable C'G

diffeomorphism

i e (67 ) x (& b) > F7H(yy)x (@, b), (% 1) = (a(x, 1), 1),

Take a C" Nash function u: R — R such that u = a;b on (—oo,%a+%b}

and u =id on Ea+%b, ooj. Let

w7 (y) x (a, b) > (& b)), (x, 1) = wiZy(a(x, u(v)), v).
Then 7 is a definable C"G diffeomorphism such that © = (¢} )L if %a +%b <

t<bandt=yj}o(Pxid)ifa<ts< %a+%b, where P: f1(y;) > £ 1(yp),

P(x) = q(x, a_erb) Thus we can define

Vi FHU) > Ty x U,

(Pxid) Loy 1(x), f(x)< %a+%b,

vi(x) = (x), %a+%bs f(x)<b,

Bi(x), f(x)>b,
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Then v; is a definable C'G diffeomorphism. Thus y; : X — f‘l(yl)xR is a
definable C'G diffeomorphism. Therefore, we have the required definable C'G
diffeomorphism (H, f): X - X* xR.

We now prove the general case by induction on k.

Let k > 1. By the inductive hypothesis, for any i, there exists a definable C"'G
diffeomorphism h; = (h{, f):(X;; X; N Xq, ooy X3 N XiZ1, X5 N Xiggy o0 X5 N Xy)
= (X35 XN XL XN X XN X1 0 XN XE) x R, In particular, by | X,
N X1 (X N Xy Xo N XN Xgy e, Xo NXE N X)) = (X3 N XT3 X5 N Xy N X3,
v X5 N X{ N Xg) is a definable C'G map. By Theorem 2.2, we have a G
invariant definable open neighborhood W, of X; N X, in X, and a definable C"G
map @, : (Wo; Xo N X3 Xo N X3 N X3, e Xo N X3 N X)) = (X35 X5 N XS5
X5 N X7 N X3, ..., X5 N X7 N Xg) such that @, X, N Xy = b [ X, N X;. Take
a G invariant definable open neighborhood W5 < W, of X; N X, in X, whose

closure in X, is properly contained in W; and a G invariant definable C" function

a: X, — R such that its support lies in W, and a|W; =1. By Theorem 2.2, we
have a G invariant definable open neighborhood O of X5 in Q and a definable

C'G map 6x: : 0 — X; with 6] X5 =id;.

Define

Ox3(L-a())hy(x) +a(x)®p(x)).  x €W,
hé(X), X e X2 _Wl'

2 (x) = {

Then W5 : (Xg; Xo N Xq, oy X2 N X)) = (X5 X5 N XY, oy Xo N XE) is a
definable C'G map which is an approximation of hy. Thus hj is extensible to a
definable continuous G map ‘i’z : X3 U Xy — X™ such that ‘i’z | X1 and ‘?2 | X9

are definable C'G maps.

Repeating this process, we have a definable continuous G map @:
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(Uik:lxi; X1y oo XkJ — (X*; X{, ..., Xg) such that each ®|X; is a definable
C"G map which is an approximation of h/.

By Proposition 2.3, we have a G invariant definable open neighborhood U of

U:;lxi and a definable C"G map L :U — X ™ extending ®.

Take a G invariant definable open neighborhood U’ of U:lei in X whose

closure in X is properly contained in U and a G invariant definable C" function
b: X — R such that its support lies in U and b|U' = 1. By Theorem 2.2, we have

a G invariant definable open neighborhood V of X * in Q and a definable C'G map
Define

) By ((1—-b(x))H(x)+b(x)L(x)), xeU,
X) =

H (x), xe X -U.
Then h':(X; Xq, .., Xg) = (X*; X1, ..., Xg) is a definable C"G map. Thus
h=(h, £):(X; Xq, o, Xg) = (X5 X{, ., Xg)x R is a definable C'G map
which is an approximation of (H, f). Therefore, by Theorem 2.4, h is the required

definable C'G diffeomorphism. O

3. Proofs of Theorems 1.2 and 1.3

From now on we assume that M is exponential, admits the C* cell
decomposition and has piecewise controlled derivatives.

Theorem 3.1 (1.2 [7]). Every definable closed subset of R" is the zero set of a

definable C* function on R".

Proposition 3.2. Let G be a compact definable C* group and X be a definable

C™G manifold in a representation Q of G. Then X is definably C*G imbeddable
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into Q@ xR? such that X is bounded and X — X consists of at most one point,
where X denotes the closure of X.

Proof. We may assume that X is noncompact. Then X — X is a G invariant
closed definable subset of Q. Let ©:Q — Q/G < R® denote the orbit map. Then
ion:Q — R® is a proper polynomial map (see Section 4 [11]), where i: Q/G
— R® denotes the inclusion. Hence iom|X — X : X — X — R® is proper because
X — X isclosed in Q. Thus i o (X — X)(= n(X — X)) is a definable closed subset
of R3. Applying Theorem 3.1, there exists a definable C* function f : R®> - R
with (X — X)= f1(0). Hence F = f on:Q — R is a G invariant definable
C* function with X — X = F~(0). Therefore, replacing the graph of YF by X,
we may assume that X is closed in Q x R. Applying the stereographic projection
s: QxR — S(QxR?), s(X) satisfies our requirements, where S(Q x R?) denotes
the unit sphere of Q x RZ. O

The proof of Proposition 3.2 proves the following two theorems and
proposition.

Theorem 3.3. Let G be a compact definable C* group and Q be a
representation of G. Every G invariant definable closed subset of Q is the zero set of

a G invariant definable C* function on Q.

Theorem 3.4. Let G be a compact definable C* group and X be an affine
definable C*G manifold. Suppose that A, B are G invariant definable disjoint

closed subsets of X. Then there exists a G invariant definable C* function
f: X >R suchthat ff/A=1and f|B =0.

Proposition 3.5. Let G be a compact definable C* group, X be a noncompact
affine definable C*G manifold and Xj, ..., X,, be noncompact definable C'G

submanifolds of X in general position in X such that (X; Xq, ..., X,,) satisfies the

frontier condition. Then we may assume that X is a bounded definable C*G
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submanifold of some representation Q of G such that X; — Xy =--- = X, — X, =

X — X = {0}, where X (resp. X;) denotes the closure of X (resp. X;) in Q.
Using Theorem 3.4, a similar proof of P4 [12] proves the following proposition.

Proposition 3.6. Let Y, Z be affine definable C*G manifolds, Yy, ..., Y, (resp.

Zq, ..., Zy) definable C*G submanifolds of Y (resp. Z) in general position in Y
(resp. Z). Suppose that F :[U:(lYi; Yy, oo ij - [U:‘lzi; Z1, o ij is a

definable continuous G map. If each F|Y; is a definable C*G map (Y;;Y; NYy,
e Yi NVYis, Yi NYigg, 0 YiNY) > (Zis ZiNZgy o Zi N Zisg, Zi N Zigq, o
Zi N Zy), then there exist a G invariant definable open neighborhood W of

UinzlYi in Y and a definable C*G map H :(W;Yy, .., Yy) = (Z; Z4, ..., Zy)
k
suchthat H [ J._ Yi = F.
Proof of Theorem 1.2. Using Theorem 3.4 and Proposition 3.6, a similar proof

of Theorem 1.1 proves Theorem 1.2. O

Proof of Theorem 1.3. By Proposition 3.5, we may assume that X is a bounded

definable C*G submanifold of a representation Q of G such that X1 — Xy=-=
Xn— X, =X - X ={0}.
Let f:X - R, f(x)=] x| where | x| denotes the standard norm of x in

Q. Since f is submersive and G invariant and by Theorem 2.1, there exist a

sufficiently large positive number o, and a definable C*G map hy : f (o, »)) —
fX(a) such that h:=(hy, f): f (o, ©)) > f Ha)x (o, ©) is a definable
C™G diffeomorphism.

Let f; = f|Xj. Since (X; Xy, .., Xi) satisfies the frontier condition and
X1, ..., Xy are in general position in X, each Y; = f;}((ct, %)) is a definable C*G

submanifold of Y = f ((a, %)), Y1, .., Y are in general position in Y and for

every 1<y < <ig <k, f[Yy N--NYj 1Yy N--NYj, > (o, ) is a proper
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surjective submersion. Since (o, ) is definably C* diffeomorphic to R, there

exists a G invariant surjective submersive definable C* function F : (Y; Yy, ..., Yy)

— R satisfying the conditions in Theorem 1.2.

Applying Theorem 1.2 to F, there exists a definable C*G diffeomorphism
(f (o ) f (o ), oo i (0 20)) > (F (@) fh(@), o ficH (@) x R,
Thus we have a definable C*G diffeomorphism H : (f ((a, )); f; 2(at, »)),
o F (@, ©)) = (F Ha), f7Ha), ..., fit(a)) x (@, ). Since a is sufficiently
large, f7Y([0, @ +1]) is a compact definable C*G manifold with boundary
f Lo +1) and each f;1([0, o +1]) is a compact definable C*G submanifold
of 730, o +1]) with boundary fi‘l(oc +1). Therefore, using H and Theorem
34, (X; Xq, .., Xx) is definably C*G diffeomorphic to (f ([0, o +1]);
1[0, o +1]), .., ([0, & +1])). O
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