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Abstract 

In this note, we present a brief survey on partial answers to Reich’s 
problem and some related results are also given. 

1. Introduction 

Let ( )dX ,  be a metric space. We use ( )XCl  to denote the collection of all 

nonempty closed subsets of X, ( )XCB  for the collection of all nonempty closed 

bounded subsets of X, ( )XP  for the collection of all nonempty bounded proximinal 

subsets of X (A subset M of X is called proximinal if for each ,Xx ∈  there exists an 

element Mk ∈  such that ( ) ( ),,, Mxdkxd =  where ( ) ( ){ yyxdMxd :,inf, =  
}M∈  is the distance from the point x to the subset M ), ( )XK  for the collection of 

all nonempty compact subsets of X, and H the Hausdorff metric on ( ),XCB  i.e., 

( ) ( ) ( ) ( ),,,,sup,,supmax, XCBBAAbdBadBAH
BbAa

∈
⎭
⎬
⎫

⎩
⎨
⎧=

∈∈
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where ( ) ( ){ }.:,inf, BbbadBad ∈=  H on ( )XCl  is also a metric except that it 

takes also the value +∞  if ( )dX ,  is unbounded. 

We also use the following notions: 

Definition 1.1. We say a multivalued map ( )XCBXT →:  is 

(a) contraction [20] if there exists a constant [ )1,0∈λ  such that for all 

,, Xyx ∈  

( ) ( )( ) ( ),,, yxdyTxTH λ≤  

(b) generalized contraction [22] if for all ,, Xyx ∈  

( ) ( )( ) ( ),,,, yxdyxdkTyTxH ≤  

where k is a function of ( )∞,0  to [ )1,0  such that ( ) ,1suplim <
+→

rk
tr

 for all .0>t  

An element Xx ∈  is said to be a fixed point of T if ( ).xTx ∈  

Definition 1.2. A real valued function f on X is called lower semi-continuous if 
for any sequence { } Xxn ⊂  with Xxxn ∈→  imply that ( ) ( ).inflim nn xfxf ∞→≤  

In [12], Kada et al. have introduced a concept of w-distance in the setting of 
metric spaces as follows: 

Definition 1.3. A function [ )∞→×ω ,0: XX  is called a w-distance on X if it 

satisfies the following: 

(w1) ( ) ( ) ( ),,,, zyyxzx ω+ω≤ω  for all ;,, Xzyx ∈  

(w2) ω is lower semi-continuous in its second variable; 

(w3) For any ,0>ε  there exists 0>δ  such that ( ) δ≤ω xz,  and ( ) δ≤ω yz,  

imply ( ) ., ε≤yxd  

The metric d is a w-distance on X. Many other examples of w-distance are given 
in [12, 27, 28]. The following fundamental lemma was proved in [12], which is 
crucial for the proofs of results on the existence of fixed points. 
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Lemma 1.4. Let X be a metric space with metric d and let ω be a w-distance on 
X. Let { }nx  and { }ny  be sequences in X. Let { }nα  and { }nβ  be sequences in [ )∞,0  

converging to 0. Then the following hold for any :,, Xzyx ∈  

(a) if ( ) nn yx α≤ω ,  and ( ) nn zx β≤ω ,  for all ,1≥n  then ;zy =  in particular, 

if ( ) 0, =ω yx  and ( ) ,0, =ω zx  then ;zy =  

(b) if ( ) nnn yx α≤ω ,  and ( ) nn zx β≤ω ,  for all ,1≥n  then { }ny  converges 

to z; 

(c) ( ) nmn xx α≤ω ,  for any 1, ≥mn  with ,nm >  then { }nx  is a Cauchy 

sequence; 

(d) ( ) nnxy α≤ω ,  for any ,1≥n  then { }nx  is a Cauchy sequence. 

Lin and Du [18] proved the following: 

Lemma 1.5. Let K be a closed subset of X and ω be a w-distance on X. Suppose 
that there exists Xu ∈  such that ( ) .0, =ω uu  Then 

( ) .0, KuKu ∈⇔=ω  

2. Fixed Points Results and Reich’s Problem 

Using the concept of Hausdorff metric, Nadler [20] has proved the following 
fixed point result, known as multivalued version of the well-known Banach 
contraction principle [1]. 

Theorem 2.1. Each multivalued contraction map ( )XCBXT →:  has a fixed 

point provided X is complete metric space. 

In [21], Reich established the following generalization of the Banach contraction 
principle, which also generalizes the fixed point result of Boyd and Wong [2]. 

Theorem 2.2. Each multivalued generalized contraction ( )XKXT →:  has a 

fixed point in X provided X is complete metric space. 

In [22], Reich raised the following problem: 

Reich’s problem. Does each multivalued generalized contraction has a fixed 
point? 
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Note that in Theorem 2.2, the map T assumed to take compact values. For this 
reason, in [22, 23], Reich posed the question whether or not the range of T in 
Theorem 2.2 can be relaxed. Specifically, the question is whether or not the range of 
T, ( )XK  can be replaced by ( ).XCB  In fact Reich’s problem remains unsolved, 

some partial answers have been obtained. 

In [13], Kaneko has obtained the following fixed point result. 

Theorem 2.3. Let X be a complete metric space. Let ( )XPXT →:  be a 

generalized contraction map for which the function k is monotone increasing. Then 
T has a fixed point. 

The partial affirmative answer to Reich’s problem was given by Mizoguchi and 
Takahashi [19]. They proved the following result, which is also a generalization of 
Nadler’s result (Theorem 2.1). 

Theorem 2.4. Let X be a complete metric space. Let ( )XCBXT →:  be a 

multivalued generalized contraction map for which the function k satisfies 
( ) 1suplim <

+→
rk

tr
 for all .0≥t  Then T has a fixed point. 

Alternative proofs of this theorem have obtained by Daffer and Kaneko [7], 
Chang [3], Sastry and Babu [24] and others. In [29], Xu gave a very interesting 
simple alternative proof of Theorem 2.4 as follows: 

Proof. By Lemma 1.2.3 of [29], there exists a sequence nx  in X such that 

( )nn xTx ∈+1  and the sequence of nonnegative real numbers ( ){ }1, +nn xxd  is 

decreasing to zero. By the definition of k, for some 0>ζ  and ( ),1,0∈b  we get 

( ) ( ).,0,2 ζ∈β<β bk  

Note that for some ,0n  we have ( ) ζ<− nn xxd ,1  for all .0nn ≥  Thus it follows 

from the fact ( ) ( ) ( )nnnnnn xxdxxkdxxd ,,, 111 −−+ ≤  that for all ,0nn ≥  

( ) ( ) ( ).,,, 00
0 1

1
11 nn

nn
nnnn xxdxxdxxd −

+−
−+ ζ≤≤ζ≤  

It follows that { }nx  is a Cauchy sequence in X and hence it is convergent because 

the space X is complete. Now, let the sequence { }nx  converge to z. Since for all n, 

we have ( ),1−∈ nn xTx  by taking the limit as ∞→n  and using the continuity of 

the multivalued map T, we get ( ),zTz ∈  that is, z is a fixed point of T. 
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Most recently, another alternative proof of Theorem 2.4 is given by Suzuki 
[26, p. 754] as under. 

Alternative proof. Define a function [ ) [ )1,0,0: →∞β  by ( ) ( )( ) .21+=β tkt  

Then the following hold: 

 (i) ( ) 1suplim
0

<β
+→

r
tr

 for all .0≥t  

(ii) For all Xyx ∈,  and ( ),xTu ∈  there exists an element ( )xTv ∈  such that 

( ) ( )( ) ( ).,,, yxdyxdvud β≤  

Thus, we can define a sequence { }nx  in X such that for all integers ,1≥n  

( )nn xTx ∈+1  and ( ) ( )( ) ( ).,,, 1121 ++++ β≤ nnnnnn xxdxxdxxd  Hence the sequence 

of nonnegative real numbers ( ){ }1, +nn xxd  is non-increasing and thus converges to 

some nonnegative real number α. Note that there exist some [ )1,0∈b  and 0>ε  

such that ( ) br ≤β  for all [ ]., ε+αα∈r  Now we can choose some integer 1≥m  

such that ( ) ε+α≤≤ +1, nn xxdm  with .mn ≥  Note that 

( ) ( )( ) ( ) ( ),,,,, 11121 +++++ ≤β≤ nnnnnnnn xxbdxxdxxdxxd  

and thus we have 

( )∑
∞

=
+ ∞<

1
1 .,

n
nn xxd  

Hence { }nx  is a Cauchy sequence in the complete space X. Let { }nx  converge to 

some .Xz ∈  Note that 

( ( )) ( )( )zTxdzTzd n
n

,lim, 1+
∞→

=  

( ( )( ))zTxTH n
n

,lim
∞→

≤  

( )( ) ( )zxdzxd nn
n

,,lim β≤
∞→

 

( ) 0,lim =≤
∞→

zxd n
n

 

and ( )zT  is closed, we get ( ).zTz ∈  
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Note that the stronger condition assumed on k in Theorem 2.4, viz., 
( ) 1suplim <

+→
rk

tr
 for all ,0≥t  implies that ( ) htk <  for some .10 << h  Thus 

with this condition, one may get that the map T is a contraction over a region for 
which ( )yxd ,  is sufficiently small. 

In [3], Chang introduced and studied the following notion (also, see [8, 11]). 

Definition 2.5. Let [ ) [ ).,0,0: ∞→∞φ  Then the function φ is said to satisfy 

the condition ( )Φ  denoted by ( )Φ∈φ  if (i) ( ) tt <φ  for all ;0>t  (ii) φ is upper 

semicontinuous from the right on ( );,0 ∞  and (iii) there exists a positive real number 

r such that φ is nondecreasing on ( ]r,0  and ( )∑
∞

=
∞<φ

0n

n t  for all ( ].,0 rt ∈  

It has been observed by Chang [3] that if k is a function of ( )∞,0  to [ )1,0  such 

that ( ) 1suplim <
+→

rk
tr

 for all ,0≥t  then there exists a function ( )Φ∈φ  such that 

( ) ( )tttk φ≤  for all .0>t  

In [11], Jachymski studied equivalent reformulation of Reich’s problem (see 
[11, Proposition 1]) and proved the following result which generalizes Theorem 2.4 
and still gives only a partial answer to Reich’ problem. 

Theorem 2.6. Let ( )dX ,  be a complete metric space. Let ( )XClXT →:  and 

suppose that there exists a function ( )Φ∈φ  such that 

( ) ( )yxdTyTxH ,, φ≤  

for all ., Xyx ∈  Then T has a fixed point. 

Chang [3] generalized Theorem 2.4 as follows: 

Theorem 2.7. Let ( )dX ,  be a complete metric space. Let ( )XCBXT →:  

and suppose that there exists a function ( )Φ∈φ  such that for all ,, Xyx ∈  

( ( ) ( )) ( ),,, yxMyTxTH φ≤  
where 

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) .2
,,,,,,,,max,

⎭⎬
⎫

⎩⎨
⎧ += xTydyTxdyTydxTxdyxdyxM  

Then T has a fixed point. 
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Recently, Daffer et al. [8] introduced a class of functions that satisfy 
( ) 1suplim <+→
rk

tr
 for every ( )∞∈ ,0t  and belong to ( ).Φ  Applying Theorem 

2.7, they proved the following fixed point result for multivalued maps which satisfy 
the conditions required in the Reich’s problem. 

Theorem 2.8. Let ( )dX ,  be a complete metric space. Let ( )XCBXT →:  be 

a multivalued map such that for all ,, Xyx ∈  

( ) ( )( ) ( ),,,, yxdyxdkTyTxH ≤  

where k is a function of ( )∞,0  to [ ]1,0  such that ( ) 1<tk  for all 0>t  and 

( ) ,1 1−−≤ battk  ,0>a  for some ( )2,1∈b  on some interval [ ],,0 s  ( ).0 11 −−<< bas  

Then T has a fixed point. 

In [4], Chen obtained the following partial answer to Reich’s problem: 

Theorem 2.9. Let ( )dX ,  be a complete metric space. Let ( )XCBXT →:  be 

a multivalued generalized contraction map. Suppose that T has the following 
property: 

(∗) Whenever M is a closed subset of X such that ∅≠MTx ∩  for all ,Mx ∈  

we have ( ) ( )TxxdMTxxd ,, =∩  for all .Mx ∈  

Then T has a fixed point. 

We observe that the condition (∗) in Theorem 2.9 is very restrictive. Even the 
constant maps do not satisfy it. The following example is given in [29]. 

Example 2.10. Let [ ]5,0=X  be the metric space equipped with the usual 

metric d. Define a map T with 

( ) [ ] [ ]5,41,0 ∪=xT    for all .Xx ∈  

Let [ ].3,1=M  Then M is a closed subset of X with ( ) ∅≠MxT ∩  for all .Xx ∈  

But, note that for ,3 Mx ∈=  we have 

( )( ) 1, =xTxd  and ( )( ) ,2, =MxTxd ∩  

thus 

( )( ) ( )( ).,, MxTxdxTxd ∩≠  
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In [10], Hu proved a result in which he claims to have affirmative answer to 
Reich’s problem but in fact it is not the case as pointed out by Jachymski [11] that 
there is a gap in the proof of Theorem 3 of [10]. 

In [25], Semenov proved a fixed point theorem for a broad class of closed 
valued generalized contractions with ( ) 1suplim <

+→
rk

tr
 for all 0>t  and 

( ) .1suplim
0

=
+→

rk
r

 

The Reich’s problem is still unsolved and further investigation towards a 
complete resolution is required. 

3. Related Fixed Point Results 

Recently, some interesting fixed point results appeared in the literature without 
using the concept of the Hausdorff metric. Klim and Wardowski [14] proved the 
following fixed point result which is a generalization of Theorem 2.1 and Theorem 
3.1 of Feng and Liu [9]. 

Theorem 3.1. Let ( )dX ,  be a complete metric space and let ( )XClXT →:  

be a multivalued map. If there exists a constant ( )1,0∈b  such that for any Xx ∈  

there is ( )xTy ∈  satisfying 

( ) ( )( )xTxdyxbd ,, ≤  
and 

( )( ) ( ) ( ),,,, yxdydxkyTyd ≤  

where k is a function from [ )∞,0  to [ )b,0  such that ( ) brk
tr

<
+→

suplim  for all .0≥t  

Then T has a fixed point in X provided a real valued function ( ) ( )( )xTxdxf ,=  on 

X is lower semicontinuous. 

Most recently, Ćirić [5, 6] proved some interesting fixed point results for 
multivalued nonlinear contractions. In [6], he obtained the following fixed point 
result which is a generalization of Theorem 2.4 and Theorem 3.1. 

Theorem 3.2. Let ( )dX ,  be a complete metric space and let ( )XClXT →:  

be a multivalued map. If for any Xx ∈  there is ( )xTy ∈  satisfying 

( ) ( ) ( )( )xTxdyxdyxkd ,,, ≤  
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and 
( )( ) ( ) ( ),,,, yxdydxkyTyd ≤  

where k is a function from [ )∞,0  to [ ),1,a  ,10 << a  satisfying ( ) 1suplim <
+→

rk
tr

 

for all .0≥t  Then T has a fixed point in X provided a real valued function ( ) =xf  

( )( )xTxd ,  on X is lower semicontinuous. 

In the sequel, ω is a w-distance on a metric space X. Recently, using the concept 
of w-distance, Suzuki and Takahashi [27] improved Nadler’s result (Theorem 2.1) as 
follows: 

Theorem 3.3. Let ( )dX ,  be a complete metric space and let ( )XClXT →:  

be a multivalued map. If there exists a constant [ )1,0∈λ  such that for each 

Xyx ∈,  and ( )xTu ∈  there is ( )yTv ∈  satisfying 

( ) ( ),,, yxvu λω≤ω  
then T has a fixed point. 

Without using the concept of the w-distance, recently Latif [15] obtained the 
following fixed point result which is to some extent related to the Reich’s problem 
and generalizes Theorem 3.3. 

Theorem 3.4. Let ( )dX ,  be a complete metric space and let ( )XClXT →:  

be a multivalued map such that for any Xyx ∈,  and ( )xTu ∈  there is ( )yTv ∈  

satisfying 
( ) ( )( ) ( ),,,, yxyxkvu ωω≤ω  

where k is a function from [ )∞,0  to [ )b,0  such that ( ) brk
tr

<
+→

suplim  for all .0≥t  

Then T has a fixed point. 

Most recently, Latif and Abdou [16] obtained the following an improved 
version of Theorem 3.1, which is also a generalization of Theorem 3.3 and Theorem 
3.3 of Latif and Albar [17]. 

Theorem 3.5. Let ( )dX ,  be a complete metric space and let ( )XClXT →:  

be a multivalued map such that for a constant ( )1,0∈b  and for any Xx ∈  there 

is ( )xTy ∈  satisfying 

( ) ( )( )xTxyxb ,, ω≤ω  
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and 
( )( ) ( )( ) ( ),,,, yxyxkyTy ωω≤ω  

where k is a function from [ )∞,0  to [ )b,0  such that ( ) brk
tr

<
+→

suplim  for all .0≥t  

Suppose that a real valued function ( ) ( )( )xTxxf ,ω=  on X is lower semicontinuous. 

Then there exists Xv ∈0  such that ( ) .00 =vf  Further, if ( ) ,0, 00 =ω vv  then 0v  is 

a fixed point of T. 

Proof. Let 0x  be an arbitrary but fixed element of X. Using the definition of T, 

we can get a sequence { }nx  in X such that for each ,1≥n  

( ) ( )( ),,, 1 nnnn xTxxxb ω≤ω +  

( )( ) ( )( ) ( ) ( )( ) .,,,,, 11111 bxxkxxxxkxTx nnnnnnnn <ωωω≤ω +++++  

Note that 

( )( ) ( )( ) ( ) ( )( ) ( )11111 ,,,,, +++++ ωω−ω≥ω−ω nnnnnnnnnn xxxxkxxbxTxxTx  

( )( )[ ] ( ) ,0,, 11 >ωω−= ++ nnnn xxxxkb  

and thus for all n, 

( )( ) ( )( ) ( ) ( ).,,,,, 1111 nnnnnnnn xxxxxTxxTx −+++ ω≤ωω>ω  

Note that the sequences ( )( ){ }nn xTx ,ω  and ( ){ }1, +ω nn xx  are decreasing, thus 

convergent. Now, by the definition of the function k there exists [ )b,0∈α  such that 

( )( ) .,suplim 1 α=ω +
∞→

nn
n

xxk  

Thus, for any ( ),,0 bb α∈  there exists 10 ≥n  such that 

( )( ) ,, 01 bxxk nn <ω +    for all 0nn >  

and thus for all ,0nn >  we have 

( ( ) ( ( )) 0
00 0211 ,, nn

nnnn bxxkxxk −
+++ <ω××ω  

and 

( )( ) ( )( ) ( ),,,, 111 +++ βω≥ω−ω nnnnnn xxxTxxTx  
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where .0bb −=β  Thus for all ,0nn >  we get 

( )( )
( ( )) ( )( ) ( )( )

.
,,,

,
0

00
0 112110

11 n
nnnn

nn
b

xTxxxkxxk
b
bxTx

ωω××ω
⎟
⎠
⎞

⎜
⎝
⎛<ω +

−

++  

Now, since ,0 bb <  we have ,0lim
00 =⎟

⎠
⎞⎜

⎝
⎛

−

∞→

nn

n b
b  and hence the decreasing 

sequence ( )( ){ }nn xTx ,ω  converges to 0. Note that for all ,0nn >  

( ) ( ) ...,,2,1,0,,, 101 =ωγ<ω + nxxxx n
nn  

where .10 <=γ b
b  Now, for any natural numbers n, m, ,0nnm >>  

( ) ( ) ( ),,1,,
1

101∑
−

=
+ ω

γ−
γ<ω≤ω

m

nj

n
jjmn xxxxxx  

and thus by Lemma 1.4, { }nx  is a Cauchy sequence. Hence we obtained that there 

exists a Cauchy sequence { }nx  in X such that the decreasing sequence ( ){ } =nxg  

( )( ){ }nn xTx ,ω  converges to 0. Due to the completeness of X, there exists some 

Xv ∈0  such that .lim 0vxn
n

=
∞→

 Since g is lower semicontinuous, we have 

( ) ( ) ,0inflim0 0 =≤≤
∞→

n
n

xgvg  

and thus ( ) ( )( ) .0, 000 =ω= vTvvg  Since ( ) ,0, 00 =ω vv  and ( )0vT  is closed, we 

get ( ).00 vTv ∈  
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