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Abstract

In this note, we present a brief survey on partial answers to Reich’s
problem and some related results are also given.

1. Introduction

Let (X, d) be a metric space. We use CI(X) to denote the collection of all
nonempty closed subsets of X, CB(X) for the collection of all nonempty closed
bounded subsets of X, P(X) for the collection of all nonempty bounded proximinal
subsets of X (A subset M of X is called proximinal if for each x € X, there exists an
element k € M such that d(x, k) =d(x, M), where d(x, M) =inf{d(x, y):y
e M} is the distance from the point x to the subset M), K(X) for the collection of
all nonempty compact subsets of X, and H the Hausdorff metric on CB(X), i.e.,

H(A B) = max{sup d(a, B), sup d(b, A)}, A, B € CB(X),
acA beB
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where d(a, B) = inf{d(a, b): b € B}. H on CI(X) is also a metric except that it

takes also the value +o if (X, d) is unbounded.

We also use the following notions:

Definition 1.1. We say a multivalued map T : X — CB(X) is

(a) contraction [20] if there exists a constant A € [0, 1) such that for all
X, y € X,
H(T(x), T(y)) < Ad(x, y),

(b) generalized contraction [22] if for all X, y € X,

H(Tx, Ty) < k(d(x, y)d(x, y),

where k is a function of (0, ) to [0, 1) such that limsupk(r) <1, forall t > 0.
r—tt

Anelement x € X is said to be a fixed point of T if x € T(x).

Definition 1.2. A real valued function f on X is called lower semi-continuous if
for any sequence {X,}c X with X, = x e X imply that f(x)<liminf,_,,, f(x,).

In [12], Kada et al. have introduced a concept of w-distance in the setting of

metric spaces as follows:

Definition 1.3. A function @ : X x X — [0, o) is called a w-distance on X if it

satisfies the following:
(wl) o(x, z) < o(x, y)+ oy, z), forall X, y, ze X;

(W2) o is lower semi-continuous in its second variable;
(w3) For any ¢ > 0, there exists § > 0 such that (z, X) < & and w(z, y) <&

imply d(x, y) < e.

The metric d is a W-distance on X. Many other examples of w-distance are given
in [12, 27, 28]. The following fundamental lemma was proved in [12], which is

crucial for the proofs of results on the existence of fixed points.
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Lemma 1.4. Let X be a metric space with metric d and let © be a w-distance on
X. Let {x,} and {y,} be sequencesin X. Let {a,} and {B,,} be sequences in [0, o)

converging to 0. Then the following hold for any x, y, z € X:

(@) if o(x,, y) <o, and o(x,, z) <B, forall n>1, then y = z; in particular,
if o(x, y) =0 and o(x, z) = 0, then y = z;

(b) if o(X,, Yn) <o, and o(x,, z) < B, for all n>1, then {y,} converges
to z;

(©) o(Xy, Xy) <y for any n,m=>1 with m>n, then {x,} is a Cauchy
sequence;

(d) oy, x5) < o, forany n > 1, then {x,} is a Cauchy sequence.

Lin and Du [18] proved the following:

Lemma 1.5. Let K be a closed subset of X and o be a w-distance on X. Suppose
that there exists u € X such that w(u, u) = 0. Then

o(u, K) =0 < ueK.
2. Fixed Points Results and Reich’s Problem

Using the concept of Hausdorff metric, Nadler [20] has proved the following
fixed point result, known as multivalued version of the well-known Banach
contraction principle [1].

Theorem 2.1. Each multivalued contraction map T : X — CB(X) has a fixed
point provided X is complete metric space.

In [21], Reich established the following generalization of the Banach contraction
principle, which also generalizes the fixed point result of Boyd and Wong [2].

Theorem 2.2. Each multivalued generalized contraction T : X — K(X) has a

fixed point in X provided X is complete metric space.
In [22], Reich raised the following problem:

Reich’s problem. Does each multivalued generalized contraction has a fixed

point?
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Note that in Theorem 2.2, the map T assumed to take compact values. For this
reason, in [22, 23], Reich posed the question whether or not the range of T in
Theorem 2.2 can be relaxed. Specifically, the question is whether or not the range of
T, K(X) can be replaced by CB(X). In fact Reich’s problem remains unsolved,

some partial answers have been obtained.
In [13], Kaneko has obtained the following fixed point result.

Theorem 2.3. Let X be a complete metric space. Let T : X — P(X) be a
generalized contraction map for which the function k is monotone increasing. Then
T has a fixed point.

The partial affirmative answer to Reich’s problem was given by Mizoguchi and
Takahashi [19]. They proved the following result, which is also a generalization of
Nadler’s result (Theorem 2.1).

Theorem 2.4. Let X be a complete metric space. Let T : X — CB(X) be a

multivalued generalized contraction map for which the function k satisfies

lim sup k(r) <1 forall t > 0. Then T has a fixed point.
r—t*

Alternative proofs of this theorem have obtained by Daffer and Kaneko [7],
Chang [3], Sastry and Babu [24] and others. In [29], Xu gave a very interesting
simple alternative proof of Theorem 2.4 as follows:

Proof. By Lemma 1.2.3 of [29], there exists a sequence X, in X such that
Xn+1 € T(X,) and the sequence of nonnegative real numbers {d(X,, X.1)} is

decreasing to zero. By the definition of k, for some £ > 0 and b € (0, 1), we get

k(B) <b%, B < (0.0).
Note that for some ng, we have d(X,_, X,) < ¢ for all n > n,. Thus it follows
from the fact d(Xq, Xns1) < vVkd(Xg, Xp_1) d(Xp_;» Xy ) that for all n > ng,
d(Xy, Xne1) < CAd(Xq_ps Xp) < oov < Q”_”‘)“d(xno_l, Xng )-
It follows that {X,} is a Cauchy sequence in X and hence it is convergent because
the space X is complete. Now, let the sequence {X,} converge to z. Since for all n,

we have X, € T(X,_;), by taking the limit as n — o and using the continuity of

the multivalued map T, we get z € T(z), thatis, z is a fixed point of T.
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Most recently, another alternative proof of Theorem 2.4 is given by Suzuki
[26, p. 754] as under.

Alternative proof. Define a function B : [0, ) — [0, 1) by B(t) = (k(t)+1)/2.
Then the following hold:

(i) limsupP(r) <1 forall t > 0.

r—t+0

(ii) Forall x, y € X and u e T(x), there exists an element v € T(x) such that
d(u, v) < B(d(x, y))d(x, y).

Thus, we can define a sequence {X,} in X such that for all integers n > 1,
Xn+1 € T(Xy) and d(Xn41> Xnaa) < BA (X, Xns1))d(Xn, Xp41). Hence the sequence
of nonnegative real numbers {d(X,, X,,1)} is non-increasing and thus converges to
some nonnegative real number o. Note that there exist some b € [0, 1) and ¢ > 0
such that B(r) < b forall r € [a, a + &]. Now we can choose some integer m > 1

such that m < d(X,, Xp41) < o + & with n > m. Note that

d(Xn415 Xn+2) < BA(Xns Xn1))d (X, Xnip) < bd(Xy, X41),

and thus we have

o0
Zd(xn, Xn41) < .
n=1

Hence {x,} is a Cauchy sequence in the complete space X. Let {x,} converge to

some Z € X. Note that

d(z, T(z)) = lim d(Xq.1, T(2))

IN

lim H(T(x,, T(2)))

IN

lim B(d(x,, z))d(x,, )

IN

lim d(x,, z) =0

N—o0

and T(z) is closed, we get z € T(z).
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Note that the stronger condition assumed on Kk in Theorem 2.4, viz.,
lim sup k(r) <1 for all t >0, implies that k(t) < h for some 0 < h < 1. Thus

rot*
with this condition, one may get that the map T is a contraction over a region for
which d(x, y) is sufficiently small.

In [3], Chang introduced and studied the following notion (also, see [8, 11]).

Definition 2.5. Let ¢ : [0, ) — [0, o). Then the function ¢ is said to satisfy
the condition (®) denoted by ¢ € (@) if (i) ¢(t) <t for all t > 0; (ii) ¢ is upper

semicontinuous from the right on (0, «); and (iii) there exists a positive real number

o0
r such that ¢ is nondecreasing on (0, r] and Z(I)n (t) < oo forall t e (0, r].
n=0

It has been observed by Chang [3] that if k is a function of (0, «) to [0, 1) such

that lim sup k(r) <1 for all t > 0, then there exists a function ¢ € (®) such that
r—t*

k(t)t < ¢(t) forall t > 0.

In [11], Jachymski studied equivalent reformulation of Reich’s problem (see
[11, Proposition 1]) and proved the following result which generalizes Theorem 2.4
and still gives only a partial answer to Reich’ problem.

Theorem 2.6. Let (X, d) be a complete metric space. Let T : X — CI(X) and
suppose that there exists a function ¢ (@) such that
H(Tx, Ty) < ¢d(x, y)
for all x, y € X. Then T has a fixed point.

Chang [3] generalized Theorem 2.4 as follows:

Theorem 2.7. Let (X, d) be a complete metric space. Let T : X — CB(X)
and suppose that there exists a function ¢ € (®) such that for all x, y € X,

H(T(x), T(y)) < oM(x, y),
where

M(x, y) = max{d(x, y), d(x, T(x)), d(y, T(y)), d(x, T(y)) JZF d(y, T(X))}.

Then T has a fixed point.
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Recently, Daffer et al. [8] introduced a class of functions that satisfy

limsup . k(r) <1 for every t € (0, o) and belong to (®). Applying Theorem

2.7, they proved the following fixed point result for multivalued maps which satisfy
the conditions required in the Reich’s problem.

Theorem 2.8. Let (X, d) be a complete metric space. Let T : X — CB(X) be
a multivalued map such that for all x, y € X,
H(Tx, Ty) < k(d(x, y)d(x, y),
where k is a function of (0, ) to [0, 1] such that k(t) <1 for all t >0 and

k(t)<1-at’™!, a >0, for some b < (1, 2) on some interval [0, s], 0<s < a V-,

Then T has a fixed point.
In [4], Chen obtained the following partial answer to Reich’s problem:

Theorem 2.9. Let (X, d) be a complete metric space. Let T : X — CB(X) be

a multivalued generalized contraction map. Suppose that T has the following
property:

(*) Whenever M is a closed subset of X such that Tx(TM = & forall x e M,
we have d(x, Tx Y1 M) = d(x, Tx) forall x € M.

Then T has a fixed point.

We observe that the condition (*) in Theorem 2.9 is very restrictive. Even the
constant maps do not satisfy it. The following example is given in [29].

Example 2.10. Let X = [0, 5] be the metric space equipped with the usual

metric d. Define a map T with
T(x)=[0,1]U[4, 5] forall x € X.

Let M =[l1, 3]. Then M is a closed subset of X with T(x) 1M = & forall x € X.

But, note that for X = 3 € M, we have
d(x, T(x))=1and d(x, T(X) M) =2,
thus

d(x, T(x)) #d(x, T(X)NM).
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In [10], Hu proved a result in which he claims to have affirmative answer to
Reich’s problem but in fact it is not the case as pointed out by Jachymski [11] that
there is a gap in the proof of Theorem 3 of [10].

In [25], Semenov proved a fixed point theorem for a broad class of closed

valued generalized contractions with limsup k(r)<1 for all t>0 and
rot*

lim sup k(r)=1.

r—o*

The Reich’s problem is still unsolved and further investigation towards a
complete resolution is required.

3. Related Fixed Point Results

Recently, some interesting fixed point results appeared in the literature without
using the concept of the Hausdorff metric. Klim and Wardowski [14] proved the
following fixed point result which is a generalization of Theorem 2.1 and Theorem
3.1 of Feng and Liu [9].

Theorem 3.1. Let (X, d) be a complete metric space and let T : X — CI(X)
be a multivalued map. If there exists a constant b e (0, 1) such that for any x e X
there is y e T(x) satisfying

bd(x, y) < d(x, T(x))
and
d(y, T(y)) < k(dx, y)d(x, y),

where k is a function from [0, «) to [0, b) such that limsupk(r) < b forall t > 0.
r—t*

Then T has a fixed point in X provided a real valued function f(x) = d(x, T(x)) on

X is lower semicontinuous.

Most recently, Ciri¢ [5, 6] proved some interesting fixed point results for
multivalued nonlinear contractions. In [6], he obtained the following fixed point
result which is a generalization of Theorem 2.4 and Theorem 3.1.

Theorem 3.2. Let (X, d) be a complete metric space and let T : X — CI(X)

be a multivalued map. If for any x € X thereis y e T(x) satisfying

Vkd(x, y)d(x, y) < d(x, T(x))
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and
d(y, T(y)) < k(dx, y)d(x, y),

where k is a function from [0, «) to [a,1), 0 < a < 1, satisfying limsupk(r) <1
r—t*

forall t > 0. Then T has a fixed point in X provided a real valued function f(x) =

d(x, T(x)) on X is lower semicontinuous.

In the sequel, ® is a w-distance on a metric space X. Recently, using the concept
of w-distance, Suzuki and Takahashi [27] improved Nadler’s result (Theorem 2.1) as
follows:

Theorem 3.3. Let (X, d) be a complete metric space and let T : X — CI(X)
be a multivalued map. If there exists a constant A [0, 1) such that for each
X, y € X and u € T(x) thereis v e T(y) satisfying

o(u, v) < 2o(X, ¥),
then T has a fixed point.

Without using the concept of the w-distance, recently Latif [15] obtained the
following fixed point result which is to some extent related to the Reich’s problem
and generalizes Theorem 3.3.

Theorem 3.4. Let (X, d) be a complete metric space and let T : X — CI(X)
be a multivalued map such that for any x, y € X and u e T(x) thereis v e T(y)
satisfying

o(u, V) < k(o(x, y)o(x, y),

where k is a function from [0, o) to [0, b) such that limsupk(r) < b for all t > 0.

rott

Then T has a fixed point.

Most recently, Latif and Abdou [16] obtained the following an improved
version of Theorem 3.1, which is also a generalization of Theorem 3.3 and Theorem
3.3 of Latif and Albar [17].

Theorem 3.5. Let (X, d) be a complete metric space and let T : X — CI(X)
be a multivalued map such that for a constant b (0, 1) and for any x € X there

is y e T(x) satisfying

ba(x, y) < w(x, T(x))
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and
o(y, T(y)) < k(o(x, y)o(x, y),

where k is a function from [0, o) to [0, b) such that limsupk(r) < b forall t > 0.
rot*

Suppose that a real valued function f (x) = w(x, T(x)) on X is lower semicontinuous.
Then there exists v, € X such that f(vg) = 0. Further, if (vy, Vo) =0, then v is

a fixed point of T.

Proof. Let X, be an arbitrary but fixed element of X. Using the definition of T,

we can get a sequence {X,} in X such that for each n > 1,
ba(Xn, Xni1) < (X, T(Xy)),
o(Xn 1> T(Xn1)) < K(@(Xn, Xni1))o(Xn, Xni1) K((Xn, Xny1)) < b.
Note that
o(Xn, T(Xq)) = @(Xn 11, T(Xq41)) 2 box(Xn, Xn 1) = K(e(Xn, Xn11)) (X, Xn1)

= [b = k(o(Xn, Xpi1))](Xns Xps1) > 0,
and thus for all n,

(X, T(Xp)) > (X105 T(Xns1)) ©(Xns Xny1) < 0(Xn_1, Xp )

Note that the sequences {w(x,, T(X,))} and {&(X,, X,41)} are decreasing, thus

convergent. Now, by the definition of the function k there exists o € [0, b) such that

lim sup k(o(X,, Xp41)) = @
n—oo

Thus, for any by € (o, b), there exists ny > 1 such that
k(o(Xp, Xns1)) < by, forall n > n,
and thus for all n > n,, we have

K(o(Xn, Xny1) x -+ x k(X 415 Xng+2)) < bg_no

and

o(Xn, T(Xn)) = ©(Xn11> T(Xn11)) = Bo(Xn, Xni1),
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where = b —by. Thus for all n > n;, we get

o(Xn 41> T(Xns1)) < (b_l;))

=10 k(X » Xng+1)) % -+ x K(o(X, X3 ))o(X;, T(Xl))'

b"o

b

sequence {®(Xy, T(X,))} converges to 0. Note that for all n > n,

n-ng
Now, since by < b, we have lim, _m(—) =0, and hence the decreasing

o(Xp, Xpip) < an(XOa Xx), n=012 .,

b

where y = — < 1. Now, for any natural numbers n, m, m > n > n,

b

m-1 n
o(Xys X ) < Z(D(st Xj+1) < IY__YO)(XOa X1),
j=n
and thus by Lemma 1.4, {X,} is a Cauchy sequence. Hence we obtained that there
exists a Cauchy sequence {X,} in X such that the decreasing sequence {g(x,)}=
{o(Xn, T(Xy))} converges to 0. Due to the completeness of X, there exists some

Vo € X suchthat lim X, = Vq. Since g is lower semicontinuous, we have
nN—o

0 < g(vg) < liminf g(x,) =0,
n—oo

and thus g(vg) = @(vy, T(vy)) = 0. Since w(vy, Vo) =0, and T(vy) is closed, we

get VO (S T(Vo).
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