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Abstract 

In this paper, we introduce an iterative scheme by the hybrid methods for 
finding a common element of the set of fixed points of nonexpansive 
mappings, the set of solutions of equilibrium problems and the set of 
solutions of variational inequality problems for a monotone, k-Lipschitz 
continuous mapping in a Hilbert space. Then we obtain a strongly 
convergence theorem by using hybrid extragradient method to common 
elements of the set of fixed points of nonexpansive mappings, the set of 
solutions of equilibrium problems and the set of solutions of variational 
inequality problems. Our results extend and improve results of 
Bnouhachem et al. [2] and many others. 

1. Introduction 

Let C be a nonempty closed convex subset of a real Hilbert space H and let CP  
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be the metric projection of H onto C. A mapping CCS →:  is said to be 
nonexpansive if ,yxSySx −≤−  for all ., Cyx ∈  We denote by ( )SF  the 

set of fixed points of S. Let F be a bifunction of CC ×  into ,R  where R  is the set 
of real numbers. The equilibrium problem for R→× CCF :  is to find 

 Cx ∈   such  that  ( ) ,0, ≥yxF   for  all  .Cy ∈  (1.1) 

The set of such solutions of (1.1) is denoted by ( ).FEP  Given a mapping 

,: HCT →  let ( ) xyTxyxF −= ,,  for all ., Cyx ∈  Then ( )FEPz ∈  if and 

only if 0, ≥− zyTz  for all ,Cy ∈  i.e., z is a solution of the variational inequality 

problem. The classical variational inequality problem is to find Cu ∈  such that 
0, ≥− Auuv  for all .Cv ∈  The set of solutions of this variational inequality 

problem is denoted by ( )., ACVI  Numerous problems in physics, optimization and 

economics reduce to find a solution of (1.1). Some methods have been proposed to 
solve the equilibrium problem (see [1, 4, 12, 14]). In 2005, Combettes and Hirstoaga 
[3] introduced an iterative scheme of finding the best approximation to the initial 
data when ( )FEP  is nonempty and they also proved a strong convergence theorem. 

If C is bounded nonempty closed convex and S is a nonexpansive mapping of C into 
itself, then ( )SF  is nonempty (see [7]). 

We recall that, a mapping HCA →:  is said to be monotone if 

,0, ≥−− vuAvAu   for  all  ;, Cvu ∈  

A is said to be β-strongly monotone if there exists a positive real number β such that 

,, 2vuvuAvAu −β≥−−   for  all  ;, Cvu ∈  

A is said to be k-Lipschitz continuous if there exists a positive real number k such 
that 

,vukAvAu −≤−   for  all  ;, Cvu ∈  

A is said to be α-inverse strongly monotone [1] if there exists a positive real number 
α such that 

,, 2AvAuvuAvAu −α≥−−   for  all  ., Cvu ∈  

Remark 1.1. It is obvious that any α-inverse strongly monotone mapping A is 
monotone and Lipschitz continuous. 
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It is well known that if A is a strongly monotone and Lipschitz continuous 
mapping on C, then the variational inequality problem has a unique solution. How to 
actually find a solution of the variational inequality problem is one of the most 
important topics in the study of the variational inequality problem. The variational 
inequality has extensively been studied in the literature. See, e.g., [17, 18] and the 
references therein. 

In 1976, Korpelevič [8] introduced the following so-called extragradient method: 
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for all ,0≥n  where ,1,0 ⎟
⎠
⎞⎜

⎝
⎛∈λ k  C is a nonempty closed convex subset of ,nR  and 

A is a monotone and k-Lipschitz continuous mapping of C into .nR  He proved that if 
( )ACVI ,  is nonempty, then the sequences { }nx  and { },nx  generated by (1.2), 

converge to the same point ( )., ACVIz ∈  

In 2003, Takahashi and Toyoda [16] introduced the following iterative scheme: 

 
( ) ( )⎩

⎨
⎧

≥∀λ−α−+α=

∈=

+ ,1,1

arbitrary,chosen

1

1

nAxxSPxx

Cxx

nnnCnnnn
 (1.3) 

where { }nα  is a sequence in ( )1,0  and { }nλ  is a sequence in ( ).2,0 α  They proved 

that if ( ) ( ) ,, ∅≠CAVISF ∩  then the sequence { }nx  generated by (3.4) converges 

weakly to some ( ) ( )., CAVISFz ∩∈  Recently, Zeng and Yao [19] proved the 

following strong convergence theorem: 

 ( )

( ) ( )⎪
⎩

⎪
⎨

⎧

≥∀λ−α−+α=

λ−=
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where { }nλ  and { }nα  satisfy the following conditions: (i) ( )δ−⊂λ 1,0kn  for some 

( )1,0∈δ  and (ii) ( ),1,0⊂αn  ∑∞
=

∞=α1 ,n n  .0lim =α∞→ nn  They proved that 

the sequences { }nx  and { }ny  converge strongly to the same point ( ) ( ) 0, xP ACVISF ∩  

provided that .0lim 1 =−+∞→ nnn xx  
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In 2008, Takahashi et al. [15] introduced the modification Mann iteration 
method for a family of nonexpansive mappings { }.nT  Let .0 Hx ∈  For CC =1  and 

,01 1 xPu C=  define a sequence { }nu  of C as follows: 

 

( )
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where 10 <≤α≤ an  for all .N∈n  Then we prove that the sequence { }nu  

converges strongly to ( ) .00 xPz TF=  

In 2009, Bnouhachem et al. [2] introduced the following new extragradient 
iterative method for finding an element of ( ) ( )., CAVISF ∩  Let C be a closed 

convex subset of a real Hilbert space H, A be an α-inverse strongly monotone 
mapping of C into H and let S be a nonexpansive mapping of C into itself such that 
( ) ( ) ., ∅≠CAVISF ∩  Let the sequences { }nx  and { }ny  be given by 
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where { } { } { } ( )1,0,, ⊆λβα nnn  satisfy some parameters controlling conditions. They 

proved that the sequence { }nx  defined by (3.8) converges strongly to a common 

element of ( ) ( )., CAVISF ∩  

In this paper, motivated and inspired by the results of Bnouhachem et al. [2], we 
introduce a new iterative scheme by using the hybrid extragradient method, as 
follows: Hxx ∈=0  and let 
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 (1.7) 

where { } { } { } ( )1,0,, ⊆λβα nnn  satisfy some parameters controlling conditions. We 
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prove { }nx  and { }nu  in (3.1) that strongly convergence common element of the set 

of fixed points of a nonexpansive mapping, the set of solutions of an equilibrium 
problem and the set of solutions of the variational inequality for k-Lipschitz 
continuous mappings in a Hilbert space. Our results extend and improve that the 
corresponding ones announced by Bnouhachem et al. [2]. 

2. Preliminaries 

Let H be a real Hilbert space with norm ⋅  and inner product ,, ⋅⋅  and let C 

be a nonempty closed convex subset of H. For every point ,Hx ∈  there exists a 

unique nearest point in C, denoted by ,xPC  such that 

yxxPx C −≤−   for  all  .Cy ∈  

CP  is called the metric projection of H onto C. It is well known that CP  is a 

nonexpansive mapping of H onto C and satisfies 

 ,, 2yPxPyPxPyx CCCC −≥−−  (2.1) 

for every ., Hyx ∈  Moreover, xPC  is characterized by the following properties: 

CxPC ∈  and 

,0, ≤−− xPyxPx CC  (2.2) 

 222 xPyxPxyx CC −+−≥−  (2.3) 

for all ,Hx ∈  .Cy ∈  It is easy to see that the following is true: 

 ( ) ( ) .0,, >λλ−=⇔∈ AuuPuACVIu C  (2.4) 

Let A be a monotone, k-Lipschitz continuous mapping of C into H and let vNC  be 

the normal cone to C at ,Cv ∈  i.e., 

{ }.,0,:: CuwuvHwvNC ∈∀≥−∈=  

Define 

⎩
⎨
⎧

∉∅

∈+
=

.,

,,

Cv

CvvNAv
Tv C  
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Then T is maximal monotone and Tv∈0  if and only if ( )., ACVIv ∈  It is also 

known that H satisfies the Opial’s condition [13], that is, for any sequence { }nx  with 

,xxn  the inequality 

yxxx n
n

n
n

−<−
∞→∞→
infliminflim  

holds for every Hy ∈  with .xy ≠  Hilbert space H satisfies the Kadec-Klee property 

[6], that is, for any sequence { }nx  with xxn  and xxn →  together imply 

.0→− xxn  

For solving the equilibrium problem for a bifunction ,: R→× CCF  let us 
assume that F satisfies the following conditions: 

(A1) ( ) 0, =xxF  for all ;Cx ∈  

(A2) F is monotone, i.e., ( ) ( ) 0,, ≤+ xyFyxF  for all ;, Cyx ∈  

(A3) for each ,,, Czyx ∈  ( )( ) ( );,,1lim 0 yxFyxttzFt ≤−+↓  

(A4) for each ,Cx ∈  ( )yxFy ,  is convex and lower semicontinuous. 

The following lemma appears implicitly in [1]. 

Lemma 2.1 [11]. There holds the identity in a Hilbert space H: 

  (i) .,,,2222 Hyxyxyxyx ∈∀++=+  

(ii) ( ) ( ) ( ) 2222 111 yxyxyx −λ−λ−λ−+λ=λ−+λ  for all Hyx ∈,  

and [ ].1,0∈λ  

Lemma 2.2 [1]. Let C be a nonempty closed convex subset of H and let F be a 
bifunction of CC ×  into R  satisfying (A1)-(A4). Let 0>r  and .Hx ∈  Then there 
exists Cz ∈  such that 

( ) 0,1, ≥−−+ xzzyryzF   for  all  .Cy ∈  

The following lemma was also given in [3]. 

Lemma 2.3 [3]. Assume that R→× CCF :  satisfies (A1)-(A4). For 0>r  
and ,Hx ∈  define a mapping CHTr →:  as follows: 
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( ) ( )
⎭⎬
⎫

⎩⎨
⎧ ∈∀≥−−+∈= CyxzzyryzFCzxTr ,0,1,:  

for all .Hx ∈  Then the following hold: 

1. rT  is single-valued; 

2. rT  is firmly nonexpansive, i.e., for any ,, Hyx ∈  

;,2 yxyTxTyTxT rrrr −−≤−  

3. ( ) ( );FEPTF r =  

4. ( )FEP  is closed and convex. 

3. Strong Convergence Theorems 

In this section, we show a strong convergence theorem for finding a common 
element of the set of fixed points of a nonexpansive mapping, the set of solutions of 
an equilibrium problem and the set of solutions of a variational inequality problem 
for a monotone, k-Lipschitz continuous mapping in a Hilbert space by using the 
hybrid extragradient method. 

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space 
H. Let F be a bifunction from CC ×  into R  satisfying (A1)-(A4) and let A be 
monotone, k-Lipschitz continuous mapping of C into H. Let S be a nonexpansive 
mapping from C into itself such that ( ) ( ) ( ) ., ∅≠FEPACVISF ∩∩  Let { },nx  

{ },ny  { }nw  and { }nu  be sequences generated by 
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where { } [ ]ban ,⊂λ  for some ,1,0, ⎟
⎠
⎞⎜

⎝
⎛∈ kba  { } { } [ ]dcnn ,, ⊂βα  for some 

( )1,0, ∈dc  and { } ( )∞⊂ ,0nr  satisfies .0inflim >∞→ nn r  Then { }nx  converges 

strongly to ( ) ( ) ( ) .0, xP FEPACVISF ∩∩  
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Proof. We first show that ( ) ( ) ( ) nCCAVIFEPSF ⊂,∩∩  for all { },0∪N∈n  

we can prove by induction. It is obvious that ( ) ( ) ( ) ., 1CCAVIFEPSF ⊂∩∩  Let 

( ) ( ) ( ),, FEPACVISFp ∩∩∈  and let { }nrT  be a sequence of mappings defined as 

in Lemma 2.3. Then ( ) pTAppPp nrnC =λ−=  and .nrn xTu n=  Thus, we have 

 .pxpTxTpu nrnrn nn −≤−=−  (3.2) 

Put ( ).nnnCn AyuPv λ−=  From (2.3) and the monotonicity of A, we have 

222
nnnnnnnn vAyupAyupv −λ−−−λ−≤−  

nnnnnn vpAyvupu −λ+−−−= ,222  

22
nnn vupu −−−=  

( )nnnnnnn vyAyypApypApAy −+−+−−λ+ ,,,2  

nnnnnnn vyAyvupu −λ+−−−≤ ,222  

nnnnnnn vyyuyupu −−−−−−= ,222  

nnnnnn vyAyvy −λ+−− ,22  

222
nnnnn vyyupu −−−−−=  

.,2 nnnnnn yvyAyu −−λ−+  

Moreover, from ( )nnnCn AuuPy λ−=  and (2.2), we have 

 .0, ≤−−λ− nnnnnn yvyAuu  (3.3) 

Since A is k-Lipschitz continuous, it follows that 

nnnnnnnnnnnnnnnnnn yvAyAuyvyAuuyvyAyu −λ−λ+−−λ−=−−λ− ,,,  

nnnnnn yvAyAu −λ−λ≤ ,  

.nnnnn yvyuk −−λ≤  
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So, we have 

2222
nnnnnn vyyupupv −−−−−≤−  

nnnnn yvyuk −−λ+ 2  

222
nnnnn vyyupu −−−−−≤  

2222
nnnnn yvyuk −+−λ+  

( ) 2222 1 nnnn yukpu −−λ+−=  

,2pun −≤  (3.4) 

and hence 

 .pxpupv nnn −≤−≤−  (3.5) 

Setting ( ) .1 nnnnn vxw β−+β=  Thus, from (3.5), we have 

( ) 22 1 pvxpw nnnnn −β−+β=−  

( ) ( ) ( ) 21 pvpx nnnn −β−+−β=  

( ) ( ) 222 11 nnnnnnnn vxpvpx −β−β−−β−+−β=  

( ) 22 1 pvpx nnnn −β−+−β≤  

( ) 22 1 pxpx nnnn −β−+−β≤  

.2pxn −=  (3.6) 

It follows that 

( ) 22 1 pSwxpz nnnnn −α−+α=−  

( ) ( ) ( ) 21 pSwpx nnnn −α−+−α=  

( ) ( ) 222 11 nnnnnnnn SwxpSwpx −α−α−−α−+−α=  

( ) 21 pSwpx nnnn −α−+−α≤  
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( ) 21 pwpx nnnn −α−+−α≤  

( ) 21 pxpx nnnn −α−+−α≤  

.2pxn −=  (3.7) 

So, we have 1+∈ nCp  and hence 

 ( ) ( ) ( ) ,, nCFEPACVISF ⊂∩∩   for  all  { }.0∪N∈n  (3.8) 

Next, we show that nC  is closed and convex for all .N∈n  It follows obvious that 

CC =1  is closed and convex. Suppose that mC  is closed and convex for each 

.N∈m  Let mmj CCc ⊂∈ +1  with .zc j →  Since mC  is closed, mCz ∈  and 

,mjjm xccz −≤−  

zcczzz jjmm −+−=−  

.zccz jjm −+−≤  (3.9) 

Taking ,∞→j  

.mm xzzz −≤−  

Hence .1+∈ mCz  Let mm CCyx ⊂∈ +1,  with ( ) ,1 yxz α−+α=  where [ ].1,0∈α  

Since mC  is convex, mCz ∈  and ,mm xxxz −≤−  ,mm xyyz −≤−  

we have 

( )( ) 22 1 yxzzz mm α−+α−=−  

( ) ( ) ( ) 21 yzxz mm −α−+−α=  

( ) ( ) ( ) ( ) 222 11 yzxzyzxz mmmm −−−α−α−−α−+−α=  

( ) ( ) 222 11 xyyzxz mm −α−α−−α−+−α≤  

( ) ( ) ( ) ( ) 222 11 yxxxyxxx mmmm −−−α−α−−α−+−α≤  

( )( ) 21 yxxm α−+α−=  

.2zxm −=  (3.10) 
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Then ,1+∈ mCz  it follows that 1+mC  is closed and convex. Hence nC  is closed and 

convex for all .N∈n  This implies that { }nx  is well defined. From Lemma 2.2, the 

sequence { }nu  is also well-defined. 

Since ( ) ( ) ( )FEPACVISF ∩∩ ,  is a nonempty closed convex subset of H, there 

exists a unique ( ) ( ) ( )FEPACVISFu ∩∩ ,∈  such that 

( ) ( ) ( ) .0, xPu FEPACVISF ∩∩=  

From ,0xPx nCn =  we have 

0,0 ≥−− yxxx nn   for  all  .nCy ∈  

Since ( ) ( ) ( ) ,, nCFEPACVISF ⊂∩∩  we have 

0,0 ≥−− uxxx nn  for  all  ( ) ( ) ( )FEPACVISFu ∩∩ ,∈   and  .N∈n  (3.11) 

So, for ( ) ( ) ( ),, FEPACVISFu ∩∩∈  we have 

uxxx nn −−≤ ,0 0  

uxxxxx nn −+−−= 000 ,  

uxxxxxxx nnn −−+−−−= 0000 ,,  

.00
2

0 uxxxxx nn −−+−−≤  (3.12) 

This implies that 

.00
2

0 uxxxxx nn −−≤−  

Hence 

uxxx n −≤− 00  for  all  ( ) ( ) ( )FEPACVISFu ∩∩ ,∈  and  .N∈n  (3.13) 

From 0xPx nCn =  and ,101 1 nnCn CCxPx n ⊂∈= ++ +
 we also have 

 0, 10 ≥−− +nnn xxxx   for  all  .N∈n  (3.14) 
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So, for ,1 nn Cx ∈+  we have, for all ,N∈n  

10 ,0 +−−≤ nnn xxxx  

1000 , +−+−−= nnn xxxxxx  

10000 ,, +−−+−−−= nnnn xxxxxxxx  

.100
2

0 +−−+−−≤ nnn xxxxxx  (3.15) 

This implies that 

.100
2

0 +−−≤− nnn xxxxxx  

Hence 

 100 +−≤− nn xxxx   for  all  .N∈n  (3.16) 

From (3.13), we have { }nx  is bounded, 0lim xxnn −∞→  exists. From (3.5) and 

(3.6), { },nu  { }nv  and { }nw  are also bounded. Next, we show that .01 →− +nn xx  

In fact, from (3.14), we have 

2
1+− nn xx  

( ) ( ) 2
100 +−+−= nn xxxx  

2
10100

2
0 ,2 ++ −+−−+−= nnnn xxxxxxxx  

2
10100

2
0 ,2 ++ −+−+−−+−= nnnnnn xxxxxxxxxx  

2
101000

2
0 ,2,2 ++ −+−−−−−−−= nnnnnnn xxxxxxxxxxxx  

2
10

2
0

2
0 2 +−+−−−≤ nnn xxxxxx  

.2
10

2
0 +−+−−= nn xxxx  (3.17) 

Since 0lim xxnn −∞→  exists, we have 

 .0lim 1 =− +
∞→

nn
n

xx  (3.18) 
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On the other hand, nnn CCx ⊂∈ ++ 11  implies that 

 .11 ++ −≤− nnnn xxxz  (3.19) 

Hence 

 .0lim 1 =− +
∞→

nn
n

xz  (3.20) 

From ,01 1 xPx nCn +
=+  we obtain 

001 xzxxn −≤−+   for  all  1+∈ nCz   and  for  all  .N∈n  

Since ( ) ( ) ( ) ,, 1+⊂∈ nCFEPACVISFu ∩∩  we have 

 001 xuxxn −≤−+   for  all  { }.0∪N∈n  (3.21) 

Since ,1 nn Cx ∈+  we have 

.2 111 +++ −≤−+−≤− nnnnnnnn xxzxxxzx  

By (3.18), we obtain 

 .0lim =−∞→ nnn zx  (3.22) 

Since 

( ) ( ) ( ) ,11 nnnnnnnnnn SwxSwxxzx −α−=α−−α−=−  

it follows by (3.22) that 

 .0lim =−
∞→

nn
n

Swx  (3.23) 

Let ( ) ( ) ( )., FEPACVISFv ∩∩∈  Then we obtain 

22 vTxTvu nn rnrn −=−  

vxvTxT nrnr nn −−≤ ,  

vxvu nn −−= ,  

( ).2
1 222

nnnn uxvxvu −−−+−=  
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Therefore, .222
nnnn uxvxvu −−−≤−  From (3.6) and (3.5), we can 

calculate 

( ) ( ) ( ) 22 1 vSwvxvz nnnnn −α−+−α=−  

( ) 22 1 vwvx nnnn −α−+−α≤  

( ) [ ( ) ]222 11 vvvxvx nnnnnnn −β−+−βα−+−α≤  

( ) ( ) ( ) 222 111 vuvxvx nnnnnnnn −β−α−+−βα−+−α≤  

( ) 22 1 vxvx nnnnn −βα−+−α≤  

( ) ( ) [ ]2211 nnnnn uxvx −−−β−α−+  

( ) ( ) 22 11 nnnnn uxvx −β−α−−−≤  

and hence 

( ) ( ) .11 222
nnnnnn xuvxvz −β−α−−−≤−  

Since ,0 nc α≤<  ,1<≤β dn  it follows that 

( ) ( ) ( ) ( ) 22 1111 nnnnnn uxuxdd −β−α−≤−−−  

22 vzvx nn −−−=  

( ) ( )vzvxvzvx nnnn −−−−+−=  

( ).vwvxzx nnnn −+−−≤  (3.24) 

From (3.22) and (3.24), we have 

 .0lim =−
∞→

nn
n

ux  (3.25) 

Since ,0inflim >∞→ nn r  we obtain 

 .01limlim =−=
−

∞→∞→
nn

nnn
nn

n
uxrr

ux  (3.26) 
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For ( ) ( ) ( ),, FEPACVISFv ∩∩∈  from (3.7), (3.5) and (3.4), we obtain 

( ) ( ) ( ) 22 1 vSwvxvz nnnnn −α−+−α=−  

( ) 22 1 vSwvx nnnn −α−+−α≤  

( ) 22 1 vwvx nnnn −α−+−α≤  

( ) [ ( ) ]222 11 vvvxvx nnnnnnn −β−+−βα−+−α≤  

( ) ( ) ( ) 222 111 vvvxvx nnnnnnnn −β−α−+−βα−+−α=  

( ) 22 1 vxvx nnnnn −βα−+−α≤  

( ) ( ) [ ( ) ]2222 111 nnnnnn yukvu −−λ+−β−α−+  

( ) 22 1 vxvx nnnnn −βα−+−α≤  

( ) ( ) [ ]2211 nnnnn uxvx −−−β−α−+  

( ) ( ) ( ) 222 111 nnnnn yuk −−λβ−α−+  

( ) ( ) ( ) [ ]222 111 vxvxvx nnnnnnnn −β−α−+−βα−+−α≤  

( ) ( ) ( ) 222 111 nnnnn yuk −−λβ−α−+  

( ) ( ) ( ) .111 2222
nnnnnn yukvx −−λβ−α−+−=  

Therefore, we have 

nn yu −  

( ) ( ) ( )
( )22

22111
1 vzvx

k
nn

nnn
−−−

λ−β−α−
≤  

( ) ( ) ( )
( ) ( )vzvxxzvx

k
nnnn

nnn
−−−−+−

λ−β−α−
= ∗

22111
1  

( ) ( ) ( )
( ).

111
1

22 vzvxzx
k

nnnn
nnn

−+−−
λ−β−α−

≤  
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So, by (3.22), we obtain 

 .0lim =−
∞→

nn
n

yu  (3.27) 

Since ,nnnnnn yuuxyx −+−≤−  from (3.25) and (3.27), we also have 

 .0lim =−
∞→

nn
n

yx  (3.28) 

We note that 

( ) ( )nnnCnnnCnn AyuPAuuPvy λ−−λ−=−  

( ) ( )nnnnnn AyuAuu λ−−λ−≤  

( )nnn AuAy −λ=  

.nnn uyk −λ≤  

Since ⎟
⎠
⎞⎜

⎝
⎛∈λ

kn
1,0  and from (3.27), we obtain 

 .0lim =−
∞→

nn
n

yv  (3.29) 

Since 

( ) nnnnnnn xvxxw −β−+β=− 1  

( ) nnn xv −β−= 1  

( ) [ ].1 nnnnn xyyv −+−β−≤  

From (3.28) and (3.29), we have 

 .0lim =−
∞→

nn
n

xw  (3.30) 

Note that 

nn vSv −  

nnnnnnnn vyyxxSwSwSv −+−+−+−≤  

nnnnnnnn vyyxxSwwv −+−+−+−≤  

nnnnnnnnnnnn vyyxxSwwxxyyv −+−+−+−+−+−≤  

.22 nnnnnnnn xSwwxxyyv −+−+−+−=  
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From (3.23), (3.28), (3.29) and (3.30), we obtain 

 .0lim =−
∞→

nn
n

vSv  (3.31) 

Since { }nv  is bounded, there exists a subsequence { }inv  of { }nv  which 

converges weakly to z. Without loss of generality, we can assume that .zv in  

Since Cv in ⊂  and C is closed and convex, C is weakly closed and hence .Cz ∈  

From ,0→− nn vSv  we obtain .zSv in  We show that ( ).FEPz ∈  Using 

the same argument as in the proof in [10, Theorem 3.1, p. 273] or [9, Theorem 3, 
p. 1251], we can prove that ( ).FEPz ∈  From Opial’s condition, we obtain that 

( ).SFz ∈  Finally, we can show that ( )., ACVIz ∈  Define 

⎩
⎨
⎧

∉∅

∈+
=

.,

,,

Cv

CvvNAv
Tv C  

Then T is maximal monotone. Let ( ) ( )., TGuv ∈  Since vNAvu C∈−  and ,Cvn ∈  

we have .0, ≥−− Avuvv n  On the other hand, from ( ),nnnCn AyuPv λ−=  we 

have ( ) ,0, ≥λ−−− nnnnn Ayuvvv  and hence .0, ≥+
λ
−

− n
n

nn
n Ayuvvv  

Therefore, we have 

Avvvuvv ii nn ,, −≥−  

i
i

ii
ii n

n

nn
nn Ay

uv
vvAvvv +

λ
−

−−−≥ ,,  

i

ii
ii n

nn
nn

uv
AyAvvv

λ
−

−−−= ,  

i

ii
iiiiii n

nn
nnnnnn

uv
vvAyAvvvAvAvvv

λ
−

−−−−+−−= ,,,  

.,,
i

ii
iiii n

nn
nnnn

uv
vvAyAvvv

λ
−

−−−−≥  
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Since ,0limlim =−=− ∞→∞→ nnnnnn yvuv  pu in  and A is Lipschitz 

continuous, we obtain that 0lim =−∞→ nnn AyAv  and .pv in  From 

0inflim >λ∞→ nn  and ,0lim =−∞→ nnn uv  we obtain 

.0, ≥− uzv  

Since T is maximal monotone, we have 01−∈ Tz  and hence ( )., ACVIz ∈  Hence, 

we have ( ) ( ) ( )., FEPACVISFz ∩∩∈  Finally, we show that ,zxn →  where =z  

( ) ( ) ( ) .0, xP FEPACVISF ∩  Since 0xPx nCn =  and ( ) ( ) ( ) ,, nCFEPACVISFz ⊂∈ ∩∩  

we have .00 xzxxn −≤−  It follows from ( ) ( ) ( ) 0, xPz FEPACVISF ∩∩=′  and 

the lower semicontinuity of the norm that 

00 xzxz −≤−′  

0inflim xx in
i

−≤
∞→

 

0suplim xx in
i

−≤
∞→

 

.0xz −′≤  

Thus, we obtain that 

.lim 000 xzxzxx in
k

−′=−=−
∞→

 

Using the Kadec-Klee property of H, we obtain that 

.lim zzx in
i

′==
∞→

 

Since { }inx  is an arbitrary weakly convergent subsequence of { },nx  we can conclude 

that { }nx  converges strongly to z, where ( ) ( ) ( ) .0, xPz FEPACVITF ∩∩=   

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space 
H. Let A be a monotone, k-Lipschitz continuous mapping of C into H and let S be a 
nonexpansive mapping from C into itself such that ( ) ( ) ., ∅≠ACVISF ∩  Let { },nx  

{ }ny  and { }nw  be sequences generated by Cx ∈0  and let 
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( )

( ) ( ) ( )( )

{ }
⎪
⎪

⎩

⎪
⎪

⎨

⎧

∈=

−≤−∈=

λ−β−+βα−+α=

λ−=

++

+

NnxPx

zxzzCzC

AyuPxSxz

AuuPy

nCn

nnnn

nnnCnnnnnnn

nnnCn

,

,:

,11

,

011

1
 (3.32) 

for all ,N∈n  where { } [ ]ban ,⊂λ  for some ,1,0, ⎟
⎠
⎞⎜

⎝
⎛∈ kba  { } { } [ ]dcnn ,, ⊂βα  

for some ( ).1,0, ∈dc  Then { }nx  converges strongly to ( ) ( ) .0, xP ACVISF ∩  

Proof. Put ( ) 0, =yxF  for all Cyx ∈,  and { } 1=nr  in Theorem 3.1. Thus, 

we have .nn xu =  Then the sequence { }nx  generated in Corollary 3.2 converges 

strongly to ( ) ( ) .0, xP ACVISF ∩   
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