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Abstract

In this paper, we introduce an iterative scheme by the hybrid methods for
finding a common element of the set of fixed points of nonexpansive
mappings, the set of solutions of equilibrium problems and the set of
solutions of variational inequality problems for a monotone, k-Lipschitz
continuous mapping in a Hilbert space. Then we obtain a strongly
convergence theorem by using hybrid extragradient method to common
elements of the set of fixed points of nonexpansive mappings, the set of
solutions of equilibrium problems and the set of solutions of variational
inequality problems. Our results extend and improve results of
Bnouhachem et al. [2] and many others.

1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H and let P
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be the metric projection of H onto C. A mapping S:C — C is said to be
nonexpansive if || Sx — Sy || < | x—y]|, for all x, y e C. We denote by F(S) the

set of fixed points of S. Let F be a bifunction of C x C into R, where R is the set

of real numbers. The equilibrium problem for F : C xC — R is to find
x € C such that F(x, y)>0, for all yeC. (1.1)

The set of such solutions of (1.1) is denoted by EP(F). Given a mapping
T:C—>H, let F(x,y)=(Tx, y—x) forall X, yeC. Then z € EP(F) if and
only if (Tz, y —z) 2 0 forall y € C, i.e., z s a solution of the variational inequality

problem. The classical variational inequality problem is to find u € C such that

(v—u, Au) > 0 for all v e C. The set of solutions of this variational inequality
problem is denoted by VI(C, A). Numerous problems in physics, optimization and

economics reduce to find a solution of (1.1). Some methods have been proposed to
solve the equilibrium problem (see [1, 4, 12, 14]). In 2005, Combettes and Hirstoaga
[3] introduced an iterative scheme of finding the best approximation to the initial
data when EP(F) is nonempty and they also proved a strong convergence theorem.

If C is bounded nonempty closed convex and S is a nonexpansive mapping of C into
itself, then F(S) is nonempty (see [7]).

We recall that, a mapping A: C — H is said to be monotone if
(Au—Av,u-v) >0, for all u,veC;
A is said to be B-strongly monotone if there exists a positive real number 3 such that
(AU— Av, u—V)>Bu—v|* forall uvecC;

A is said to be k-Lipschitz continuous if there exists a positive real number K such
that

| Au—Av| <k[u-v], for all u,veC;

A is said to be a-inverse strongly monotone [1] if there exists a positive real number

o such that
(Au— AV, U—-V) > af Au— Av|?, for all u,veC.

Remark 1.1. It is obvious that any a-inverse strongly monotone mapping A is
monotone and Lipschitz continuous.
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It is well known that if A is a strongly monotone and Lipschitz continuous
mapping on C, then the variational inequality problem has a unique solution. How to
actually find a solution of the variational inequality problem is one of the most
important topics in the study of the variational inequality problem. The variational
inequality has extensively been studied in the literature. See, e.g., [17, 18] and the
references therein.

In 1976, Korpelevic [8] introduced the following so-called extragradient method:
Xg =XeC,
Yn = Po (X — LAX,), (1.2)
Xn+1 = Pc(Xy = 2AYp)

for all n > 0, where A € (O, %), C is a nonempty closed convex subset of R", and

A is a monotone and k-Lipschitz continuous mapping of C into R". He proved that if

VI(C, A) is nonempty, then the sequences {X,} and {X,}, generated by (1.2),

converge to the same point z € VI(C, A).

In 2003, Takahashi and Toyoda [16] introduced the following iterative scheme:

X; = X € C chosen arbitrary, 13)
Xne1 = OnXy + (1= an)SPe (X, — A AX,), Vn =1, '

where {o,} is a sequence in (0, 1) and {L,} is a sequence in (0, 2a). They proved

that if F(S)NVI(A, C) = &, then the sequence {X,} generated by (3.4) converges

weakly to some z € F(S)NVI(A C). Recently, Zeng and Yao [19] proved the

following strong convergence theorem:
Xg = X € C,
Yn = Pc(Xy — AnAX,), (1.4)
Zy = apXg + (1 — o) SPc(Xy — AnAy,), Vn >0,
where {A,} and {a,} satisfy the following conditions: (i) A,k < (0,1-38) for some
8€(0,1) and (i) o, <(0,1), Z:zlan =00, limp_, 0ty =0. They proved that
the sequences {X,} and {y,} converge strongly to the same point Pr(s)nvi(c, A%

provided that limp_,o[| Xn41 — Xp || = 0.
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In 2008, Takahashi et al. [15] introduced the modification Mann iteration
method for a family of nonexpansive mappings {T,}. Let X, € H. For C; = C and

Uy = P, Xg, define a sequence {up} of C as follows:

Yn = gl + (1= o) Taup,
Covi ={z€Cq:llyn—z[<uy -z} (1.5)

Upyp =R, %0, NEN,

where 0 <a, <a<1 for all neN. Then we prove that the sequence {u,}

converges strongly to zg = Pg(1)Xo.

In 2009, Bnouhachem et al. [2] introduced the following new extragradient
iterative method for finding an element of F(S)VI(A, C). Let C be a closed

convex subset of a real Hilbert space H, A be an o-inverse strongly monotone
mapping of C into H and let S be a nonexpansive mapping of C into itself such that
F(S)NVI(A, C) # &. Let the sequences {X,} and {y,} be given by

X;, U € C chosen arbitrary,
Yn = Pc(Xy = AnAXp), (1.6)
Xn+1 = BnXn + (1 =Bp)S(agu + (1 — an)Pe (X, — AnAyp)), Vn =1,

where {a,}, Bn ) An} < (0, 1) satisfy some parameters controlling conditions. They

proved that the sequence {X,} defined by (3.8) converges strongly to a common

element of F(S)NVI(A, C).

In this paper, motivated and inspired by the results of Bnouhachem et al. [2], we
introduce a new iterative scheme by using the hybrid extragradient method, as
follows: Xg = X € H and let

Uy € C such that F(up, y)+rL(y —Up, Uy —Xy) 20, VyeC,
n
Yn = Pc(Uy = ApAup),
Zn = opXy + (1= 0y)S(BrXy + (1= Bp)Pc(uy =2 Ay,)), (1.7)
}3

Chs1 =12€Cphifzy - 2] <X, ~2

Xn+1 = Pop41X0, NEN,

where {o,}, {Bn}, {An} < (0, 1) satisfy some parameters controlling conditions. We
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prove {X,} and {u,} in (3.1) that strongly convergence common element of the set

of fixed points of a nonexpansive mapping, the set of solutions of an equilibrium
problem and the set of solutions of the variational inequality for k-Lipschitz
continuous mappings in a Hilbert space. Our results extend and improve that the
corresponding ones announced by Bnouhachem et al. [2].

2. Preliminaries

Let H be a real Hilbert space with norm || - || and inner product (-, -), and let C
be a nonempty closed convex subset of H. For every point X € H, there exists a

unique nearest point in C, denoted by Pz X, such that
[x=Pex|<[x=y]| forall yecC.

Pc is called the metric projection of H onto C. It is well known that Ps is a

nonexpansive mapping of H onto C and satisfies

(x =y, Pex = Rey) > | Rex = Pey [, (2.1)

for every X, Yy € H. Moreover, PcX is characterized by the following properties:

Pcx e C and
(X = Pox, y — Pex) €0, 2.2)
Ix=yI? 2 I x=PRex|? +]y - Pex|? (23)
forall x € H, y e C. Itis easy to see that the following is true:
ueVI(C, A) < u=P:(u-AAu), A >0. (2.4)

Let A be a monotone, k-Lipschitz continuous mapping of C into H and let Ncv be

the normal coneto Cat v e C, i.e.,
Nev:={weH:(v-u,w)>0,VueC}
Define

Av+ Nev, veC,
Tv =
J, vgC.
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Then T is maximal monotone and 0 € Tv if and only if v € VI(C, A). It is also
known that H satisfies the Opial’s condition [13], that is, for any sequence {x,} with

Xn — X, the inequality
liminf| X, — X || < liminf | x, — y ||
n—oo n—oo
holds for every y € H with y = x. Hilbert space H satisfies the Kadec-Klee property

[6], that is, for any sequence {X,} with X, — X and || X, || > || x| together imply

[ xn = x| — 0.

For solving the equilibrium problem for a bifunction F : C xC — R, let us

assume that F satisfies the following conditions:

(A1) F(x, x)=0 forall x € C;

(A2) F is monotone, i.e., F(X, y)+ F(y, X) <0 forall x, y € C;

(A3) foreach X, y,z € C, lim , F(tz+(1-t)x, y) < F(x, y);

(A4) foreach x € C, y > F(X, y) is convex and lower semicontinuous.

The following lemma appears implicitly in [1].

Lemma 2.1 [11]. There holds the identity in a Hilbert space H:

@ Ix+ Yy =1xP+1y P +2(x y) v y e H.

@) [ ax+ (1 =2)y P =2 x P+ (1 =) y|F =21 =2) x -y | forall x, y € H
and A € [0, 1].

Lemma 2.2 [1]. Let C be a nonempty closed convex subset of H and let F be a
bifunction of C x C into R satisfying (A1)-(A4). Let r > 0 and x € H. Then there
exists z € C such that

F(z, y)+%(y—z, z-xy20 for all yeC.

The following lemma was also given in [3].

Lemma 2.3 [3]. Assume that F : C x C — R satisfies (A1)-(A4). For r > 0
and x € H, define a mapping T, : H — C as follows:
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T (x) = {z e C: F(z y)+%(y— ,2-Xx)20,Vy e C}
for all x € H. Then the following hold:
1. T, issingle-valued;
2. T, is firmly nonexpansive, i.e., forany x, y € H,

[ Tex =Ty "2 S(Tex =Ty, X = y);
3. F(Tr) = EP(F);

4. EP(F) is closed and convex.

3. Strong Convergence Theorems

In this section, we show a strong convergence theorem for finding a common
element of the set of fixed points of a nonexpansive mapping, the set of solutions of
an equilibrium problem and the set of solutions of a variational inequality problem
for a monotone, k-Lipschitz continuous mapping in a Hilbert space by using the
hybrid extragradient method.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let F be a bifunction from C xC into R satisfying (A1)-(A4) and let A be
monotone, k-Lipschitz continuous mapping of C into H. Let S be a nonexpansive
mapping from C into itself such that F(S)NVI(C, A)NEP(F) = &. Let {x,},

{yn}, {w,} and {u,} be sequences generated by

U, € C such that F(up, y)+é(y —Up, Uy —Xy) 20, VyeC,

Yn = Pc(u, — ApAup),

Zy = apXy + (1= an)SBnXy + (1= Bn)Pe(Uy — 2nAy,)), (3.1
Chy ={zeCphillzn —z] <[ x -z},

Xn+1 = Pe+1%0, N €N,

where {L,} < [a,b] for some a,be (O, %) {on}, Bnt < [c, d] for some

c,d e(0,1) and {r,} < (0, ) satisfies liminf,_,, r, > 0. Then {x,} converges

strongly to Pr(synvi(c, ANEP(F)Xo-
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Proof. We first show that F(S)( EP(F)NVI(A,C) < C, forall n e NU {0},
we can prove by induction. It is obvious that F(S) N EP(F)NVI(A, C) = C;. Let
p e F(S)NVI(C, A)NEP(F), and let {T, } be a sequence of mappings defined as

in Lemma 2.3. Then p = Pc(p —ApAp) =T, p and uy =T, X,. Thus, we have
fun =Pl =0T X0 =T P <% =Pl (3.2)
Put v, = Pz (u, — A, Ay, ). From (2.3) and the monotonicity of A, we have
1o = PIP < un = 2nAYn = PP =l Uy = 2nAYn = Vo [P
=lltn = P[P =l un = Vi I + 22:0{AYn, D= V)
=[lun = pI* = llug = vo I?
+ 22 ((Ayn = AP, P = Yn) + (AR, P = Yn) + (A¥n, Yn = Vn))
<Jtn = PP =l un = Va I + 220(A¥n, Yo — Vo)
=un =PI ~lun = Yo I> = 2(Un = Yo, Yo = Vo)
=1 Y0 = Vo [P + 220 (A¥n, Y = Vo)
=lun =P I* = lun =Y I =1 Yo = IP
+2(Un = AnAYn = Yn, Vn = Yn)-
Moreover, from Yy, = Pc(u, — ApAup) and (2.2), we have
(Un = ApAlp = Y, Vy = Yp) < 0. (3.3)
Since A is k-Lipschitz continuous, it follows that

(Un =AnAYn = Yns Vi = Yn) = Un = AnAUp = Y, Vn = Vo) +(An Alp = A Ay, Vg = V)

< (ApAup = AnAyp, Vp = Yn)

<Ak up = Yo [l ve = Ya -
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So, we have
Iva =PI <lun =PI =l un = Ya I =1 Yo = Vo P
+2hnk [ un = Y [V = Y |
S I e I A e B
+ 20k Uy = Y I+ Ve = v I?
=un = P I + (3> = D[ty = v I
<[up - p*. (3.4)
and hence
Iva = pl<lun=pl<l* -pl. (3.5

Setting W, = BXy + (1 = Byy)V,. Thus, from (3.5), we have
| wy — p"2 = BnXn + (1 =Bp)vy - p"2
= Ba Oy = P)+ (1= Bp) (Vo — P) |
_ 2 2 2
=Bl %n = P["+ A =B Vo = PII" = Bn( =Bl Xn = Vi ||
2 2
<Bal X =PI+ A =Bn)]va - Pl
<Bnlxa - p ”2 +(1 =B —p ”2
=[x - p|P (3.6)
It follows that
2 2
2o = p|I” =] anXxy + (1 —oy)Sw, — p
= [l otg (g = P) + (1 = o) (S = p) |
_ 2 2 2
=ap| Xy = P"+ (1= 0n) | SWy = p[I7 = otn(1 = 0t Xy = Sy ||

Sap Xy = pf+0=ap)|Sw, - p "2
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< o Xy = P+ (1= ap)| Wy — p
<ol %o = P+ (L= an)| %0 = p I
=% -l (3.7)
So, we have p € C,,,; and hence
F(S)NVI(C, A)NEP(F) = C,, for all neNU {0} (3.8)

Next, we show that C,, is closed and convex for all n € N. It follows obvious that
C, =C is closed and convex. Suppose that C,, is closed and convex for each

meN. Let ¢j € Cppyy = Cyy with ¢j — z. Since Cpy, is closed, z € Cp, and
| zm —cjll<lcj=ml
lzm =zl =llzm —cj+cj-z]
<lzm=cjl+lej -zl (3.9)
Taking j — o,
lzm =2 <[z = Xm ||

Hence z € Cyy, . Let X, y € Cipyy < Cpy with z = ax+ (1—a)y, where a € [0, 1].
Since Cp, is convex, z € Cp, and ||z = X | < | X=X |, [zZm = Y SIY = Xm [Is

we have

| zm = 2| =l 2m — (ox + (1 - 0)y) |7
= [ oz — %) + (1= o) (2 = V)|
=0z =X [P + (1= &) 2 = Y [? = @l = ) (2 = %) = (2 = V) I
<afzy - x| +(1-o)|zn - y[* —all - o)y - x|
< af X = x [P+ (=)l xp = ¥ [P = ol = o) (= %) = O = V) I
= [ X = (ax + (1= ) y) |

= [ Xm - 2. (3.10)
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Then z € Cy,,;, it follows that C,,; is closed and convex. Hence C,, is closed and
convex for all n e N. This implies that {x,} is well defined. From Lemma 2.2, the

sequence {U,} is also well-defined.

Since F(S)NVI(C, A)N EP(F) is a nonempty closed convex subset of H, there
exists a unique U € F(S)NVI(C, A)N EP(F) such that

u = Pe(s)nvi(c, ANEP(F)Xo-
From xp = Pg_ Xg, we have
(Xo = Xn» Xn — y) =0 for all yeC,.
Since F(S)NVI(C, A)NEP(F) < C,, we have
(X0 — Xp, Xn —Uu) = 0 for all ue F(S)NVI(C, A)NEP(F) and neN. (3.11)
So, for u e F(S)NVI(C, A) EP(F), we have
0 < (Xg — Xp, Xn — U)
=(Xg = Xn» Xn — Xo + Xg — U)
= —(Xp — X0» Xn — Xo) + (X0 — Xp, Xo — U)
<= x0 = %o P+ %o = Xa ||l Xo = u |- (3.12)
This implies that
I %0 =% I7 < 1% = % 1 %0 = u].
Hence
[ Xo = Xn [ €| Xo —u | for all ue F(S)NVI(C, A)NEP(F) and n e N. (3.13)

From xp = Pc Xo and Xp, = Pc  Xo € Cpyy < Cpy, we also have

(X0 — Xp» Xn = Xn41) 2 0 for all neN. (3.14)
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So, for X,,; € C,, we have, forall n e N,
0 < (Xo = Xn» Xn = Xn41)
= (X0 = Xn» Xn — Xo + X0 — Xn1)
= _<Xn — Xp, Xp — XO) + <XO — Xn» Xo — Xn+1>
2

<=l %0 = %o I+ %0 = Xa [l X0 = Xns1 [ (3.15)

This implies that
I %0 = % I* <1 %0 = %n [l X0 = Xns1 |

Hence

[ Xo = Xn | < || Xo = Xn41 || for all neN. (3.16)

From (3.13), we have {X,} is bounded, lim,_,.| X, — Xo | exists. From (3.5) and
(3.6), {un}, {vy} and {w,} are also bounded. Next, we show that || X, — X,,1 | — 0.

In fact, from (3.14), we have
%0 = Xnot I

= (xn = %0) + (0 — Xn+1)"2

= %0 = %o IP + 2% = %o, Xo = Xny1) + | Xo = Xns1 |

= % = %o IP + 20X = %o, Xo = Xn + Xn = Xp1) + [ Xo = X I

=1 %0 = %o I = 2(% = Xas X0 = %) = 2(X = Xns X0 = Xp1) + [ X0 = X1 [

< xn =% I =20 %0 = X0 I + 11 %0 = Xnt I

=~ %0 =% I? +1 %0 = X1 [ (3.17)
Since limp_,,| Xy — X || exists, we have

lim || X = X4 | = 0. (3.18)
N—o0
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On the other hand, X,,; € C,;; < C,, implies that
lzn = Xnst [ <1 %0 = Xns1 |- (3.19)
Hence

lim || zy — X4 || = 0. (3.20)
N—o0

From Xxp,; = P , X, we obtain
[ Xns1 = Xo | S|lz=Xo || for all zeCy,y and for all neN.
Since u € F(S)NVI(C, A)N EP(F) < C,,,, we have
[ Xns1 = %o | S |lu—=xo| for all neNU/{0}. (3.21)
Since Xp.; € Cp, we have

%0 = zn | <1 %0 = %ot 1+ 1 X1 = 20 (1< 2] X0 = X1 |-

By (3.18), we obtain

limp 00| Xn — 25 | = 0. (3.22)
Since
I %0 = zn [ =1 %0 = atnXn = (1= otq) SWy | = [ (1= o) (X = Swp) |,
it follows by (3.22) that
lim | x, — Swj, || = 0. (3.23)
n—w

Let v e F(S)NVI(C, A) EP(F). Then we obtain
T .
< (Tp X0 = T Vs X = V)
= (Up =V, Xy = V)

1
= 5 (un =V I + 1% =V I? =1 %0 = un ).
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Therefore, ||Up —V[* <[ %y =V |* =] Xy — Uy |*. From (3.6) and (3.5), we can

calculate
2o = V[P = oy Xy = V) + (1 = an ) (Swy = V) |
2 2
<ol Xy = VIIT+ (1 —ap)|wy = V|
2 2 2
<) % = V[P + (1= o) Bnl Xn =V [* + (1= By) | Vo = V]
< apl % = V[P + (1= on)Ball Xo =V [* + (1= an) (1= Bn) [y = v |
2 2
< apl Xy = VP + (1= o)yl o =V |
2 2
+ (1= o) =B X0 = VIF =] % = uy [P

<%y =V "2 —(I=an)d=Bp)| %y —uy "2
and hence
[l z, _V"2 <[ _V"2 —(I=an)@=Bp)llun — X, "2
Since 0 < ¢ < oy, By <d <1, it follows that
(1= d) (=) X =g [* < (1= o) (1 =B) | X = U |

=% =VvIF =llzo - VI
= (% =vl+lza =vIDU X0 =VI=lz0a = V)
< " Xn = Zn "(” Xp —V " + " Wp —V ”) (3'24)

From (3.22) and (3.24), we have

lim || X, — Uy || = 0. (3.25)
N—o0

Since liminf,_,, I, > 0, we obtain

. Xp — U
lim | —"
N—o0

= lim %y ~ Uy | = 0. (3.26)
n

rn N—o0
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For v e F(S)NVI(C, A)N EP(F), from (3.7), (3.5) and (3.4), we obtain
20 = V[* = otn (% = V) + (1 = o) (Sw — V) |
<ol Xq =V + (1= o) Swy - v
< ol Xg =V [P+ (1= o) | Wy =V [
< Otn" Xn _V”2 +(1- an)[Bn" Xp —V "2 +(1 _ﬁn)" Vi _V”z]
2 2 2
= O'vn" Xn _V" +(1_an)[3n" Xn _V" +(1 _an)(l_Bn)"Vn _V"
2 2
<ol Xp = V[T + (1= o) Bl Xq = V||
+ (1= an)d=Bp) [ uy _VHZ + (kznk2 =D un = Yo ”2]
2 2
<ol Xy = VIIT+ 0= an)Bnl Xn = V|
2 2
+ (1= o)A =B)l X0 = VII" = X0 = up ']
+ (1= o) (1= Bp) O5K* = D] Uy = v I
< ap Xg _V||2 + (1= oty)Bnl Xn _V"2 + (1 =on) (=Bl Xn _V||2]
+ (1= o) (1= Bp) (5K = Dl uy = yp I

=% = V[P + (=) (= Bp) (K2 = D) up = vo P

Therefore, we have

lun = yn |
1 e o
gy o Vv
1

STy pya e e vl @ = D =vi=lzm =vD

1

EErS TR L R A
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So, by (3.22), we obtain

nli_r)rio [un = yn |l = 0. (3.27)
Since || Xn = Yn | < Xn —Un |+ ] Uy = Yp [, from (3.25) and (3.27), we also have

nli_r)rio [ %0 = Yn | = 0. (3.28)
We note that

| Y =V I =1l Pe (U = 2nAug) = Pe(Un = AaAyn) |
<[ Uy = AnAun) = (Un = 2nAyn) |

= [ An(Ay, = Aup) ||

< }-nk" Yn — Up "
Since Ap, € (0, %) and from (3.27), we obtain
lim | vy =y || = 0. (3.29)
Nn—oo
Since
[Wn = Xn | = | BnXn + (1= Br)Vn = Xq |
= (=B Ve = Xn |

<A =BV = Yo I+ Yo = %a I
From (3.28) and (3.29), we have
lim || w, — X, | = 0. (3.30)
n—oo

Note that
ISV = vn ||
<[ Svi = Swn [+ Swn = X [+ Xn = Yn [l + ] Y = Va
<vn = wo [+ 1SWo = Xq [+ [0 = Yo [+ Ya = Va |
<Iva = Yo I+ 0 = %o [+ 1 %0 =W [+ SWn = X [+ [ X0 = Ya [+ Yn = Vn |

=2V = Yn [+ 2] Yo = Xn 1+ ] X0 = Wo ||+ ]| SWy = %o |-
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From (3.23), (3.28), (3.29) and (3.30), we obtain

lim || Sv, = Vp || = 0. (3.31)
n—oo

Since {v,} is bounded, there exists a subsequence {vp |} of {v,} which
converges weakly to z. Without loss of generality, we can assume that Vp — 2
Since v, < C and C is closed and convex, C is weakly closed and hence z € C.
From [ Svy =V, || — 0, we obtain Sv, — z. We show that z € EP(F). Using

the same argument as in the proof in [10, Theorem 3.1, p. 273] or [9, Theorem 3,

p. 1251], we can prove that z € EP(F). From Opial’s condition, we obtain that
z € F(S). Finally, we can show that z € VI(C, A). Define

Av+Nev, veC,
Tv =

a3, v¢gC.

Then T is maximal monotone. Let (v, u) € G(T). Since u — Av e Ncv and v, € C,
we have (v -V, u— Av)> 0. On the other hand, from v, = Pc(u, — ApAy,), we

have (V -V, Vy — (U = A,Ay,)) > 0, and hence <v—vn, V”k_ n | Ayn> > 0.
n

Therefore, we have

(V= Vp, U) 2 (V= Vg, Av)

Vi — Un,
= (V= Vs AV = AV + (V= Vi, AV — Ay — V_Vni’T
i

V. — Up.
> <V—Vni, AVni - Ayni>—<V_Vni’%>'
i



134 CHANAN SUDSUKH

Since limp_,o| Vo = Up | = limp_0f| Vo — Yo | =0, up, — p and A is Lipschitz
continuous, we obtain that limy_,.[| Avy — Ay, [|=0 and v, — p. From
liminfy,_,,, Ap > 0 and lim_,.,| vy — Uy, || = 0, we obtain

(v-1z,u)=0.

Since T is maximal monotone, we have z T7'0 and hence z e VI (C, A). Hence,
we have z € F(S)NVI(C, A)() EP(F). Finally, we show that X, — z, where z =
PF(S)ﬂVl (C,A) EP(F)XO' Since Xn = PCn X0 and z e F(S)ﬂVl (C, A)ﬂ EP(F) c Cn,
we have || X, =X | <[z =Xo | It follows from z' = Pr(s)vi(c, AneEp(F) %o and
the lower semicontinuity of the norm that
27 =% <fz=x]|
< liminf| xp — X |
I—>00
< limsup|| Xp, = Xo |
i—o
<[z -xll
Thus, we obtain that

lim || Xy =X [ =] z2=% || =] 2 =X |-
k—w

Using the Kadec-Klee property of H, we obtain that

lim X, =z =12
i> !

Since {X,, } is an arbitrary weakly convergent subsequence of {X }, we can conclude
that {X,} converges strongly to z, where z = P (1)vi(c, A\NEP(F)0- O
Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space

H. Let A be a monotone, k-Lipschitz continuous mapping of C into H and let S be a
nonexpansive mapping from C into itself such that F(S) NVI(C, A) # &. Let {X,},

{yn} and {w,} be sequences generated by x, € C and let
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Yn = Pc(Uy = ApAup),
Zy = apXy + (1= o) SBaxn + (1= Bp) Pe(Un — 2y Ayp)), (3.32)
Cort =12€Cp iz —zf <X -z}, '
¥ni1 = Pop 1%, neN
for all ne N, where {L,} < [a, b] for some a,b e (O, %) {on}, Bnt e, d]
for some ¢, d € (0, 1). Then {x,} converges strongly to Pe(s)nvi(c, A) Xo-

Proof. Put F(x, y)=0 forall X, ye C and {r,} =1 in Theorem 3.1. Thus,

we have U, = X,. Then the sequence {X,} generated in Corollary 3.2 converges

strongly to PF(S)ﬂV| (C,A) Xo- 0
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