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Abstract
In this paper, we study the generalized wave equation of the form
02 2k
—u(x, t) = c*(0)"u(x, t) = 0
ot?
with the initial conditions
u(x, 0)= f(x) and u(x 0) = g(x),

where u(x, t) e R" x [0, o), R" is the n-dimensional Euclidean space,

K is the Diamond operator iterated k-times defined by

2 27K
S EARG
0" = — | - — ,
= oxf o
¢ can be written as the product of the operators in the form ¢ = AOJ
2 62 p+q 62

=[0A, where A = Z— is the Laplacian and 0= Z —
i= laX| —1ax| j= p+1aXJ
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is the ultra-hyperbolic. p+q=n, c is a positive constant, k is a

nonnegative integer, f and g are continuous and absolutely integrable
functions. We obtain u(x, t) as a solution for such equation. Moreover,

by e-approximation we also obtain the asymptotic solution u(x,t) =
O(s‘”/Zk). In particularly, if we put n=1, k =2 and p =0, then the

u(x, t) reduces to the solution of the biharmonic wave equation

2
j—zu(x, 1) + c2(A) u(x, 1) = 0.
t

1. Introduction

It is well known that for 1-dimensional wave equation

0? 2 0°
—2u(x, t)y=c —Zu(x, t), (1.2)
ot OX

we obtain u(x, t) = f(x +ct)+ g(x — ct) as a solution of the equation, where f and

g are continuous.

Also for n-dimensional wave equation

0° 2
?u(x, t)+c“Au(x, t) =0, (1.2)

with the initial conditions
%)
u(x, 0) = f(x) and Eu(x, 0) = g(x),
where f and g are continuous functions. By solving the Cauchy problem for such

equation, the Fourier transform has been applied and the solution is given by

sin(2n] & )t

0z, 1) = F(E)cos(2r| & Pt+ §(&) =

2 _ g2 g2 2 2 _ g2 2 2

where 1% =§&f + &5 + -+ &), 87 =81 +Epyo + o+ Ehuq (see [1, p. 177]).
By using the inverse Fourier transform, we obtain u(x, t) in the convolution form,
that is,
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u(x, t) = f(x) = ¥ (x) + g(x) * Dy (), (1.3)

sin(2n| & |)t
27/ & |

where @, is an inverse Fourier transform of &)t(i) = and ¥; is an

inverse Fourier transform of ¥, (&) = cos(2n] & |)t = %é)(é).
In 1997, Kananthai [2] introduced the Diamond operator ¢ defined by

2 2
p 2 p+q 2
0 0
0= E— - E — |, p+g=n
[iﬂaxizj [J azj

j=p+1 X

or ¢ can be written as the product of the operators in the form ¢ = AJ = CJA, where

A=) —— isthe Laplacianand O = » — — —— is the ultra-hyperbolic.
3 oxf Ao o

The Fourier transform of the Diamond operator has also been studied and the
elementary solution of such operator, see [3]. Next, Sritantatana and Kananthai
studied the equation

;—zu(x, t)+ c2(=A)u(x, t) = 0

see [7, pp. 23-29], where

k
K [ o* @ 2% 8° 0* 0°
A" = —2+—2+“'+—2+T+T+“'+ 5
OX{  OXj OXp  OXpy1  OXpy2 Xp+q
Next, Satsanit and Kananthai studied the equation
2
w0+ (O ulx, 1) = 0
ot
see [6], where
2 2 2 2 2 2\
k 0 0 0 0 0 0
" = _2+_2+.”+_2_T_T ..... 5 ,
aXl 8X2 pr aXp+1 aXp+2 aXp+q

we obtain the solution related to the beam equation.
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In this paper, we study the equation

2
a—zu(x, t) +c2(0)u(x, t) = 0 (1.4)
ot

with u(x, 0) = f(x) and %u(x, 0) = g(x), where c is a positive constant, k is a

nonnegative integer, f and g are continuous functions and absolutely integrable.
Equation (1.4) is motivated by the heat equation of the form

0 27Nk
EU(X’ t) = —c“(0)"u(x, t)
(see [4, 1-4]). We obtain
u(x, t) = £(x)* W (x) + g(x) * D(x) (1.5)

as a solution of (1.4), where @, is an inverse Fourier transform of ét(a)

_ sin c(Vs* - r4)kt
c(x/s4 —rt )k

=COSC(VS4—r4)kt=%&Dt(§), where r? = &f + &5 +--+&3 and s® = &3,

and W, is an inverse Fourier transform of (&)

+ F,%Jrz 4+t §%+q. Moreover, if we put k =2 and p =0 in (1.4), then (1.5)

reduces to the solution of the n-dimensional biharmonic wave equation and also if
k=1 n=1 and p=0 in (1.4), then (1.5) reduces to the solution of beam

equation.
We also study the asymptotic form of u(x, t) in (1.5) by using e-approximation

and obtain u(x, t) = O(e V%),
2. Preliminaries

We shall need the following definitions:
Definition 2.1. Let f e L;(R") be the space of integrable function in R". The
Fourier transform of f(x) is defined by

1
(2n)n/2

f(e) = _[ . e G (x)dx, 2.1
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where & = (&1, &2, - &n)y X = (X1, X2, oo Xn) € RY, (& X) = X + EpXp + -0 +
EnXn is the inner productin R™ and dx = dx;dx, --- dx,,.
Also, the inverse of Fourier transform is defined by

1

f(‘i) = (27‘c)n/2

I el& X f (x)dx. (2.2)
Rn

Lemma 2.1. Given the function

PV [ pra )
f(x) = exp| — —{fo} +[ZX%] :
i=1 j=p+1

p p+g
n 2 2
where (X, X9, .., X,) € R", p+qg=n, '§1Xi < E 1xj. Then
i= j=p+

o0 )81

U

where T denotes the Gamma function. That is, .[R” f(x)dx is bounded.

‘ JRN f(x)dx

Proof. First note that

0, 2 [ pg , 2
JRnf(x)dx:J.Rnexp— —(in] +(jz xj] ax.

i=1

Now, we transform to bipolar coordinates defined by

Xy = rog, Xo =T®y, ..., Xp = r(,t)p,
Xm = rdo)l, dX2 = rd(Dz, vy pr = rdo)p
and
Xp+1=30)p+1, Xp+2 =S(,l)p+2,..., Xp+q =S(,l)p+q,

dXpy1 = sdop,g,  dXprp =sdwp,p, .., dXpiq =Sdwp,q,
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where 0312 +w% +--‘+w% =1 and w%+1+w%+2 +--‘+w%+q =1. Thus

j F(x)dx = J expl=Vs* — r*]rP 158 Ldrdsde ,d0g,
R" R"

where dx = rP s Mdrdsd Q ,dQ;, dQ, and dQ, are the elements of surface

area on the unit sphere in RP and RY, respectively.

I f (x)dx sj exp[-Vs* - r4]rp’1sq’1drdsdequ.
R" R"

By a direct computation, we obtain

0 @S
j Cfx)dx = Qquj J. exp[-Vs* = r*]rP1s9 drds,
R 0odJdo

an/z 2,-5‘31/2
where Q, = ———— and Q; = ———. Thus
P T(p/2) 4 1(a/2)
0 S
“ f(x)dx stQqI J exp[-Vs* = r#]rP 159 Ydrds.
R" 0J0

Put r2 = s?sin 0, 2rdr = s2¢cos0dd and 0 < 0 < % to have

wes  [4 4.2 p-2
U (x| < QquI j e VS ~S sINT05P=2(5in g) 5 59+ cos OdBds
R 0Jdo
Q.Qy r* S 2 p-2
=P qj j e 8" 0805 P+a-1(5in 9) cos Odods.
2 JoJo
Put y = s2 cos 0, ds = L to have
2scos 6

n-2
Q,Qq (2 v p-2 d
p>°q V(Y )2 (cinoys y
<—3 .[o .[o e (cosej (sin6) 2 cos6do 050

HR” f(x)dx

Q.0 n/2 poo n-2 2-n p-2
= %J. J. e Yy 2 (cos0)z (sinB) 2 dydd
o Jo

4 2

- (3. 50

Q.Q /2 2-n p-2
_p r(ﬂj J' (cos0) 7 (sin0) z do
0
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n P 4—n
_ 9,9 (g7
< 2 e .
F( Z )

Thus it follows that j on T(X)dx is bounded.

UR” f(x)dx

3. Main Results
Theorem 3.1. Given the equation

02 2k
?u(x, t)+c*(0)u(x, t) =0 (3.1)

with initial conditions
u(x, 0) = f(x) and %u(x, 0) = g(x), (3.2)
where u(x, t) e R" x [0, »), 0 is the Diamond operator iterated k-times, ¢ is a

positive constant, k is a nonnegative integer, f and g are continuous functions and

absolutely integrable for x € R". Then (3.1) has a unigue solution
ux, t) = F(x)* ¥ (x) + g(x) * D¢ (x) (3.3)
and satisfies the condition (3.2), where @, is the inverse Fourier transform of
sinc(Vst - r# )kt
c(x/s4 —rhk

and ¥, is the inverse Fourier transform of

\i!t(g) = C0S c(\/s4 - r4)kt _0 cf)(g),

Dy(8) =

2|

with r? = gf +§§ +-~-+§fJ and s2 = §2p+1+§%+2 +~--+§%+q.
Proof. By applying the Fourier transform defined by (2.1) to (3.1), we obtain

p+q

, o 2 2\K
%a(g, t)+ c2 —{Zé?] +{ > éﬁ] i t) = 0.
i=1

j=p+1
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Let s > r. Thus
jt—zu@ t)+c’(s* -rh)aE v =0,
6(e 1) = AE)cosc(Vs® —r* )t + B(e)sinc(s? —r* )kt
By (3.2), (5, 0) = AE) = (2),
WED _ oWst et Agsinelst e

e o5t = B(e)cose(ys T r
AEO_ g4 oWs* 1) B(e) - 42,

ooy 86
N

G(E, t) = f(&)cosc(Vs? — r* Kt + C(\/&) sinc(Vs* —rH )kt (3.4)

By applying the inverse Fourier transform (3.4), we obtain the solution u(x, t)

in the convolution form of (3.1). Now, we need to show the existence of ®;(x) and
W (x).
Consider the Fourier transforms

; 4 _ 4k
d)t(x)zsmc( s or)t and ‘Pt(x):cosc(\/s4—r4)kt.

C( S4_r4)k

These are all tempered distributions not lying in the space Ly(R") of integrable
functions. So we cannot compute the inverse Fourier transforms ®;(x) and ¥;(x)
directly. Thus we compute the inverse ®,(x) and ¥;(x) by using the method of

g-approximation.

Define
,gc(«/34,r4 ) sinc(V s —r? )k t

\ls —r#
¢t(&) € C(m)k

4 (£) = for £>0. (3.5)
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We see that ¢f(x) e Ly(R") and ¢f (X) — ¢; (x) uniformly as & — 0. So that

¢¢(x) will be limit in the topology of tempered distribution of ¢ (x). Now

1 ) —~
®F (X) = J & X pE (2)d
t( ) (Zﬂ:)n/z RN t(&) E.a
_ 1 J‘ |(<’;x —aC(Vs —r )k smc(vs -r ) t de
(2m)"2 g o(Ws? -
| | —sc(\/s4—r4)k
{00 [.° d (36)
t (2m )n/2 R" c(vs? -
By changing to bipolar coordinates and putting
E.!l ='Wy, E_,z =y, .., E_,p = er
and
Cp+1 = Wpi1, Spi2 =SWpyp, oy Ep =SWpuq, P+Q =N,
where
le +W§ +-~~+w% =1 and W%+1+W%+2 +~--+W%+q =1
we obtain

—ac(\/s -rt
p-1.9-1
| Df(x) | < . )n/z_[ S " s"drdsdQ ,dQ,

R c(Vsh —r# )k

where d = rP s drdsdQ ,dQ,, dQ, and de, are the elements of surface area

of the unit spheres in RP and RY, respectively, with Q, = (2m)"/2
1 1 p r‘( p/2) y
a/2
(2r) . Now,
I'(q/2)
—sc(\/s4fr4)}2 L oa
| OF(x)| < j I ——— P79 drds.
o (st -ty
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Putting r2 = s?sin®, 2rdr = s cos 0dO and 0 < egg, we get

/2 —.sc(\/s“—s‘lsinze)k p-2
| DF(x)| < n/2 j J- (sin8) 2 sP*971 cos pdods
2(2 ) c(Ws* — s*sin? 0)¥

n/z —ec(s cose) p—2
. J I = sP*7N(sing) 2 cos6dods.
2c(2n)”/ (s? cos0)*

2k %k __ Y gs = Sy

—=, it follows
2

cosk 0, s K
cecos® 0 ky

Putting y = c(s? cos G)k = &CS
that

c /2 e Vg" n-1
| DE(x) | < pr )n/Z'[ J- /) ~———(sin 6) 2 cos 6 ydyde

n/2 y n/2k  p2
4(275)”/2J. -[0 ky? (cacos GJ (Sin6) 2" cos 6dydo

/2 e VyV/2%k-2  p-2 2-n
_ 4(270“/2"‘ .[o K R — 7o kg (Sin©) 2 (cos 0) 2 dydo

n
.0, ! __1) /2 2 2
s (Zk 72 sin 0% (cos0) 20
4(2m) W_lcn/Zk
) 0,0, n p 4-n
" 802K (o) iV r(ﬁ N 1)'{?’ 4 j
n P \(4=n
| D7 (x) | < Qpq r(ﬁ _1]r(zjr( 4 )
! " 82K (2m) V22K F(—Af _ q) |
4

—~ [4 4.k
Similarly, we define ¢ (£) = *(V$"=")" cosc(vVs* —r* )¥ t and

1
(zn)n/Z

=1 in/z,[ el 00g-e0Us 1K o ofs® — r® era,
2n R"

V0= [ eSO )
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. 1 ec(Wsh A K
|Tt(x)|SWjRne C(S r)d(t3
Y
I J‘ ﬂec(\/s -r ) P11 e
(ZTE)n/2

Putting r2 = s2sin 0, 2rdr = s2 cos0d0 and 0 < esg, we obtain

p-2
| ¢ (x) | < 2en )n/2j j ge0(s? 05 0)f (sin 0) 2 sP*971 cos pdods

2 k p-2
( )n/2 _[ _[ g ec(s” cos0) Sp+q_l(sin 0) 2 cos 0dods.
2 27

Next, putting y = gc(s2 cos e)", ds = s;—kyy we have

. /2 o gy ( y ]n/2k  p2
Y —_— no cos 0dydo
¥ 4k(2n )”/ZJ -[ cecosk 0 (sin0) 2" cos 0ay

n/2k-1

TE/2 w0 a~ yy . p_—2 Z;H
4k(2n)”/2J. _[ o2k n/2k (sin®) 2 (cos®) 2 dydd

QPQCI
- 4(27[)”/2 kch/2k cn/2k

LANEANEEL
| \PS(X) | < Qqu F(ZKJF(“JF( 4 j
t - 8(2n)n/2 kcn/ZkSn/Zk 1"(4 _ q) .
4

n 72, . P2 2-n
F(ﬁjj.o (sin©) 2 (cos0) 2 do,

Set
u®(x, t) = f(x)* ¥ (x) + g(x) * O (x)

59

(3.7)

which is an e-approximation of u(x, t) in (3.7) for € = 0, u®(x, t) = u(x, t)

uniformly. Now

ut(x, t) = IR” f(r)¥&(x —r)dr + .[R” g(r)®¢(x —r)dr.
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Thus

|us(x ) < | WE(X - 1) |J'Rn| F(r)|dr +| @E(x - 1) |JRH| o(r) [dr

o0, HalE*E)
Y

<
- 8(27:)n/2kcn/2kan/2k r(4 -
4
n PY(2-n
+ Q2,504 1ﬂ(Zk 1)F(4 F( 4 jN
8(2n)n/2 kCn/Zkgn/Zk—l 1_(4 - q) ’
4

8n/2k| uE(x, 1) | < QpQq F(%jr(%)r(dr ; ”) M

8(2n)n/2 kCn/Zk F(4?Tq)
n p 4—-n
R ke F(W—l)r(zjr( 4 ) N

where M = jRn| f(r)|dr and N = IR"l g(r)|dr. Since f and g are absolutely

o0 A"

8(2m)" 2kc/2 r(“ - q)

integrable,

8Ii_r)T108”/2k| u®(x, t)] <

It follows that u(x, t) = O(e %) for n = k as & — 0.

In particular, if we put k=2, n=1 and p =0, then (3.1) reduces to the

solution of the beam equation, see [5, p. 47],
u(x, 0) = f(x) and %u(x, 0) = g(x),
where f and g are continuous and absolutely integrable for x € R".

Thus we obtain u(x, t) = 0(5_1/4) which is a solution of such a biharmonic

wave equation.
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