RIESZ-MARTIN REPRESENTATION FOR POSITIVE POLYSUPERHARMONIC FUNCTIONS IN A HARMONIC SPACE

SUAD ALHEMEDAN

Department of Mathematics King Saud University P. O. Box 224525, Code No. 11495 Riyadh, Saudi Arabia e-mail: suad-alhemedan@hotmail.com

Abstract

In the context of the axiomatic potential theory, we introduce the notions of polyharmonic Green domains and polyharmonic functions of order m on a Brelot space Ω . For these functions, we prove that if u is a positive polyharmonic function in a polyharmonic Green domain ω , then u has a representation analogous to the Riesz-Martin representation for positive harmonic functions on Ω .

1. Introduction

In [6], Anandam and Othman proved that in a biharmonic Green domain ω in a Riemannian manifold R, a locally dx-integrable function v on ω which satisfies the conditions $v \geq 0$, $\Delta v \leq 0$ and $\Delta^2 v \geq 0$ has Riesz-Martin representation. We initiate in this note a similar study in the framework of the axiomatic potential theory. After defining polyharmonic functions of order m on a Brelot harmonic space, we obtain Riesz-Martin representation for these functions analogous to those functions studied in Riemannian manifolds and Riemann surfaces.

2000 Mathematics Subject Classification: 31D05.

Keywords and phrases: polyharmonic functions, polyharmonic Green domains.

Received November 18, 2008

2. Preliminaries

Let Ω be a locally compact space provided with a sheaf of harmonic functions satisfying the axioms 1, 2 and 3 of Brelot [7]. Fix a Radon measure λ on Ω such that each superharmonic function on a domain ω in Ω is λ -integrable. Such measures can be constructed by using the harmonic measures on Ω (see [4]). Let us assume also that the axiom of local proportionality (see [7]) and the axiom A^* of quasi-analyticity (see de La Pradelle [9]) are verified on Ω , and the constants are harmonic on Ω . With these restrictions, we call $\Omega = (\Omega, H, \lambda)$ a harmonic space.

As examples of Brelot harmonic spaces, we can cite \Re^n , $n \ge 1$: parabolic, hyperbolic Riemann surfaces and Riemannian manifolds, also domains in \Re^n , $n \ge 2$, with harmonic functions as the solutions of second-order elliptic differential operators with smooth coefficients (see Hervé [10]).

Among these harmonic spaces Ω , some have potentials > 0 in Ω (like, \Re^n , $n \ge 3$, hyperbolic Riemann surfaces and hyperbolic Riemannian manifolds) and some others do not have potentials > 0 in Ω (like \Re^2 and parabolic Riemann surfaces). We say that a harmonic space Ω is a B.P. or B.S. space depending on whether there exist or not potentials > 0 in Ω .

Lemma 2.1 [3]. Let μ be a positive Radon measure on an open set ω in a harmonic space $\Omega = (\Omega, H, \lambda)$. Then there exists a superharmonic function s on ω such that μ is the measure associated with s in a local Riesz representation. (We represent this correspondence by the equation $(-L)s = \mu$ on ω .)

A domain ω in Ω is called a *Green domain* if the Green function G(x, y) is well defined on Ω . On a Green domain ω in Ω , we can construct the Martin compactification $\overline{\Omega}$ of Ω as in [8]. Some of the important points to remember here are the following: fix a point y_0 in a Green domain ω .

If G(x, y) is the Green function on Ω , write

$$k_y(x) = k(x, y) = \frac{G(x, y)}{G(x, y_0)}$$

with the convention $k(y_0, y_0) = 1$. Then there exists only one (metrizable) compactification $\overline{\Omega}$ up to homeomorphism such that

- (i) Ω is dense open in the compact space $\overline{\Omega}$;
- (ii) $k_{\nu}(x)$, $y \in \Omega$, extends as a continuous function of x on $\overline{\Omega}$;
- (iii) the family of these extended continuous functions on $\overline{\Omega}$ separates the points $x \in \Delta = \overline{\Omega} \setminus \Omega$.

 $\overline{\Omega}$ is called the *Martin compactification* of Ω and $\Delta = \overline{\Omega} \setminus \Omega$ is called the *Martin boundary*. A positive harmonic function u > 0 is called *minimal* if and only if for any harmonic function v, $0 \le v \le u$, we should have $v = \alpha u$ for a constant α , $0 \le \alpha \le 1$. It can be proved that every minimal harmonic function u(y) on Ω is of the form $u(y_0)k(x, y)$ for some $x \in \Delta$, and the points $x \in \Delta$ corresponding to these minimal harmonic functions are called the *minimal points* of Δ , and the set of minimal points of Δ is denoted by Δ_1 , called the *minimal boundary*.

Martin Representation Theorem 2.2. For any harmonic function $u \ge 0$ on Ω , there exists a unique Radon measure $\mu \ge 0$ on Δ with support in the minimal boundary $\Delta_1 \subset \Delta$ such that $u(y) = \int_{\Lambda_1} k(x, y) d\mu(x)$.

Definition 2.3. Let $(u_i)_{m\geq i\geq 1}$ be m functions defined on an open set ω in a harmonic space $\Omega=(\Omega,\,H,\,\lambda)$ such that $(-L)u_{j+1}=u_j,\,\,1\leq j\leq m-1$. We say that $u=(u_i)_{m\geq i\geq 1}$ is a polysuperharmonic function of order m or shortly m-superharmonic (resp., m-subharmonic, resp., m-harmonic) if u_1 is superharmonic (resp., subharmonic, resp., harmonic). We say that $u\geq 0$ if each $u_i\geq 0$.

Let ω be a Green domain in a harmonic space Ω , with G(x, y) as the Green function on ω . For an integer $m \geq 2$, we will denote

$$G^{m}(x, y) = \int G(x, z_{m-1})G(z_{m-1}, z_{m-2})\cdots G(z_{1}, y)dz_{1}\cdots dz_{m-1}$$

and say that a positive Radon measure μ on ω is in π_m if $u(x) = \int G^m(x, y) d\mu(y) \neq \infty$ on ω , in which case u is a potential on ω and $(-L)^m u = \mu$; also $(-L)^j u \geq 0$ for $0 \leq j \leq m$.

Let $\overline{\Omega}$ be the Martin compactification of Ω and let k(x, y) be the Martin kernel. For any i, $1 \le i \le m-1$, let Λ_i denote the set of positive Radon measures v_i on $\Delta = \overline{\Omega} \setminus \Omega$ with support in the minimal boundary Δ_1 , such that

$$\begin{aligned} v_i(x) &= \int G(x,\,z_i) G(z_i,\,z_{i-1}) \cdots G(z_2,\,z_1) \bigg[\int_{\Delta_1} k(X,\,z_1) dv(X) \bigg] dz_1 \cdots dz_i \\ &\neq \infty. \end{aligned}$$

In that case, $v_i(x)$ is a potential on ω , $(-L)^i v_i \equiv 0$; also $(-L)^j v_i \geq 0$ for $0 \leq j \leq i$. Let us write for $X \in \Delta_1$ and $x \in \omega$,

$$k_i(X, x) = \int G(x, z_i) \cdots G(z_2, z_1) k(X, z_1) dz_1 \cdots dz_i.$$

Then, if $v \in \Lambda_i$, $v_i(x) = \int_{\Lambda_i} k_i(X, x) dv(X)$ is well defined on ω with the above properties.

Definition 2.4. A domain ω in Ω is called *m-harmonic Green domain* if there exists a polysuperharmonic function of order m in ω .

Example. \Re^n , $n \geq 2m+1$, [2] is an m-harmonic Green domain since the function $u=(u_m,u_{m-1},...,u_1)$, $u_m(x)=|x|^{2m-n}$ is a polysuperharmonic function of order m.

3. Integral Representation in a Harmonic Space

Theorem 3.1. Let ω be an m-harmonic domain in a harmonic space Ω . Let $m \geq 1$ be an integer. Then the following are equivalent:

(i) $s = (s_m, s_{m-1}, ..., s_1) \ge 0$ is a polysuperharmonic function of order m in ω .

(ii) For any j, $1 \le j \le m$, there exist unique measures $\mu \in \pi_j$ and $v_i \in \Lambda_i$ for $0 \le i \le j-1$ such that

$$s_j(x) = \int_{\Omega} G^j(x, y) d\mu(y) + \sum_{i=0}^{j-1} \int_{\Delta_1} k_i(X, x) dv_i(X) \ a.e. \ on \ \omega.$$

(iii) The above property (ii) is satisfied for j = m.

Proof. (i) \Rightarrow (ii) Fix j, $1 \le j \le m$. Then $(s_j, s_{j-1}, ..., s_1)$ is a polysuperharmonic function of order j on Ω , since $(-L)s_{i+1} = s_i$ for $1 \le i \le j-1$ and s_1 is superharmonic. Moreover, since $(-L)s_{i+1} \ge 0$, each s_i is a positive superharmonic function. Write $s_1 = p_1 + h_1$ as the unique sum of a potential p_1 and a positive harmonic function h_1 . Let $(-L)p_1^* = p_1$ and $(-L)h_1^* = h_1$. Then p_1^* and h_1^* are superharmonic on ω and $(-L)s_2 = p_1 + h_1 = (-L)p_1^* + (-L)h_1^*$.

That is, $s_2 = p_1^* + h_1^* +$ (a harmonic function) on ω . Since $s_2 \ge 0$, p_1^* has a subharmonic minorant on ω and hence $p_1^* =$ (a potential p_2) + (the greatest harmonic minorant of p_1^* , which may not necessarily be positive).

Then $s_2=p_2+u_2$, where u_2 is superharmonic on ω . Since $s_2\geq 0$, $p_2\geq -u_2$. Since p_2 is a potential and $-u_2$ is subharmonic, $-u_2\leq 0$. Hence $s_2=p_2+u_2$, where p_2 is a potential on ω such that $(-L)p_2=p_1$ and $u_2\geq 0$ is superharmonic such that $(-L)u_2=h_1$.

Thus proceeding, we can write

$$(s_j,\,s_{j-1},\,...,\,s_1)=(p_j,\,p_{j-1},\,...,\,p_1)+(u_j,\,u_{j-1},\,...,\,u_2,\,h_1),$$

where $(-L)p_{i+1} = p_i$ for $1 \le i \le j-1$, and $p_1, ..., p_j$ are all potentials; $(-L)u_{i+1} = u_i$ for $2 \le i \le j-1$ and $(-L)u_2 = h_1$.

Now take $(u_j, u_{j-1}, ..., u_2, h_1)$ and proceed as before. Note now h_1 is positive harmonic, so that we can write

$$(u_j, u_{j-1}, ..., u_2, h_1) = (q_j, q_{j-1}, ..., h_1) + (f_j, f_{j-1}, ..., f_3, h_2, 0),$$

where $(-L)q_{i+1}=q_i$ for $2 \le i \le j-1$, $(-L)q_2=h_1$, and each q_i is a potential; $(-L)f_{i+1}=f_i \ge 0$ for $3 \le i \le j-1$, $(-L)f_3=h_2$, and $(-L)h_2=0$, so that h_2 is positive harmonic.

Then take $(f_j, f_{j-1}, ..., f_3, h_2, 0)$ and follow the same procedure, so that

$$(f_j, f_{j-1}, ..., f_3, h_2, 0) = (r_j, r_{j-1}, ..., r_3, h_2, 0) + (g_j, g_{j-1}, ..., g_4, h_3, 0, 0),$$

where $(-L)r_{i+1} = r_i$ for $3 \le i \le j-1$, $(-L)r_3 = h_2$ and each r_i is a potential; $(-L)g_{i+1} = g_i \ge 0$ for $4 \le i \le j-1$, $(-L)g_4 = h_3$ and $(-L)h_3 = 0$, so that h_3 is harmonic ≥ 0 .

Thus proceeding, we finally arrive at the decomposition

$$(s_j, s_{j-1}, ..., s_1) = (p_j, p_{j-1}, ..., p_1) + (q_j, q_{j-1}, ..., q_2, h_1)$$

$$+ (r_j, r_{j-1}, ..., r_3, h_2, 0) + \cdots + (h_j, 0, 0, ..., 0).$$

Let $(-L)p_1 = \mu$ and let v_j $(1 \le i \le j)$ be the positive Radon measure on Δ_1 , associated with the positive harmonic function h_i in the Martin representation. Then $s_j = p_j + q_j + r_j + \cdots + h_j$ has the integral representation

$$s_j(x) = \int_{\Omega} G^j(x, y) d\mu(y) + \sum_{i=0}^{j-1} \int_{\Delta_1} k_i(X, x) dv_i(X)$$
 a.e. on ω .

- (ii) \Rightarrow (iii) j = m is a particular case of (ii).
- $(iii) \Rightarrow (i)$ By the assumption

$$s_m(x) = \int_{\omega} G^m(x, y) d\mu(y) + \sum_{i=0}^{m-1} \int_{\Delta_1} k_i(X, x) dv_i(X)$$
 a.e.

Hence we can express s_m in the form $s_m(x) = p_m(x) + \sum_{j=0}^{m-1} q_j(x)$. We can calculate to find that $(-L)^i p_m$ is a potential for $1 \le i \le m-1$ and

 $(-L)^m p_m = \mu$, a positive Radon measure; and $(-L)^i q_j$ is a potential for $1 \le i \le j-1$ and $(-L)^j q_j = 0$.

Write now $(-L)s_m = s_{m-1}$, $(-L)s_{m-1} = s_{m-2}$, ..., $(-L)s_2 = s_1$. We can see that each s_i $(1 \le i \le m)$ is a positive superharmonic function and $(-L)s_{i+1} = s_i$ for $1 \le i \le m-1$.

Hence $s = (s_m, s_{m-1}, ..., s_1) \ge 0$ is a polyharmonic function of order m.

Acknowledgement

The author thanks the Research Center, King Saud University for grant.

References

- A. Abkar and H. Hedenmalm, A Riesz representation formula for super-biharmonic functions, Ann. Acad. Sci. Fenn. Math. 26(2) (2001), 305-324.
- [2] M. Al-Qurashi and V. Anandam, Polysuperharmonic functions on a harmonic space, Hokkaido Math. J. 34(2) (2005), 315-330.
- [3] V. Anandam, Admissible superharmonic functions and associated measures, J. London Math. Soc. (2) 19(1) (1979), 65-78.
- [4] V. Anandam, Biharmonic Green functions in a Riemannian manifold, Arab J. Math. Sci. 4(1) (1998), 39-45.
- [5] V. Anandam, Biharmonic classification of harmonic spaces, Rev. Roumaine Math. Pures Appl. 45(3) (2000), 383-395.
- [6] V. Anandam and S. I. Othman, Riesz-Martin representation for positive superpolyharmonic functions in a Riemannian manifold, Int. J. Math. Math. Sci. 2006 (2006), Article ID 92176, 9 pp.
- [7] M. Brelot, Axiomatique des Fonctions Harmoniques, Les Presses de l'Université de Montreal, 1966.
- [8] M. Brelot, On topologies and boundaries in potential theory, Lecture Notes in Mathematics, 175, Springer, Berlin, 1971.
- [9] A. de La Pradelle, Approximation et caractère de quasi-analyticité dans la théorie axiomatique des fonctions harmoniques, Ann. Inst. Fourier, Grenoble 17(1) (1967), 383-399.
- [10] R.-M. Hervé, Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potential, Ann. Inst. Fourier, Grenoble 12 (1962) 415-571.