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Abstract 

We provide an overview of the proof of Fermat’s last theorem (FLT), by 
developing some very basic notions surrounding the theory of elliptic 
curves and modular forms. The actual proof is presented at the end, in one 
paragraph, known as the Frey-Serre-Rabin result. 

1. Introduction 

The proof of FLT, namely that nnn zyx =+  has no nontrivial integer solutions 

x, y, z for N∈n  with ,2>n  is one of the most outstanding achievements of 
modern mathematics. Naturally, the proof of this centuries-old problem is difficult 
and lengthy, pulling on many areas for its conclusion. The aim of this note is to 
develop concepts to be able to state the Shimura-Taniyama-Weil (STW) conjecture 
and in one paragraph show how FLT follows from it. The STW conjecture was 
affirmatively settled and is arguably the most striking and important mathematical 
development of the twentieth century. 

The STW conjecture involves certain elliptic curves and relations to modular 
forms. FLT would seem on the face of it to have no connections with elliptic curves 
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since nnn zyx =+  is not a cubic equation. However, in 1986 Gerhard Frey 

published [3], which associated, for a prime ,5>p  the elliptic curve 

 ( ) ( )pp bxaxxy +−=2  (1) 

with nontrivial solutions to .ppp cba =+  We call elliptic curves, given by 
equation (1), Frey curves. It turns out that this curve is of the type mentioned in the 
STW conjecture. In other words, existence of a solution to the Fermat equation 
would give rise to elliptic curves which would contradict STW. The curves in the 
STW conjecture are intimately related to certain modular forms, so now we need to 
describe the technical details. Some of the following is adapted from [5]. 

2. Elliptic Curves and Modular Forms 

First, we let ( )R,2SL  be the group of 22 × -matrices with coefficients in R  

and determinant 1. Then we let { },~
∞= ∪CC  called the Riemann sphere. We begin 

with the following. 

Definition 1 [Möbius Transformations]. Define an action of ( )R,2SL  on C~  

via the fractional linear transformation, also called a Möbius transformation, where 

( ):,2SL R∈⎟
⎠
⎞

⎜
⎝
⎛=α

dc
ba

 

( )

( ) ( )

⎪
⎪
⎩

⎪⎪
⎨

⎧

=∞=∞
≠∞=

−=∞
−≠∈++

=σ=ασ

.0andif
,0andif

,if
,andif

:

cz
czca

cdz
cdzzdczbaz

zzz

C

 

A value ( ) ∞≠=∞σ ca  is called a cusp of α. 

It can be shown that the imaginary part of C∈αz  is given by 

 ( ) ( ) .2dcz
zz

+
ℑ=αℑ  (2) 

Now set 

( ){ },0: >ℑ∈= zz CH  

namely the complex upper half plane. Thus, by (2), the Möbius transformation σ 
maps ,HH  which says that H  is stable, meaning H  is preserved under the 
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action of ( ).,2SL R  Also, since ( ) ,zzz α−=α=σ  namely α and α−  represent the 

same transformation, ⎟
⎠
⎞

⎜
⎝
⎛

−
−

=−
10

01
1  acts trivially on ,H  so the group 

( ) ( ) { },1,2SL,2PSL ±= RR  

called the projective special linear group, is actually isomorphic to the group of 
fractional linear transformation. When we specialize to ,Z  we have the following. 

Definition 2 [The Modular Group]. The group 

( ) ( ) { }1,2SL,2PSL ±==Γ ZZ  

is called the modular group. 

We now build upon the modular group Γ by presenting and studying forms 
related to it. 

Definition 3 [Modular Forms and Functions]. A function ( )zf  defined for 

H∈z  is called a modular function of weight Z∈k  associated with the modular 

group Γ if the following properties hold: 

(a) f is analytic in .H  

(b) f satisfies the functional equation: 

( ) ( ) ( ) ( ),zfdczdcz
bazfdczzf kk γ+=⎟
⎠
⎞⎜

⎝
⎛

+
++= −−  

with H∈z  and .Γ∈⎟
⎠
⎞

⎜
⎝
⎛=γ

dc
ba

 

(c) The Fourier series of f in the variable ( )izq π= 2exp  is given by 

 ( )
( )
∑
∞

=

=
fnn

n
nqczf

0

,  (3) 

where ( ) .0 Z∈fn  

A modular function of weight k is called a modular form of weight k if, in 
addition, ( ) .00 =fn  In this case, we say that f is analytic at ∞ and write ( ) .0cf =∞  

In the case where ( ) ,00 ==∞ cf  we say that f is a cusp form. 



R. A. MOLLIN 84 

In the literature modular functions of weight k are sometimes called weakly 
modular functions of weight k or an unrestricted modular form of weight k. 
However, the definition of modular form or cusp form of weight k appears to be 
uniform. Sometimes the cusp form is referenced as a parabolic form. 

Remark 1. If ⎟
⎠
⎞

⎜
⎝
⎛

−
−

=γ
10

01
 in Definition 3, then zz =γ  for all .H∈z  

Therefore, if f is a modular form of weight 12 += mk  for ,Z∈m  then 

( ) ( ) ( ) ( ),1 zfzfzf k −=γ−= −  

so if ( ) ,0≠zf  then dividing through the equation by ( ),zf  we get ,11 −=  a 

contradiction. Thus, f is just the zero map, sometimes called identically zero. Hence, 
a nontrivial modular form on Γ must necessarily be of even weight. Also, by taking 

T=⎟
⎠
⎞

⎜
⎝
⎛=γ

10
11

 in Definition 3, we obtain that 

 ( ) ( ),1 zfzf =+  (4) 

namely f is invariant under the transformation .1+zz  This is what allows us to 
expand f into the expansion (3), which is called the q-expansion of f. (If we went into 
the details, we could invoke the Cauchy integral theorem using (4) to show symmetry 
in a certain line integral on ( ) ( ),2exp izzf π−  and the interested reader with 

knowledge of this area can derive the q-expansion in this fashion.) Note that 
condition (c) implies that if yixz +=  and ,∞→y  then 0→q  as .∞→y  Thus 

the q-expansion (3), may be considered as an expansion about ,∞=z  which 

justifies the reference to f being called holomorphic at ∞. The condition above for a 
cusp form tells us, therefore, that f vanishes as .∞→y  

Example 1. The Eisenstein series of weight 2≥k  are defined by the infinite 
series 

 ( ) ( )
( )

∑
−∈

−+=
0,0,

2
2 ,

Znm

k
k mnzzG for ( ) ,0>ℑ z  (5) 

where the notation ( )0,0, −∈ Znm  means that m and n run over all integers 

except that 0== nm  is not allowed. The Eisenstein series of even weight are the 
first nontrivial examples of modular forms on Γ. Indeed, the following, which 
establishes this fact, is of interest from the viewpoint of arithmetic functions. 



HOW TO PROVE FERMAT’S LAST THEOREM 85 

Theorem 1 [Eisenstein Series as Modular Forms]. For ( )izq π= 2exp  and 

( ) ,0>ℑ z  the Eisenstein series given in (5) has Fourier expansion given by 

( ) ( ) ( )
( ) ( )∑

∞

=
−σ

−
π+ζ=

1
12

2
2 ,!12

2222
n

n
k

k
k qnk

ikzG  

where ,2≥k  ( )sζ  is the Riemann ζ-function, and ( ) ∑=σ nd
a

a dn |  is a sum of           

a-th powers of positive divisors of n. Accordingly, ( )zG k2  is a modular form of 

weight 2k. 

Next we need the following. 

Definition 4 [Modular Discriminant Function and j-invariant]. Let 42 60Gg =  

and .140 63 Gg =  Then the function CH:Δ  given by 

2
3

3
2 27gg −=Δ  

is called the discriminant function, and the j-invariant is given by 

( ) .1728 3
2

Δ
=Δ gj  

The need for the coefficients in the definition of 2g  and 3g  will become clear 

when we link modular forms to elliptic curves later. 

Remark 2. In the area of algebraic geometry, most of the interesting entities 
come into view when we look at arithmetically defined subgroups of finite index in 
Γ. One such class of groups is called Hecke congruence subgroups denoted by 

( )n0Γ  for any ,N∈n  defined by 

( ) ( ) .mod0:0
⎭
⎬
⎫

⎩
⎨
⎧ ≡Γ∈⎟

⎠
⎞

⎜
⎝
⎛=Γ nc

dc
ba

n  

It is known that the index of ( )n0Γ  in Γ is given by 

( ) ∏
=
|

⎟
⎠
⎞⎜

⎝
⎛ +=ΓΓ

prime

0 ,11:

p
np

pnn  

the product over distinct primes dividing n. 
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An example of a modular form related to ( )n0Γ  is given by 

 ( ) ( ) ( ) ,11 22 zzzf ηη=  (6) 

which is a cusp form of weight 2 related to the group ( ).110Γ  Here η is the 

Dedekind-η function 

( ) ( )∏
∞

=

−=η
1

241 ,1
n

nqqz  

where ( )izq π= 2exp  and ( ).12exp241 iq π=  

Hecke groups defined in Remark 2, allow us to add another “level” to the notion 
of a modular form. 

Definition 5 [Levels of Modular Forms]. If f is an analytic function on H  with 

( ) ( ) ( )zfdczzf k+=γ   for all  ( ),0 nΓ∈γ  

and has a q-expansion 

 ( ) ( )
( )
∑
∞

=

=
fnj

j
j qfazf

0

,  where  ( )izq π= 2exp   with  ( ) ,0 Z∈fn  (7) 

then f is called a modular function of weight k and level n. A modular function of 
weight k and level n is called a modular form of weight k and level n if ( ) .00 =fn  

Moreover, if ( ) ,00 =fa  we call f a cusp form of weight k and level n. When 

( ) ,11 =fa  and ( ) ,00 =fa  we say that f is a normalized cusp form of weight k and 

level n. 

Spaces of modular, and cusp forms of weight k and level n are denoted by 
( )( ),0 nM k Γ  respectively ( )( ).0 nSk Γ  

Example 2. It can be shown that ( )( )1102 ΓS  is a one-dimensional space spanned 

by equation (6), see [7, Remark 12.17, p. 351]. This example will have significant 
implications for a celebrated conjecture, see Example 6. Also, ( )( )202 ΓS  is the zero 

space and this too will have implications for the proof of FLT, see Theorem 3. 

Now we set the stage for bringing in elliptic curves. 
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Definition 6 [Elliptic Modular Functions]. If f is a function analytic on C  such 
that for N∈n  and ,C∈z  

( ) ( )zfzf =γ   for all  ( ),nΓ∈γ  

then f is called an elliptic modular function, where 

( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ ≡≡Γ∈⎟

⎠
⎞

⎜
⎝
⎛=Γ ncb

dc
ba

n mod0:  

is called the principal congruence subgroup of Γ. 

Note that ( ) ( ) .0 Γ⊆Γ⊆Γ nn  In general, any analytic function that is invariant 

under a group of linear transformations is called an automorphic function. 

Example 3. The j-invariant 

( ) ∑
∞

=

++=
Δ

=Δ
1

3
2 ,74411728

n

n
nqcq

gj  

where H∈z  and ( )izq π= 2exp  is an elliptic modular function. 

The j-invariant is linked to elliptic curves in a natural way as follows. 

Definition 7 [Weierstrass Equations for Elliptic Curves]. If F is a field of 

characteristic different from 2 or 3, where ,, 32 Fgg ∈  with ,027 2
3

3
2 ≠−=Δ gg  

then the elliptic curve over F of 

 32
32 4 gXgxy −−=  (8) 

denoted by ( )FE  is the set of points ( )yx,  with Fyx ∈,  satisfying (8) together 

with a point ,o  called the point at infinity. Equation (8) is called the Weierstrass 

equation for E, and ( )( ) ( )2
3

3
2 27416 ggFE +−=Δ  is known as the discriminant of 

( ).FE  

In order to give our first example of Weierstrass equations, we need the 
following concept. 

Definition 8 [Lattices in C  and Elliptic Functions]. A lattice in C  is an 
additive subgroup of C  which is generated by two complex numbers 1ω  and 2ω  

that are linearly independent over ,R  denoted by [ ]., 21 ωω=L  Then an elliptic 
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function for L is a function f defined on ,C  except for isolated singularities, 
satisfying the following two conditions: 

(a) ( )zf  is meromorphic on .C  

(b) ( ) ( )zfzf =ω+  for all .L∈ω  

Remark 3. Condition (b) in Definition 8 is equivalent to 

( ) ( ) ( ),21 zfzfzf =ω+=ω+  

for all z, a property known as doubly periodic. Hence, an elliptic function for a 
lattice L is a doubly periodic meromorphic function and the elements of L are called 
periods. 

Definition 9 [Lattice Discriminant and Invariant]. The j-invariant of a lattice L 
is the complex number 

 ( ) ( )
( ) ( )

,
27

1728
2

3
3

2

3
2

LgLg
LgLj

−
=  (9) 

where 

( )
{ }

∑
−∈

=
0

42 ,160
Lw w

Lg  

and 

( )
{ }

∑
−∈

=
0

63 .1140
Lw w

Lg  

The discriminant of a lattice L is given by 

( ) ( ) ( ) .27 2
3

3
2 LgLgL −=Δ  

One of the most celebrated of elliptic functions is the following. 

Definition 10 [Weierstrass ℘-functions]. Given C∈z  such that =∉ Lz  

[ ],, 21 ωω  the function 

 ( )
( ){ }

∑
−∈ω

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ω
−

ω−
+=℘

0
222

111;
L zz

Lz  (10) 

is called the Weierstrass ℘ -function for the lattice L. 
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Remark 4. The Weierstrass ℘-function is an elliptic function for L whose 

singularities can be shown to be double poles at the points of L. This is done by 
showing that ( )z℘  is holomorphic on L−C  and has a double point at the origin. 

Then one may demonstrate that since 

( )
( )∑

∈ω ω−
−=℘′

L z
z ,12 3  

which can be shown to converge absolutely, ( )z℘′  is an elliptic function for 

[ ]., 21 ωω=L  Since ( )z℘  and ( )jz ω+℘  have the same derivative, given that 

( )z℘′  is periodic, they differ by a constant which can be shown to be zero by the 

fact that ( )z℘  is an even function. This demonstrates the periodicity of ( )z℘  from 

which it follows that the poles of ( )z℘  are double poles and lie in L. 

Example 4. It can be shown that the Laurent series expansion (generally one of 

the form )∑∞
−∞=n

n
nza  for ( )z℘  about 0=z  is given by 

 ( ) ( ) ( )∑
∞

=
+++=℘

1

2
122 ,121

n

n
n zLGn

z
z  (11) 

where for a lattice L, and an integer ,2>r  

( )
{ }

∑
−∈ω ω

=
0

.1

L
rr LG  

From this it follows that if ( )Lzx ;℘=  and ( ),; Lzy ℘′=  

 ( ) ( ),4 32
32 LgxLgxy −−=  (12) 

where ( )Lg j  for 3,2=j  are given in Definition 9. 

Remark 5. If E is an elliptic curve over C  given by the Weierstrass equation 

,4 32
32 gxgxy −−=  

with C∈21, gg  and ,027 2
3

3
2 ≠− gg  then there is a unique lattice C⊆L  such 

that 

( ) 22 gLg =   and  ( ) .33 gLg =  
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The j-invariant may be used with elliptic curves as follows. 

Definition 11 [j-invariants for Elliptic Curves]. If E is an elliptic curve defined 
by the Weierstrass equation in Definition 7, then 

( ) Fg
gg

gEj ∈
Δ

=
−

=
3
2

2
3

3
2

3
2 1728
27

1728  

is called the j-invariant of E. 

In Definition 11, 0≠Δ  and .321728 36 ⋅=  Since we are not in characteristic 2 
or 3, ( )Ej  is well-defined. If ,C=F  then when E is the elliptic curve defined by 

the lattice ,C⊆L  

 ( ) ( ).EjLj =  (13) 

Lastly, we need to know how to reduce points on elliptic curves. 

Definition 12 [Reduction of Rationals on Elliptic Curves]. Let N∈n  and 
Q∈21, xx  with denominators prime to n. Then ( )nxx mod21 ≡  means 21 xx −  

,ba=  where ( ) ,1,gcd =ba  ,, Z∈ba  and .an |  For any Q∈= dcx  with 

( ) ( ),,gcd1,gcd dcnd ==  there exists a unique ,Z∈r  with ,10 −≤≤ nr  such 

that ( ),mod nrx ≡  denoted by 

( ).mod nxr =  

Note that we may take ( ),mod1 ncdr −≡  where 1−d  is the unique multiplicative 

inverse of d modulo n. Hence, if ( )yxP ,=  is a point on an elliptic curve ( )QEE =  

over ,Q  with denominators of x and y prime to n, then 

( )nP mod  means ( ) ( )( ).mod,mod nynx  

Also, ( )nE mod  denotes the curve reduced modulo n, namely the curve defined by 

( ) ( ),modmod32 nbxnaxy ++=  with ( ),mod nxx =  and ( ).mod nyy =  The 

cardinality of the set ( )nE mod  is denoted by ( ) .mod nE  

Now, we use the above to paint the picture that will bring the STW conjecture 
into focus. 
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3. STW and FLT 

In general, an elliptic curve E defined over a field F may be given by the global 
Weierstrass equation 

 ,64
2

2
3

31
2 axaxaxyaxyay +++=++  (14) 

where Fa j ∈  for .61 ≤≤ j  Then when F has characteristic different from 2, we 

may complete the square, replacing y by ( ) 231 axay −−  to get the more familiar 

Weierstrass equation 

 64
2

2
32 24 bxbxbxy +++=  (15) 

with 

,4 2
2
12 aab +=  

,2 3144 aaab +=  

and 

.4 6
2
36 aab +=  

In this case, the discriminant ( ) Δ=Δ E  is given by 

 ( ) ,9278 642
2
6

3
48

2
2 bbbbbbbE +−−−=Δ  (16) 

where 

.4 2
4

2
32431626

2
18 aaaaaaaaaab −+−+=  

Also, the j-invariant is given by 

 ( ) ( ),3
4 EcEj Δ=  (17) 

where 

 4
2
24 24bbc −=  (18) 

and 

 ( ) ,1728 2
6 Δ+= cEj  (19) 

where 

 .21636 642
3
26 bbbbc −+−=  (20) 
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We may further simplify equation (15) by replacing ( )yx,  with (( ) ,363 2bx −  

)108y  to achieve 

 .5427 64
32 cxcxy +−=  (21) 

It can be shown that 

 ( ) .1728

2
6

3
4 ccE −

=Δ  (22) 

Remark 6. Note, however, that if we begin with equation (21), then the 
discriminant is 

( ) ( ),32 2
6

3
4

96 ccE −⋅=Δ  

which differs from (22) by a factor of ,32 1212 ⋅  and this is explained by the scaling 
introduced in change of variables in going from (14) to (15), then to (21). 

Remark 6 shows that a change of variables may “inflate” a discriminant with 
new factors. Thus, for our development, we need to find a “minimal discriminant”. 
In order to proceed with this in mind, we need the following concept. 

Definition 13 [Admissible Change of Variables]. If ( )QEE =  is an elliptic 

curve over ,Q  given by (14) where we may assume that Z∈ja  for ,6,4,3,2,1=j  

then an admissible change of variables is one of the form 

rXux += 2   and  ,23 tXsuYuy ++=  

where Q∈tsru ,,,  and 0≠u  with resulting equation 

 ,64
2

2
3

31
2 aXaXaXYaXYaY ′+′+′+=′+′+  (23) 

where 

,3,2
2

2
12

2
1

1
u

srsaaau
saa −+−

=′+
=′  

( ) ,232,2
4

2
1234

43
13

3
u

strarstrasaaa
u

traaa −++−+−
=′++

=′  

and 

.6
1

2
3

3
2

2
46

6
u

rtattararraaa −−−+++
=′  
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Remark 7. In the special case where ,0=== tsr  the admissible change of 

variables multiplies the ia  by iu−  for .6,4,3,2,1=i  In this case, we say ia  has 

weight i. It can be shown that two elliptic curves over Q  are related by an admissible 
change of variables if and only if they have the same j-invariant. There is another 
term in the literature used to describe this phenomenon as well. Two elliptic curves 
over Q  having the same j-invariant are said to be twists of one another. 

Since the discriminant Δ is given by (22) in terms of 4c  and ,6c  Δ is unaffected 

by r, s, t in an admissible change of variables given that the new variables for (23) 

are related by 4
44 ucc =′  and .6

66 ucc =′  Hence, the triple ( )64 ,, ccΔ  is a 

detector for curves that are equivalent under an admissible change of variables. In 
fact, by the above discussion, two elliptic curves 1E  and 2E  with discriminants 1Δ  

and ,2Δ  respectively, related by an admissible change of variables, must satisfy 

.12
21

±=ΔΔ u  This now sets the stage for looking at elliptic curves with minimal 

discriminants. 

For the ensuing development, the notation of Definition 13 remains in force. 

Definition 14 [Minimal Equations for Elliptic Curves]. If ( )QEE =  is an 

elliptic curve over ,Q  given by (14) where Z∈ja  for 6,4,3,2,1=j  with 

discriminant Δ, then (14) is called minimal at the prime p if the power of p dividing 
Δ cannot be decreased by making an admissible change of variables with the 
property that the new coefficients ,pja O∈′  the p-adic integers. If (14) is minimal 

for all primes p with Z∈ja  for ,6,4,3,2,1=j  then it is called a global minimal 

Weierstrass equation. 

Remark 8. Since an equation for ( )QE  given in Definition 14, can be assumed, 

without loss of generality, to have integral coefficients, ,1≤Δ p  where p⋅  is the 

p-adic absolute value. Hence, in only finitely many steps pΔ  can be increased and 

still maintain .1≤Δ p  Hence, it follows that in finitely many admissible changes 

of variables, we can get an equation minimal for E at p. In other words, there always 
exists a global minimal Weierstrass equation for ( ).QE  

For the following, we define the following, where χ is a quadratic Dirichlet 
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character, meaning that ( ) 1,0,1−=χ y  according as y is a quadratic nonresidue, 0, 

or a quadratic residue, respectively, for .py F∈  

 ( )∑
∈

++χ++=
px

p baxxpN
F

,1 3  (24) 

being the number of points on the elliptic curve ( ),pE F  including the point at 

infinity, over a field of p elements for a prime p. 

Definition 15 [The Reduction Index for Elliptic Curves]. Suppose that E is an 
elliptic curve over Q  given by a minimal Weierstrass equation. If the ( ) 0mod ≠pE  

for a prime p, then p is said to be a prime of good reduction for E. Furthermore, if 

pN  for a prime p is given by (24), then let 

( ) .1 pp NpEa −+=  

If p is a prime of good reduction, then ( )Ea p  is called the good reduction index for 

E at p, and the sequence { ( )}pp Ea  indexed over the primes of good reduction is 

called the good reduction sequence for E. Primes that are not of good reduction are 
called primes of bad reduction for E, and ( )Ea p  is called the bad reduction index 

for E. 

Note that there are only finitely many primes of bad reduction since these are 
the primes dividing Δ. 

Example 5. Consider the elliptic curve given by .232 xxyy −=+  Via the 

formulas in (14)-(22), we have ,01 =a  ,13 =a  ,12 −=a  ,0 64 aa ==  ,42 −=b  

,04 =b  ,16 =b  and .18 −=b  Therefore, 

( ) 642
2
6

3
48

2
2 9278 bbbbbbbE +−−−=Δ  

 ( ) ( ) ( ) ( ) ( ) ( ) ,1110491270814 232 −=−+⋅−−−−−=  

so E has good reduction at all primes .11≠p  Now we compute the good reduction 

index for this curve at various primes ,11≠p  which we call a good reduction table 

for E. 
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p  2 3 5 7 11 13 17 19 23 29 31 37 41 

pN  5 5 5 10 11 10 20 20 25 30 25 35 50 

( )Ea p  –2 –1 1 –2 1 4 –2 0 –1 0 7 3 –8 

Remark 9. To say that p is a prime of good reduction for E is to say that E is 
nonsingular over ,pF  meaning that ( ( ))pE modΔ  is not divisible by p. We now 

explain this in detail. A point ( )00 , yxP =  on an elliptic ( ) EFE =  curve over a 

field F is called a singular point if P satisfies the equation, defining E, given by 

 ( ) 0, 64
2

2
3

31
2 =−−−−++= axaxaxyaxyayyxf  (25) 

with the partial derivatives satisfying 

( ) ( ) .0=∂∂=∂∂ PyfPxf  

Thus, to say that P is a singular point of E is to say that E is a singular curve at P. To 
say that E is nonsingular over F is to say that the curve has no singular points. It can 
be shown that E is nonsingular if and only if ( ) .0≠Δ E  Note that E never has a 

singular point at infinity. 

Remark 10. The good reduction index is a mechanism for representing 
arithmetic data about E that is captured in patterns of the good reduction sequence 
{ ( )} .pp Ea  How it does this is contained in the subtext of the Shimura-Taniyama-

Weil conjecture. The pattern involves the normalized modular cusp forms of weight 
2 and level N∈n  that we introduced in Definition 5. 

Definition 16 [Modular Elliptic Curves]. Let ( )QE  be an elliptic curve over Q  

with good reduction sequence { ( )} .pp Ea  If there exist an N∈n  and a normalized 

weight 2 cusp form of level n, 

( ) ( )∑
∞

=

+=
2

,
j

j
j qfaqzf   where  ( ),2exp izq π=  

such that 

( ) ( ),faEa pp =  

then E is called a modular elliptic curve. 
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Now we may state the celebrated conjecture. 

Conjecture 1 [The Shimura-Taniyama-Weil (STW) Conjecture]. If E is an 
elliptic curve over ,Q  then E is modular. 

Example 6. By Example 2, the function given in (6) spans ( )( )1102 ΓS  and is 

explicitly given by 

( ) ( ) ( ) ( ) ( )∑ ∏
∞

=

∞

=

−⋅−==ηη=
1 1

211222 1111
n n

nnn
n qqqqczzzf  

13117532 4qq2qqq2q +−+−−−+++−−= 1210964 22222 qqqqqq  

2522212018161514 4222444 qqqqqqqq −−−+++−−−+ 2317 q2q  

.2458 30282726 +−+++++−+− 413731 8q3q7qqqqq  

We have highlighted the prime powers of q and their coefficients to show that these 
coefficients are exactly the nonzero values of the good reduction index ( )Ea p  in 

Example 5, thereby illustrating that E is a modular function. 

Remark 11. The notion of a conductor of an elliptic curve must now come into 
play for our discussion. The technical definition involves a cohomological 
description that we do not have the tools to describe. However, we can talk about it 
in reference to the discriminant and related prime divisors in order to understand 
what it means. Given an elliptic curve ( ) EE =Q  with global minimal Weierstrass 

equation and discriminant ( ) ,Δ=Δ E  the conductor n divides Δ and has the same 

prime factors as Δ. The power to which a given prime appears in n is determined as 
follows. The power of a prime p dividing n is 1 if and only if ( )pE F  has a node, 

which is characterized by having two candidate tangents at the point, which in turn, 
means that (23) has a double root. If ,3>p  then the power of p dividing n is 2 if 

and only if ( )pE F  has a cusp. In the case where 2=p  or ,3=p  which we 

selectively have ignored for the sake of simplicity of presentation, the conductor can 
be computed using Tate’s algorithm, which is uncomplicated, although the process 
of using it can be somewhat protracted, see [8]. For ,3,2≠p  the power of p 

dividing the conductor n is at most 2, so for our purposes, the above discussion 
suffices. 
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From the above, we conclude that the conductor of E is not divisible by any 
primes of good reduction, also called stable reduction. In other words, only primes 
of bad reduction divide the conductor. Moreover, a prime p to the first power exactly 
divides the conductor precisely when ( )pE F  has a node, in which case E is said to 

have multiplicative or semi-stable reduction at p. Hence, E has reduction at all 
primes, in which case E is called semi-stable, precisely when the conductor n is 
squarefree. For instance, the curve in Example 5 has conductor 11, an instance of a 

semi-stable elliptic curve. The conductor of E is exactly divisible by 2p  precisely 

when ( )pE F  has a cusp, in which case we say that E has additive or unstable 

reduction. 

It may be shown that the conductor is an isogeny invariant, which means the 
following. An isogeny between two elliptic curves 1E  and 2E  is an analytic map 

,: 21 EEh  where the identity gets mapped to the identity. Two curves are 

isogenous if there is a nonconstant isogeny h between them. Hence, for the 
conductor to be an isogeny invariant means that the conductor of isogenous curves 
remains the same. 

The STW conjecture implies that we have the conductor n equal to the level n in 
( )n0Γ  of weight 2 cusp forms, see the reformulation of STW in terms of L-functions 

below. 

Now we illustrate the modularity theorem in different terms that will bring more 
of the structure and interconnections to light. To do this, we concentrate upon the 
example ,11=n  which will be a template for the general theory. 

Example 7. From Example 2, for ,11=n  the group ( )110Γ  can be shown to be 

generated by 

,
655

19
,

433
18

,
10
11

⎟
⎠
⎞

⎜
⎝
⎛

−−
=⎟

⎠
⎞

⎜
⎝
⎛

−−
=⎟

⎠
⎞

⎜
⎝
⎛= VUT  

and if ( )( ),1102 Γ∈γ S  then we map ( )110Γ  to ,C  additively via ( ) ,1ω=φγ U  

( ) ,2ω=φγ V  and ( ) .0=φγ T  Hence, [ ]21, ωω=L  is a lattice in .C  It can be 

shown that ,LC  called a complex torus, is analytically isomorphic to an elliptic 

curve ( ),CE  where L is determined by E up to what is known as homotheity, which 
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means that if 1L  is another lattice determining E, then 1LL λ=  for some .C∈λ  

For our purposes the “analytic isomorphism” 

( )CC EL  

is explicitly given by 

( ) ( )( )

( )⎩
⎨
⎧

∈

∉℘′℘

,if0,1,0

,if1,,

Lz

Lzzz
z  

see Remark 7. This is a holomorphic map carrying LC  one-to-one onto the elliptic 

curve ( ),CEE =  where E is given by the form 

,4 32
32 gxgxy −−=  

with 2g  and 3g  given in Definition 4. Altogether, we get a holomorphic map from 

( )110X  onto ,LC  then onto ( ).CE  Thus, it can be shown that this provides a 

holomorphic surjection 

( ) ( ) ( ),1111 0
0 CEX

∗
Γ

=
H

  where  { },∞=∗ ∪∪ QhH  

where ( )110X  is called a compact Riemann surface, which is a complex one-

dimensional manifold. LC  is also a complex manifold and the principal feature of 

such surfaces is that holomorphic maps can be defined between them as we have 
done above, see [7] for more details. 

One may actually calculate the j-invariant via (9) to get 

 ( ) ( ) ,
11

312
5

34 ⋅
−=Lj  (26) 

which demonstrates that E is defined over Q  and gives more meaning to the above 

mapping involving ( )110X  and E over .Q  However, from (19), we have 

 .1728
2
6

3
4

Δ
+=

Δ
=

ccj  (27) 

It can be shown that there is an integer 0≠k  such that 

 ,25012,312 33
6

24
4 kckc ⋅=⋅=   and  .11 6k5−=Δ  (28) 
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It follows that (28) yields a global minimal Weierstrass equation exactly when k has 
no odd square factor, and 

 ( ),16modrk ≡   where  { }.14,13,12,10,9,6,5,2,1∈r  (29) 

We call the association of ( )110X  and ( )QEE =  given by (29), with global 

minimal Weierstrass equation provided by (28), a Q -structure of E. The simplest 

Q -structure occurs when 1=k  in which case we get the global minimal equation is 
given by 

 ( ) .2010: 232 −−−=+ xxxyyE C  (30) 

What we have accomplished is a mapping of ( )110X  onto ( ).CE  

Now, if we define 

⎟
⎠
⎞

⎜
⎝
⎛
ω
ω

⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛
ω′
ω′

1

2

1

2
50
31

 

and we let [ ],, 21 ω′ω′=′L  it can be shown that ( ) ,11163−=′Lj  so a corresponding 

elliptic curve E′  can be defined over ,Q  and this curve is given by 

 ,: 232 xxyyE −=+′  (31) 

which is the curve in Example 5, with discriminant – 11, and as we saw above the 

discriminant of (30) is .115−  In Remark 11, we saw that the conductor is an isogeny 

invariant, in this case .11=n  

We may reformulate the STW conjecture now in terms of the above, which we 
have illustrated for the case .11=n  

♦ STW Conjecture in Terms of Modular Parametrizations 

Given an elliptic curve E over ,Q  there exists an N∈n  for which there is a 

nonconstant surjective holomorphic map ( ) ,: 0 EnXF  defined over ,Q  in 

which case E is said to have a modular parametrization modulo n, and E is 
called a Weil curve. 

Remark 12. We have illustrated the above for the case 11=n  in Example 7, 
but the theory, called Eichler-Shimura theory, holds for any of the compact Riemann 
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surfaces ( ),0 nX  where n is the level of the weight 2 cusp forms, so given the 

aforementioned proof of STW, the above is a statement of the modularity theorem. 

The phrase “defined over ”Q  in the above interpretation of the STW conjecture 
is important in that we may have holomorphic surjections without the rationality 
property but for which the L-functions of the curves and the cusp forms do not 
agree. Now we must explain this comment by introducing the notions of L-functions 
for elliptic curves and forms. Note that the construction of the map from ( )110X  to 

( )CE  in Example 7 is indeed defined over .Q  In the literature, such maps are 

rational maps defined at every point, called morphisms, see [7]. 

We turn our attention to L-functions. Elliptic curves that are isogenous over Q  
have the same L-functions which we now define and discuss. 

Let ( )QE  be an elliptic curve over Q  given by a global minimal Weierstrass 

equation, which is no loss of generality by Remark 8. Then the L-function for E, 
having discriminant Δ is given by 

( ) [( ( ) ) ] [( ( ) ) ]∏ ∏
Δ| Δ

−−−−− +−−=
p p

ss
p

s
p ppEapEasEL .11, 1211  

It can be shown that ( )sEL ,  converges for ( ) ,2>sR  and is given by an absolutely 

convergent Dirichlet series. Thus, we may write 

( ) ∑
∞

=

=
1

.,
n

s
n

n
csEL  

Now by Definition 5, a normalized cusp form ( )( )nSf 02 Γ∈  of weight 2 and 

level n satisfies 

( ) ( )∑
∞

=

+=
2

.
n

n
n qfaqzf  

Thus, we may define the L-function of f by 

( ) ( )∑
∞

=

=
1

.,
n

s
n

n
fasfL  

Now the STW conjecture may be reformulated in terms of L functions: 
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♦ STW Conjecture in Terms of L-functions 

For every elliptic curve E defined over ,Q  there exists a normalized cusp form 

of weight 2 and level ( )( ),, 02 nSfn Γ∈  such that 

( ) ( ),,, sELsfL =  

and n is the conductor of E. 

We have concentrated upon ( )110X  in Example 7 since it is the simplest case, 

namely having what is called genus one with corresponding ( )( )1102 ΓS  having 

dimension one as we have seen above. In general, the dimension of ( )( )nS 02 Γ  is 

called the genus of ( ).0 nX  To see the intimate connection with FLT, we return to 

the discussion of Frey curves (1). Suppose that 

 ppp cba =+  (32) 

is a counterexample to FLT for a prime .5≥p  The Frey curve is given by 

 ( ) ( ),: 2 pp cxaxxyE −−=  (33) 

for which 

 ,16 222 ppp cba=Δ  (34) 

and 

 ( ).16 22
4

pppp ccaac +−=  (35) 

Then when a, b, c are pairwise relatively prime, it can be shown that the conductor 
of E is the product of all primes dividing abc, which tells us, by Remark 11, that E is 
semi-stable. 

Now we are in a position to return to a discussion of the STW conjecture and 
FLT. In 1995, Taylor and Wiles published papers [9] and [10], which proved that 
every semi-stable elliptic curve is modular. In 1999, Conrad et al. [2] proved the 
STW conjecture for all elliptic curves with conductor not divisible by 27. Then in 
2001, Breuil et al. published a proof of the full STW conjecture, which we now call 
the modularity theorem [1]. However, in 1990, Ribet proved the following, which 
via the affirmative verification of the STW conjecture, allowed a proof of FLT as 
follows. 
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Theorem 2 [Ribet’s Theorem]. Suppose that E is an elliptic curve over Q  given 

by a global minimal Weierstrass equation and having discriminant ∏ Δ|
=Δ

p
f pp  

and conductor ,∏ Δ|
= p

g ppn  both canonical prime factorizations. Furthermore, 

if E has a modular parametrization of level n with ( )( )nSf 02 Γ∈  having normalized 

expansion 

( ) ( )∑
∞

=

+=
2

,
n

n
j qfaqzf  

and for a fixed prime ,0p  set 

 .

1
0

∏
=
|

=′

p
p

g
fp

p
p

nn  (36) 

Then there exists an ( )( )nSf ′Γ∈′ 02  such that ( )∑∞
=

′=′ 1n
n

j qfbf  with ( )fb j ′  

Z∈  satisfying ( ) ( ) ( )0mod pfbfa jj ′≡  for all .N∈n  

Proof. See [6].  

Now we may state our target result, which follows [4, Corollary 12.13, p. 399], 
where it is cited as a Frey-Serre-Ribet result. 

Theorem 3 [Proof of Fermat’s Last Theorem]. The STW conjecture implies 
FLT. 

Proof. Assume that FLT is false. Then by Theorem 2, the Frey curve given in 

(33) has conductor ∏ |
=

abcp
pn ,  which when compared to the coefficients in (36) 

yields .2=′n  However, by Example 2, ( )( )202 ΓS  is the zero space, so ( ) 0=′fb j  

for all .N∈n  Yet, ( ) ( ) ( )0mod pfafb jj ≡′  for all .N∈n  In particular, ( )fb ′= 10  

( ) ( ),mod1 01 pfa =≡  a contradiction.  
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