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Abstract

Croft and Sajjadi [3] successfully constructed a mathematical model

for separated laminar flow over a wavy boundary with sharp crests. In

order to adapt this model to sharp-crested water waves the dynamic

condition at the surface has to be satisfied. Thus, the aim of this pa-

per is to show how the dynamic condition can be applied to problems

involving sharp-crested water waves. To illustrate the technique, the

simpler problem of unseparated flow will be considered. The method

consists of using a new non-orthogonal coordinates system (ξ, η) where

η = 0 is the sharp-crested boundary. A separable solution is obtained

in the new coordinate system for the water which satisfies the kine-

matic condition at the interface exactly. The velocity potentials ϕa, ϕw

and (∇ϕa)2, (∇ϕw)2, where a and w refer to air and water respectively,

together with the equation of the interface, are expressed as a Fourier

series. The dynamic condition at the interface enables the phase speed

for each mode to be calculated.

1. Introduction

The mechanism involved in the generation of wave by wind, for the
air-sea interface, has received much attention in recent years. One of

02000 Mathematics Subject Classification: 76B15.
Keywords and phrases: sharp-crested water waves, unseparated flow, Fourier series.
Communicated by K. K. Azad
Received April 3, 2009



82 FLOW OVER SHARP CRESTED WAVES

the earliest mechanisms is the sheltering hypothesis by Jeffreys [4], which
states the air-flow over a wave separates somewhere on the downwind side
of the crest and reattaches on the upwind face of the next crest. This
causes a pressure asymmetry with respect to the wave crest which results
in wave growth.

However, as was surmised by Barnett and Kenyon [1], ‘Jeffreys theory
may yet emerge as being important since most recent theories (though not
completely evaluated yet) based on perturbation techniques has not yet
yielded the major growth mechanism for wind waves’.

More recently, Croft and Sajjadi [3] constructed a model for the flow of
a high speed wind over a rigid periodic boundary with sharp crests, where
the undisturbed flow was perpendicular to the crests. In that model,
the flow separated at each crest creating a region of vortical flow on the
leeward side of each wave. This vortical flow was modelled by means
of a line vortex parallel to the crest and situated below it. The theory
predicted the strength and position of each vortex and the resulting flow
field.

In the present contribution, Croft and Sajjadi’s model is extended for
the case of the laminar flow of air over sharp crested water waves when the
undisturbed wind speed is sufficiently high for separation to take place at
each crest. This additionally requires the dynamic condition at the free
surface to be satisfied.

In this paper, a strategy for linking the free surface dynamic condition
to the earlier work of Croft and Sajjadi will be established. Here we shall
therefore consider the simpler problem of laminar flow over the sharp
crested wave without separation. The calculation details together with
the more complex case of separated flow will be given in the part two of
this paper.

The novel feature of the present method is the use of a non-orthogonal
coordinate system (ξ, η) which is described in detail in Section 2. In this
coordinate system the equation of the free surface is given by η = 0 which
means that the boundary conditions on the interface are satisfied exactly.
This is, of course, in contrast to the standard approach of working in
Cartesian coordinates (x, y) and using a perturbation scheme, together
with a Taylor expansion about y = 0, which effectively makes y = 0 the
boundary. Also, in such an approach, the ordering parameter ε, which is
usually a measure of the wave slope will not be small in the neighbourhood
of the sharp crests. The new coordinate system allows the kinematic
condition for the water to be satisfied exactly. However, by expressing
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the terms in the dynamic condition as Fourier series, we shall be able to
satisfy this boundary condition to an order of accuracy which will depend
upon the number of harmonics taken.

Another objective of our analysis is related to the stability of sharp
crested water waves. In a pioneering work Benjamin and Feir [2] discussed
the side-band instability of Stokes waves on deep water. In that work they
represented the free surface by the first two harmonics of Stokes wave
which consequently meant that their free surface was not represented by
the sharp crest which is usually associated with a Stokes wave. In addition
the effect of air flow over the water wave was not considered. Our ultimate
goal is, therefore, to undertake a similar study using the present model.
Since we are considering air flow over sharp crested water waves, there is
the potential for offering better explanation for the stability of such waves
in more physically realistic situations.

2. Equations of Motion

Following Miles [6], the Euler and continuity equations for a viscous
incompressible fluid may be written as

∂ui

∂t
+ uj

∂ui

∂xj

=
1

ρ

∂pij

∂xj

, (2.1a)

∂ui

∂xj

= 0, (2.1b)

where xi denotes a Cartesian coordinate, ui is a velocity component, pij

is a stress tensor component, ρ is the fluid density. We decompose the
velocity and stress tensor according to

ui = Ui + u′i + u′′i , pij = Pij + p′ij + p′′ij, (2.2a, b)

where Ui + u′i and Pij + p′ij represent a solution to (2.1a,b) having two
dimensional (x1 and x2) mean values (with respect to either x3 or t) Ui

and Pij plus turbulent fluctuations u′i and p′ij, and u′′i and p′′ij representing a
small perturbation with respect to this solution. Substituting (2.2a,b) into
(2.1a), neglecting terms of second order in perturbation flow, and invoking
the requirement that the unperturbed flow satisfy (2.1a), we obtain

∂u′′i
∂t

+ (Uj + u′j)
∂u′′i
∂xj

+ u′′j
∂

∂xj

(Ui + u′i) =
1

ρ

∂p′′ij
∂xj

, (2.3a)

∂u′′i
∂xj

= 0. (2.3b)
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Taking mean values with respect to x3, we may place the result in the
form

∂u′′i
∂t

+ Uj
∂u′′i
∂xj

+ u′′j
∂Ui

∂xj

=
1

ρ

∂

∂xj

(p′′ij − r′′ij), (2.4a)

∂u′′i
∂xj

= 0, (2.4b)

where we have introduced the perturbation Reynolds stress, by invoking
the equations of continuity for both u′i and u′′i in its derivation

r′′ij = ρ(u′iu
′′
j − u′ju′′i ). (2.5)

The system (2.4a,b) represent equations of motion governing the two-
dimensional perturbed shear flow. Note that they differ from the equations
of motion for a laminar perturbation flow only in the presence of the r′′ij
which represent the interaction between the fluctuations in the original
and perturbation flows. Note further r′′ij are the first order perturbations

of the usual Reynolds stresses ρu′iu
′
j.

Now taking x1 = x, x2 = y, U1 = U(y), U2 = U3 = 0, u′′1 = u, u′′2 =
v, p′′ij = −δijp, and r′′ij = 0, and assuming an inviscid fluid, we obtain

ρ(ut + Uux + vUy) = −px, (2.6a)

ρ(vt + Uvx) = −py, (2.6b)

ux + vy = 0. (2.6c)

Introducing the velocity potential ϕ, under the assumption that the
flow is irrotational, ∇ × u = 0, such that u = ∇ϕ, equations (2.6)
reduces to

ϕxx + ϕyy = 0. (2.7)

3. Coordinate Systems

We follow the earlier work of Croft and Sajjadi [3] and map four con-
secutive sharp-crested waves in the z-plane into the real axis of the t-plane
by a series of conformal transformations. Thus, the airflow is mapped into
the upper half of the t-plane.

Croft and Sajjadi [3] showed the line vortex in the lee of each wave,
which they used to model the vortical flow generated by the separated
flow, is equivalent to a simple image system in the t-plane. Thus, they
obtained the velocity potential representing the separated flow over the
four waves.
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Figure 1. The schematic diagram showing the sharp-crested wave.

The first conformal transformation used by Croft and Sajjadi was that
given by Longuet-Higgins [5] for which he derived the Cartesian equation
of a single wave depending upon how many waves is present in the wave-
train. In the present case we consider four waves, and following Longuet-
Higgins [5], we take the following equation

λ(y − y0) = ln sec[λ(x− x0)− nπ/2], (3.1)

where

λy0 = − ln
√

2, x0 =
π

4λ
, λ =

π

2L
, n = 0, 1, 2, 3

to represent the sharp crested waves. Note that, the four values of n
correspond to the arcs AB, BC, CD and DE, respectively, see Figure 1.

In the present analysis, we shall consider waves on infinitely deep water
and introduce a new coordinate system (ξ, η) such that η = 0 represents
the surface of the wave. Even though only four consecutive waves are
considered, periodicity implies that η = 0 represents an infinite wavetrain.
Therefore, in the (ξ, η) plane, the ξ-axis represents the entire wave surface.
We shall define η equal to a positive constant as a line parallel to the ξ-axis
in the upper half plane, while negative values will pertain to the lower half
of the plane. The two coordinate systems are shown in Figure 2.

From (3.1) η is, defined by

η = y − y0 −
1

λ
ln sec[λ(x− x0)− nπ/2], n = 0, 1, 2, 3 (3.2)

with η = 0 represents the wave surface.
If ξ = constant is the family of curves orthogonal to η = constant, then

ξ = y tan[λ(x− x0)− nπ/2] + f(x), (3.3)

where f(x) is an arbitrary function of x.
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Figure 2. The two system of coordinates.

The two variables ξ and η must then satisfy the following relationship

∂ξ

∂x
=
∂η

∂y
= 1. (3.4)

Integrating (3.4) with respect to x, we get

ξ = x+ F (y),

where F (y) is an arbitrary function of y. Hence, for (3.3) to satisfy the
condition (3.4) we must set F (y) = 0, which yields η = ξ = 0 at the origin.
Thus, we see that

ξ = x (3.5)

which identifies the two families of curves given by (3.2) and (3.3) as non-
orthogonal.

4. Induced Velocity Field in the Water

The model we consider here is that of a uniform inviscid wind flowing
over an infinite flat sheet of water. As the wind speed increases a wave
train is established and propagates along with a speed c in the direction
of the wind. One effect of a high speed wind is characterized by increasing
the curvature of the wave at the crest. This is idealized in the present
model by waves having established a sharp crest. Here, we shall assume
the ratio of the wavelength to the height of the wave is approximately 0.2,
thereby creating perturbations both in the airflow and in the water. The
purpose of this paper is therefore to ascertain the velocity potential for
the water on the basis that the velocity potential for the airflow is known.
In fact, the velocity potential for the airflow is the same as that found by
Croft and Sajjadi [3] for the rigid sharp crested wavy surface.



S. G. SAJJADI 87

Consider now the set of axes shown in Figure 1 moving with speed c in
the direction of the positive x-axis. Then relative to such axes, the surface
of water waves may be assumed fixed. Now, if the velocity potential for
the airflow is denoted by ϕa, then the kinematic condition at the interface
may be expressed as (

c+
∂ϕa

∂x

)
∂η

∂x
=
∂ϕa

∂y
(4.1)

with a similar expression for ϕw, where ϕw is the velocity potential for the
water.

In order to satisfy the boundary condition (4.1) on the free surface, the
normal practice requires a perturbation of velocity potential in powers of
ε, where ε is a measure of the wave slope, followed by a Taylor expansion
about y = 0. Thus, the velocity potential for the water is obtained as
a series in ε whose coefficients are separable solutions of Laplace’s equa-
tion. This methodology enables the velocity potential for the water to be
obtained up to the required order in ε.

However, in the present contribution, the undisturbed free surface is
transformed into the (ξ, η) coordinates (discussed in the previous section)
to the line η = 0 as shown in Figure 3. Thus any difficulties in satisfying
the boundary condition (4.1), which may be associated with the sharp
crests of the undisturbed free surface, are removed. Furthermore, the sub-
sequent stability analysis will be more tractable as a result of perturbing
a flat surface rather than a wavy surface having sharp crests.

We shall further assume at some significant height above the waves the
airflow is a uniform stream parallel to the x-axis, and that for the water
the liquid is at rest at an infinite depth. Thus, for the perturbed airflow,
in the present case, this uniform flow may simply be subtracted from the
solution obtained by Croft and Sajjadi [3].

In order to obtain the velocity potential for the water, we require a
solution to Laplace’s equation in the new non-orthogonal (ξ, η) coordinate
system, which may be expressed in tensor form as

∇2f =
1
√
g

∂

∂xi

(
√
ggij ∂f

∂xj

)
= 0, (4.2)

where in the new coordinate system x1 = ξ and x2 = η.
The covariant components of the metric tensor are given by

grs =
∂xm

∂yr

∂xm

∂ys
,



88 FLOW OVER SHARP CRESTED WAVES

where the x’s and y’s are the Cartesian and curvilinear coordinates re-
spectively. Also

g = JTJ,

with J representing the Jacobian of the transformation.
Substituting from (3.2) and (3.5) we obtain

g =

∣∣∣∣ sec2[λ(ξ − x0)− nπ/2] tan[λ(ξ − x0)− nπ/2]
tan[λ(ξ − x0)− nπ/2] 1

∣∣∣∣ = 1.

Using grs = Grs/g, where Grs is the cofactor of grs in g, and replacing
f by ϕw in (4.2), we obtain

∇2ϕw =
∂2ϕw

∂ξ2
− λ sec2[λ(ξ − x0)− nπ/2]

∂ϕw

∂η
,

−2 tan[λ(ξ − x0)− nπ/2]
∂2ϕw

∂ξ∂η
+ sec2[λ(ξ − x0)− nπ/2]

∂2ϕw

∂η2
= 0 (4.3)

as the governing equation for the flow field in the water.
Note that, in a perturbation expansion (of ϕw) in Cartesian coordinates

the disturbance decays exponentially from the interface and vanishes as y ↓
−∞. Thus, the lowest order (in ε) for y-variation in the velocity potential
for the water is proportional to emy, where m is the wavenumber and y is
measured vertically upwards. Since λ = π/2L, and we are considering a
group of four waves, each of wavelength L, then it is reasonable to assume
a trial solution to ∇2ϕw = 0 in the form

ϕw = eληF (ξ), (4.4)

for −∞ < η < 0 for the water, since it is situated in the lower half of the
(ξ, η) plane.

Substituting (4.4) into (4.1) we obtain

d2F

dξ2
− 2λ tan[λ(ξ − x0)− nπ/2]

dF

dξ
= 0, (4.5)

whose solution may be expressed as

F (ξ) = E tan[λ(ξ − x0)− nπ/2] +D,

where D and E are arbitrary constants. Now, due to the periodicity of
the interface we expect ϕw to be periodic also, therefore we put D equal
to zero. Thus, (4.4) becomes

ϕw = Eeλη tan[λ(ξ − x0)− nπ/2]. (4.6)
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We expect the velocity field in the water is composed of an infinite sum
of such terms. Thus we generalize the above analysis by replacing η with
η/m, where m is a positive integer, in (4.6) and sum over m. Hence, we
have 1

ϕw =
∞∑

m=1

Eme
λη/m tan[λ(mξ − x0)− nπ/2].

Note that, by virtue of the above generalization x = mξ. Furthermore,
we remark that a line η = const. will still represent a streamline.

Next, from (4.6) we see that

∂ϕw

∂η

∣∣∣∣
η=0

= λE tan[λ(ξ − x0)− nπ/2],

and referring to (3.1), we see that the velocity component normal to the
interface is zero at each trough and is maximum at the crest.

For the remainder of the analysis we shall assume a fixed set of axes
(rather than those which move with the wave). Accordingly (4.6) becomes

ϕw = Eeλη tan[λ(ξ − ct− x0)− nπ/2]. (4.7)

It is to be noted that this modification does not affect any of the above
analysis. Also, because the wavetrain is moving, then even though the
interface is a streamline, in the sense that there is no fluid flowing across
it, the component of velocity parallel to the normal at any point does not
vanish.

Since the coordinate η is the stream function ψ, the normal component
of velocity into the air at the interface is ∂ψ/∂ξ. To match this to the
normal component of velocity for the water we must have

∂ψ

∂ξ
= − ∂ϕw

∂η

∣∣∣∣
η=0

.

Using (3.2), with x replaced by ξ− ct, and (4.7) we find E = 1/λ. Hence,
the velocity potential for the water becomes

ϕw =
1

λ
eλη tan[λ(ξ − ct− x0)− nπ/2]. (4.8)

1Although conceptually more satisfactory, this generalization poses a serious problem. In order to
be able to utilize this form of solution the eigenvectors Em(ξ) must be orthogonal. Of course, this
is not the case here since (4.5) cannot be cast into the standard Sturm-Liouville form. Thus, we are
forced to use (4.6) as the solution governing the motion of the water.
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It can be seen from (4.8) that both components of velocity for the water
vanish as η ↓ −∞.

Thus, the benefit of using the non-orthogonal system of coordinates is
that we can satisfy the interface kinematic condition exactly. The other
interfacial boundary condition, namely the dynamic condition at the in-
terface, will yield the dispersion relation (see Section 8).

5. Velocity Field in the Water

Following Croft and Sajjadi [3], we shall use a series of conformal trans-
formation to map the interface in the physical z-plane into the real axis
in the t-plane. However, in the present paper the interface in the physical
z-plane is assumed to be a sharp crested water wave. Thus, in addition
to the kinematic condition that was automatically satisfied for a sharp
crested rigid wavy surface in Croft and Sajjadi’s model, the interface dy-
namic condition must also be satisfied.

Since in this paper we shall confine ourselves to the case of the unsep-
arated flow over a sharp crested water waves, we would expect that the
velocity potential for the airflow may be obtained by a method similar to
that used for the water.

Thus, using (4.5) the equation satisfied for the velocity potential for
airflow above the wave may be expressed as

∂2ϕa

∂ξ2
− λ sec2[λ(ξ − x0)− nπ/2]

∂ϕa

∂η

−2 tan[λ(ξ − x0)− nπ/2]
∂2ϕa

∂ξ∂η
+ sec2[λ(ξ − x0)− nπ/2]

∂2ϕa

∂η2
= 0, (5.1)

where ϕa is the velocity potential for the airflow due to the perturbation
effect of the interface.

We seek a solution of (5.1) in the form

ϕa = e−ληF (ξ). (5.2)

Note that, ϕa = ϕw at η = 0 which indicates the condition for the conti-
nuity of velocities at the interface is satisfied.

Substituting (5.2) into (5.1), we get

d2F

dξ2
+ 2λ tan[λ(ξ − x0)− nπ/2]

dF

dξ
+ 2λ2 sec2[λ(ξ − x0)− nπ/2]F = 0

or

d2F

dξ2
+ 2λ

d

dξ
{tan[λ(ξ − x0)− nπ/2]F} = 0.
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Solving this equation and using (5.2), we obtain

ϕa = e−λη
{
A sin[2λ(ξ − x0)− nπ/2] +B cos2[λ(ξ − x0)− nπ/2]

}
,

where A and B are arbitrary constants. The solution for ϕw is periodic
with period λ(ξ−x0)−nπ/2 and since ϕa must have the same periodicity
we take A to be zero. Thus

ϕa = Be−λη cos2[λ(ξ − x0)− nπ/2]. (5.3)

Using (5.3), with ξ replaced with ξ − ct, we see that

∂ψ

∂ξ
6= − ∂ϕa

∂η

∣∣∣∣
η=0

.

Thus, ϕa, given by (5.3), neither satisfies the interfacial kinematic bound-
ary condition nor the condition of a uniform stream as η ↑ ∞. To circum-
vent these difficulties, we must revert to the method of conformal mapping
outlined by Croft and Sajjadi [3]). To do this it would be appropriate here
to give a brief outline of their methodology.

6. Method of Conformal Mapping

The physical plane, in which we consider the four crests A,B,C and
D, is related to the w-plane by the transformation

w = e−i(λz−π/4), λL =
π

2
. (6.1)

This transformation maps the four crests into A1, B1, C1 and D1, respec-
tively and preserves the angle at the crests. Note that, the arcs in the
z-plane do not map into the corresponding sides of the square in the w-
plane, but into arcs, joining the corners, the largest error being 6%. The
region below the interface (water) maps into the interior and the region
above the interface (air) maps into the exterior of the square in the w-
plane, as shown in Figure 3.

The second transformation, given by

w = 2

∫ t

0

√
(τ 2 − c2)(τ 2 − 1/c2)

(τ 2 + 1)2
dτ (6.2)

maps the exterior of the square in the w-plane into the upper half of
the t-plane, the vertices corresponding to t = ±c, t = ±1/c on the real
axis. Thus the flow field above the wave profile, in the absence of flow
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Figure 3. The conformal mappings which transforms the wave in the z-plane to a flat
surface in the upper half of the t-plane.
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separation, is transformed into a flow in the upper half of the t-plane
whose streamlines are parallel to the real axis.

It can be shown that (see Croft and Sajjadi [3])

w =
1

k

[
Zn(ζ) +

(
E

K
− k′2

)
ζ

]
, (6.3)

where k′ and K are the complementary modulus and the quarter period
of the Jacobian elliptic function respectively, and Zn is the Jacobian zeta
function of complex argument. In (6.3), K and E are given by

K =
1

4
√
π

Γ2

(
1

4

)
and E =

π

4K
+

K

2
.

Finally, Croft and Sajjadi [3] found the following relation (in terms of
Jacobian elliptic functions)

t =
1− dn ζ

k sn ζ
, (6.4)

which maps the ζ-plane to t-plane. This transformation maps the points
(±c, 0) and (±1/c, 0) in the t-plane into (±K, 0) and (±K, 2K′) in the ζ-
plane, respectively. Here K′ is the associate quarter period of the Jacobian
elliptic function. Furthermore, this transformation maps the interior of the
rectangle in the ζ-plane, having these points as vertices, into the upper
half of the t-plane.

Now, if W denotes the complex potential, then

dW

dz
=
dW

dt

dt

dw

dw

dz
,

and if U0 is the the speed of the flow in the t-plane, we have

W = −U0t.

Using the above relationships in conjunction with (6.1) and (6.2), we get

dW

dz
=
iλU0(t

2 + 1)2e−i(λz−π/4)

2
√

(t2 − c2)(t2 − 1/c2)
. (6.5)

Note that the expression (6.5) is singular when t = ±c and t = ±1/c.
These points in the t-plane correspond to the points into which the crest
of the four waves map. Thus, from (6.5) we see that the speed of the
wind at the crest is infinite which of course is not physically acceptable.
However, in the present model, this does not pose any serious problem.
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In the case of separated flow, discussed by Croft and Sajjadi [3], the
sharp crests were used simply to locate the points of separation in the t-
plane. They showed that the points (±c, 0) and (±1/c, 0) on the real axis
in the t-plane are indeed the stagnation points. This led to four equations
which were used, together with the equilibrium of the vortices, to obtain
the location of the vortices, together with their strengths, in the t-plane.

7. Relationship between U and U0

It now remains to obtain the relationship between the undisturbed free
stream speed U in the physical plane and the corresponding speed U0 in
the t-plane. In the physical plane, as y →∞, the flow is a uniform stream
flowing in the positive x-direction with speed U , therefore we may write

W ∼ −Uz,

where W is the complex potential. Using (6.1) we then have

dW

dw
∼ − iU

λw
. (7.1)

As was explained in Section 6, the region above the wave maps into
the exterior of the square in the w-plane, the four waves transforming
into the square itself. Therefore, as y → ∞ the corresponding region in
the w-plane moves farther away from the square. The asymptotic form
of dW/dw in (7.1) shows that the flow is that of a vortex located at the
origin in the w-plane. In other words, the streamlines associated with the
undisturbed flow in the physical plane map into concentric circles having
their centres at w = 0.

Consider now the relationship between the flow for large |w| and that in
the upper half of the t-plane. For large t (6.2) behaves like w ∼ 1/t, which
implies that w is small. On the other hand, small t yields w ∼ t, which
again implies w is small. However, since the region in the immediate
neighbourhood of t = i corresponds to large w, we therefore need to
consider the limit as t → i such that the ratio of U/U0 remains a finite
non-zero constant.

Let τ = i+ w, where |w| � 1, and substituting it into (6.2) yields

w = −1

2

√
(c2 + 1)

(
1

c2
+ 1

)
lim
t→i

∫ t

0

dτ

w2
.

As t → i the domain around t = i shrinks such that the variation of
the integrand becomes negligible, and therefore we may approximate the
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above integral as

w = −1

2

√
(c2 + 1)

(
1

c2
+ 1

)
lim
w→0

1

w2
lim
t→i

∫ t

0

dτ,

and thence, we obtain

w = − i
2

√
(c2 + 1)

(
1

c2
+ 1

)
lim
w→0

1

w2
. (7.2)

Also, as

dW

dt
=
dW

dw

dw

dt
,

then using (7.1), we have asymptotically

dW

dt
= − lim

w→0

iU

λw
lim
t→i

dw

dt
.

Combining (7.2) and (6.2), we have

dW

dt
=

2U

λ
lim
w→0


w2√

(c2 + 1)

(
1

c2
+ 1

)
2

√
(c2 + 1)

(
1

c2
+ 1

)
−4w2

 , (7.3)

whence

dW

dt
= −U

λ
,

and since W = −U0t, we obtain the desired relationship between U in the
z-plane and its corresponding value, U0, in the t-plane, namely

U0 =
U

λ
. (7.4)

8. Calculation of the Fourier Coefficients

In Section 4 we outlined a methodology for satisfying the interfacial dy-
namic boundary condition which required a number of Fourier coefficients
to be calculated.

We begin with the Fourier coefficients associated with the airflow, and
in particular, the Fourier series representation of q2

a, where q is the speed
and the suffix a denoting air.
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Referring to (6.5) we see that

dW

dz
=
iλU0(t

2 + 1)2eλye−i(λx−π/4)

2
√

(t2 − c2)(t2 − 1/c2)
.

Now since

q2
a =

dW

dz

dW

dz
,

where the overbar symbol indicates the complex conjugate, then using
(7.4) we have

q2
a =

U2(tr + 1)4e2λy

4(t2r − c2)(t2r − 1/c2)
, (8.1)

where in general t = tr +iti. The above result has been derived from Croft
and Sajjadi [3] whom considered a rigid boundary.

Since the speed of undisturbed free stream, U , is the same for the
interface η = 0, from (3.1), and noting that x = ξ in the new coordinate
system, (8.1) may be cast as

q2
a =

U2(tr + 1)4 sec2[λ(ξ − x0)− nπ/2]

8(t2r − c2)(t2r − 1/c2)
. (8.2)

The main difficulty that now arises is the inverse transformation from
the t-plane to the physical z-plane. This, in general, is a numerical task
which we will report in part 2 of this paper. For now, if we assume that
this inverse transformation for the fraction that consists of tr in (8.2) is
denoted by G (ξ), i.e.,

G (ξ)← (tr + 1)4

(t2r − c2)(t2r − 1/c2)
,

then (8.2) may be written as

q2
a = U2G (ξ) sec2[λ(ξ − x0)− nπ/2].

We emphasize that this expression is the value of q2
a at any point on the

interface. As was mentioned in Section 3, the interface is moving with
speed c, thus the above expression must be modified accordingly, i.e.,

q2
a = U2G (ξ − ct) sec2[λ(ξ − ct− x0)− nπ/2]. (8.3)

Expressing (8.3) as a complex Fourier series we have

U2G (ξ−ct) sec2[λ(ξ−ct−x0)−nπ/2] =
∞∑

p=−∞

ep exp

[
ipπ

2L
(ξ − cpt)

]
, (8.4)
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where coefficients ep are given by

ep =
U2

2L

∫ 4L

0

G (ξ) sec2[λ(ξ − x0)− nπ/2] exp

(
−ipπ

2L
ξ

)
dξ. (8.5)

We now focus our attention to the Fourier series representation of the
velocity potential for the airflow, namely ϕa. Since the real axis in the
t-plane corresponds to the interface in the physical plane, and that

W = −Ut,

then ϕa, evaluated on the interface, gives

ϕa = −λUtr.

Similarly, by the same argument leading to (8.3), the velocity potential
for the air becomes

ϕa = −λUH (ξ − ct), (8.6)

where H (ξ−ct) is an appropriate inverse transformation from the t-plane
to the z-plane. Expressing (8.6) as a complex Fourier series, we have

−λUH (ξ − ct) =
∞∑

p=−∞

dp exp

[
ipπ

2L
(ξ − cpt)

]
, (8.7)

with the coefficients given by

dp = −λU
2L

∫ 4L

0

H (ξ) exp

(
−ipπ

2L
ξ

)
dξ.

We next consider the corresponding Fourier series for the fluid below the
interface. In this case we need to obtain the gradient and scalar product
of ϕw. In tensor notation, the velocity field in the water is expressed in
terms of the potential ϕw by

qw = −
(
∂ϕw

∂ξ
,
∂ϕw

∂η

)
= −

(
∂ϕw

∂yj

)
.

Note that, this is a covariant tensor, therefore with the usual notation,
the contravariant tensor is gij∂ϕw/∂y

j. Using the outer product, given by

gij ∂ϕw

∂yj

∂ϕw

∂yj
,
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and contracting the indicies i and j by putting i = j we obtain the inner
product

gii

(
∂ϕw

∂yi

)2

= g11

(
∂ϕw

∂ξ

)2

+ g22

(
∂ϕw

∂η

)2

= q2
w.

Since g11 = 1 and g22 = sec2[λ(ξ−ct−x0)−nπ/2] (see Section 4), replacing
ξ by ξ − ct, using (4.8), and letting X = λ(ξ − ct− x0)− nπ/2, we obtain

q2
w = e2λη

{
sec4(X) + sec2(X) tan2(X)

}
or

q2
w =

{
1 + tan2(X)

} {
1 + 2 tan2(X)

}
. (8.8)

Expressing (8.8) as a complex Fourier series, we have{
1 + tan2(X)

} {
1 + 2 tan2(X)

}
=

∞∑
p=−∞

bp exp

[
ipπ

2L
(ξ − cpt)

]
, (8.9)

where

bp =
1

2L

∫ 4L

0

{1 + 3 tan2 Y tan4 Y } exp

(
−ipπ

2L
ξ

)
dξ, (8.10)

and Y = λ(ξ − x0)− nπ/2.
Similarly from (4.8) and the argument presented in Section 4 we have,

at the interface,

ϕw(ξ, 0) = λ−1 tan[λ(ξ − ct− x0)− nπ/2] =
∞∑

p=−∞

ap exp

[
ipπ

2L
(ξ − cpt)

]
,

(8.11)
where

ap =
1

2λL

∫ 4L

0

tan[λ(ξ − x0)− nπ/2] exp

(
−ipπ

2L
ξ

)
dξ. (8.12)

Although we have transformed the flow field into the (ξ, η) plane, by
stretching the interface η = 0 along the ξ-axis, we emphasize that this is
a purely kinematic process thereby allowing the flow field for the water to
be obtained in a closed form and simultaneously satisfying the interface
kinematic condition exactly. However, the strategy used above cannot be
applied to the dynamic condition due the presence of the gravitational
term. We circumvent this by expressing y, that appears in the gravity
term [see equation (9.1) below], in terms of ξ from (3.2). Thus, putting
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η = 0 in (3.2) and referring to Section 4, we have, upon replacing ξ with
ξ − ct,

y = y0 + λ−1 ln sec[λ(ξ − ct− x0)− nπ/2] =
∞∑

p=−∞

ap exp

[
ipπ

2L
(ξ − cpt)

]
,

(8.13)
where

ap =
1

2L

∫ 4L

0

{y0 +λ−1 ln sec[λ(ξ−x0)−nπ/2]} exp

(
−ipπ

2L
ξ

)
dξ. (8.14)

Since the dynamic condition has to be applied in the physical plane, we
need to determine whether the surface tension can be neglected. Consid-
ering for clarity of argument only one arc of the four consecutive waves as
a stationary curve then we see from (3.2) that the curvature at the trough
is zero, while as ξ → L−, the curvature → π/2L. If the surface tension
were to be included in the interface dynamic condition then the curvature
would have to be multiplied by T/ρ, where T is the surface tension and ρ
the density. Typically this factor is of O (10−5). On the other hand, (8.8)
shows that as ξ → L−, then 1

2
q2
w → 4, therefore invoking this argument,

we can justify neglecting the surface tension from the interfacial dynamic
boundary condition.

9. Dynamic Condition and Dispersion Relation

In Cartesian coordinates the dynamic condition at the interface is,

ρw

(
∂ϕw

∂t
− 1

2
q2
w − gy

)
= ρa

(
∂ϕa

∂t
− 1

2
q2
a − gy

)
, (9.1)

where suffices w and a refer to water and air, respectively and g is the
acceleration due to gravity.

The strategy for dealing with (9.1) is to express each term as a Fourier
series. This can be justified on the grounds that a more general solution
for the velocity potential can be written in the form

ϕ =

∫ ∞

−∞
F (K) exp[iKx− iW (K)] dK,

where W (K)/K = cq is the phase speed, being a superposition of elemen-
tary solutions. This can be justified a priori since the Fourier transform
can be obtained from Fourier series by a limiting process. We shall use
the complex form of the Fourier series, and assign a phase speed to each
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harmonic due to the dispersive nature of the system. In (9.1) y will be
obtained from (3.2) with η equated to zero and x replaced by ξ − ct.
Therefore, the dynamic condition, for each harmonic, is satisfied and then
the associate phase speed can be determined. Hence, we write

ϕw =
∞∑

p=−∞

ap exp
[
i
pπ

2L
(ξ − cpt)

]
q2
w =

∞∑
p=−∞

bp exp
[
i
pπ

2L
(ξ − cpt)

]
ϕa =

∞∑
p=−∞

dp exp
[
i
pπ

2L
(ξ − cpt)

]
q2
a =

∞∑
p=−∞

ep exp
[
i
pπ

2L
(ξ − cpt)

]
y =

∞∑
p=−∞

fp exp
[
i
pπ

2L
(ξ − cpt)

]



on η = 0,

where ap, bp, dp, ep and fp are known coefficients.

Thus, as a result of satisfying the dynamic condition at the interface,
the dispersion relation can be determined. Note incidentally, the c on the
left hand side of (8.13) is the speed of the interface, while the cp on the
right hand side are the speeds of the constituent harmonics. Therefore,
we may refer to c as the group velocity of the envelope. Note further, for
a general progressive wavetrain ϕ = aei(Kx−nt), the group velocity cg is
given by cg = dn/dK.

10. Conclusions

The problem of unseparated flow over sharp-crested wave is considered.
The method consists of using a non-orthogonal coordinates system (ξ, η)
where η = 0 represents the sharp-crested boundary. A separable solution
is obtained in the new coordinate system for the water which satisfies
the kinematic condition at the interface exactly. The velocity potentials
ϕa and ϕw together with the equation of the interface, are expressed as
a Fourier series. Then by substituting these expressions in the dynamic
condition at the interface the phase speed for individual harmonics are
calculated. The detail of these calculations will be reported in the part 2
of this paper.
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