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Abstract 

An exact solution to the problem of an unsteady free and forced 
convective MHD flow of an incompressible viscous electrically 
conducting fluid through a porous medium bounded by an infinite vertical 
hot plate impulsively held fixed in a uniform stream is presented. A 
uniform magnetic field is assumed to be applied transversely to the 
direction of the flow. The governing equations are solved by Laplace 
transform technique. The expressions for the velocity field and skin 
friction at the plate are obtained and demonstrated graphically for the 
various values of the parameters involved in the problem. The expressions 
for the coefficient of rate of heat transfer, temperature field and current 
density are also derived in non-dimensional form. The effects of the 
Hartmann number, the Prandtl number, the porosity parameter and the 
other parameters involved on the velocity field and skin friction at the 
plate are discussed. It is observed that the velocity field, skin friction and 
current density are significantly affected by the applied magnetic field. 
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1. Introduction 

The problems of transient free convection flows past infinite vertical plates were 
studied by many researchers because of their applications in the cooling process. 
Some of them were Siegel [17], Gebhart [6], Chung and Anderson [5], Schetz and 
Eichhorn [16], and Goldstein and Briggs [7]. Siegel [17] first observed that the initial 
behaviour of temperature and velocity fields for a semi-infinite plate is the same as 
for a doubly infinite vertical plate where the temperature field is given by the 
solution of one-dimensional heat conduction equation. Goldstein and Eckert [8] later 
confirmed the above theoretical result through experiments. Lahurikar et al. [13] 
studied the unsteady forced and free convective flow past an infinite vertical plate 
through a porous medium of Brinkman model [2]. In recent years, study on MHD 
unsteady convection problems has attracted numerous authors in view of the 
application of such problems in Geophysics, Astrophysics and in missile technology. 
At high temperature gas is ionized and it becomes a good conductor. The ionized gas 
or plasma interacts with the applied magnetic field and significantly alters the flow 
and heat transfer characteristics. Jha [9] analysed the effects of magnetic field and 
permeability of the porous medium on unsteady forced and free convection flow past 
an infinite vertical porous plate in presence of temperature-dependent heat source. A 
study of unsteady laminar hydromagnetic flow and heat transfer in porous channel 
with temperature-dependent properties was presented by Chamkha [3]. Kalita and 
Borkakati [11] studied the transient free convection MHD flow through a porous 
medium between two vertical plates. They analysed systematically the flow of a 
viscous incompressible and electrically conducting fluid in presence of a transverse 
magnetic field through a porous medium whose effective viscosity is larger than the 
viscosity of the fluid. The effect of the local acceleration term on the MHD transient 
free convection flow over a vertical plate was studied by Aldoss et al. [1]. Prasad et 
al. [14] investigated the interaction of free convection with thermal radiation of 
viscous incompressible MHD unsteady flow past an impulsively started vertical 
plate with uniform heat and mass flux. A study of unsteady MHD free convection 
flow through a porous vertical flat plate immersed in a porous medium in presence 
of magnetic field with radiation was carried out by Samad and Rahman [15]. Joaquin 
[10] presented a numerical analysis of an unsteady free convective MHD flow of a 
dissipative fluid along a vertical plate subject to a constant heat flux. An exact 
solution to the problem of the MHD flow past an infinite vertical oscillating plate 
through porous medium, taking account of the presence of free convection and mass 
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transfer was obtained by Chaudhary and Jain [4]. Khan et al. [12] analysed the MHD 
transient flows in a channel of rectangular cross section with porous medium. 

As the present authors are aware up till now no attempt has been made to study 
the effect of the transverse magnetic field on a transient free and forced convective 
flow through a porous medium bounded by an infinite vertical plate impulsively held 
fixed in free stream. Such an attempt has been made in the present work, because of 
the importance of such problems in industry as well as in aerodynamics. We present 
the results for two fluids viz air ( )7.=P  and water ( ).7=P  

2. Basic Equations 

The equations governing the motion of an incompressible viscous electrically 
conducting fluid through a porous medium in presence of a magnetic field are: 

the equation of continuity: 

 ,0div =q  (2.1) 

the Gauss’s law of magnetism: 

 ,0div =B  (2.2) 

the modified Navier-Stokes equation: 

 ( ) ,2 g
K
qqBJpqqt

q ρ+μ−∇μ+×+∇−=⎥⎦
⎤

⎢⎣
⎡ ∇⋅+
∂
∂ρ  (2.3) 

the energy equation: 

 ( ) ,
2

2
σ

+φ+∇=⎥⎦
⎤

⎢⎣
⎡ ∇⋅+
∂
∂ρ JTkTqt
TCp  (2.4) 

the Ohms’ law: 

 [ ],BqEJ ×+σ=  (2.5) 

where 

q  is the velocity vector, 

g  is the acceleration due to gravity, 

 t  is the time, 
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B  is the magnetic induction vector, 

E  is the electric field (here assumed to be zero), 

σ is the electrical conductivity, 

k is the thermal conductivity, 

 pC  is the specific heat at constant pressure, 

 p is the pressure, 

 μ is the coefficient of the viscosity, 

T  is the temperature, 

J  is the electric current density, 

K  is the permeability parameter, 

ρ is the density of fluid, 

φ is the viscous dissipation per unit volume, 

BJ ×  is the Lorentz force per unit volume, 

σ

2J  is the Joulean heat per unit volume and the other symbols have their 

usual meanings. 

We now consider an unsteady two-dimensional boundary layer flow of an 
incompressible viscous electrically conducting fluid through a porous medium of 
Brinkman model [2] occupying a semi-infinite region of the space bounded by an 
infinite vertical hot plate suddenly held fixed in a uniform stream in presence of a 
transverse magnetic field of strength 0B  by making the following assumptions: 

  (i) All the fluid properties except the density in the buoyancy force term are 
constant. 

 (ii) The viscous dissipation of energy is negligible. 

(iii) The Joulean heat is negligible. 
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(iv) The flow is parallel to the plate. 

 (v) The magnetic Reynolds number is small so that the induced magnetic field 
can be neglected. 

Initially the plate and the surrounding fluid are at the same temperature ∞′T  and the 

plate is moving parallel to itself with velocity .0U  At time ,0>′t  the plate is 

suddenly made stationary and the plate temperature is raised to .wT ′  

We introduce a coordinate system ( )zyx ,,  with X-axis vertically upwards 

along the plate, Y-axis normal to the plate into the fluid region and Z-axis along the 
width of the plate. Let the plate be long enough in X-direction for the flow to be 

parallel. Let ( )0,0,uq =  be the fluid velocity and ( )0,,0 ybB =  be the magnetic 

induction vector at a point ( )zyx ,,  in the fluid. Since the plate is infinite in length 

in X-direction, therefore all the quantities except possibly the pressure are assumed 
to be independent of .x  

With the foregoing assumptions, Boussinesq approximation and usual boundary 
layer approximations, the equations (2.1), (2.2), (2.3), (2.4) and (2.5) can be reduced 
to the following: 

Continuity equation: 

 0=
∂
∂

x
u  (2.6) 

which is satisfied by the velocity field ( )., tyuu =  

Gauss’s law of magnetism: 

 0=
∂
∂

y
by  (2.7) 

which holds for =yb  a constant ,0B=  the strength of the applied magnetic field. 

Momentum equation: 

 ( ) ( ) ( ).00
2
0

2

2
uU

K
uUB

y
uTTgt

u −ν+−
ρ

σ
+

∂
∂ν+−β=

∂
∂

∞  (2.8) 
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Energy equation: 

 .2

2

y
Tkt

TCp
∂
∂=

∂
∂ρ  (2.9) 

The initial and boundary conditions of the problem are: 

,,,:0 0 yTTUut ∀==≤ ∞  (2.10) 

 ,
at,,

0at,,0:0

0 ⎪⎭

⎪
⎬
⎫

∞→==

===>

∞ yTTUu

yTTut w
 (2.11) 

where 

 u  is the velocity of the fluid near the plate, 

0U  is the free stream velocity, 

 g is the acceleration due to gravity, 

∞T  is the temperature in the free stream, 

wT  is the plate temperature, 

 β is the coefficient of volume expansion, 

 ν is the kinematic viscosity, 

 σ is the electrical conductivity. 

We now introduce the following non-dimensional quantities: 

( )
3
0U

TTgG w ∞−βν
=  (Grashof number), 

GU
BM 2

0

2
0

ρ

νσ
=  (Hartmann number), 

k
C

P pμ
=  (Prandtl number), 

2

2
0

ν
=

GUKK  (Permeability parameter), 
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.1 uw −=  

The non-dimensional forms of the equations (2.9), (2.10) and (2.11); the initial 
condition (2.12) and the boundary condition (2.13) are as follows: 

,2

2
w

y
w

t
w ξ−

∂
∂+θ−=

∂
∂  (2.12) 

,2

2

ytP
∂
θ∂=

∂
θ∂  (2.13) 

,,0,0:0 ywt ∀=θ=≤  (2.14) 

 ,
at,0,0

0at,1,1:0

⎪⎭

⎪
⎬
⎫

∞→=θ=

==θ=>

yw

ywt
 (2.15) 

where .1
KM +=ξ  

3. Solution of the Equations 

The equations (2.12) and (2.13) are solved (by Laplace transform technique) 
subject to the initial and boundary conditions (2.14) and (2.15), respectively, and the 
solutions are as follows: 

( ),Perfc η=θ  (3.1) 

 4321
111111 FFFFu
ξ

−
ξ

+
ξ

+⎟
⎠
⎞⎜

⎝
⎛

ξ
+−=   for  1≠P  (3.2) 

( )η
ξ

+⎟
⎠
⎞⎜

⎝
⎛

ξ
+−= erfcF 1111 1   for  ,1=P  (3.3) 

where 

,
2 t

y=η  

[ ( ) ( )],2
1 22

1 terfceterfceF tt ξ−η+ξ+η= ξη−ξη  
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[ ( ) { ( ) } ( ) { ( ) }],2
22

2 terfceterfceeF tt
t

λ+ξ−η+λ+ξ+η= λ+ξη−λ+ξη
λ

 

( ),3 η= PerfcF  
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4. Coefficient of Skin Friction, Rate of Heat Transfer and Current Density 

The non-dimensional skin friction at the plate in the direction of free stream is 
given by 
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 (4.1) 

The coefficient of heat transfer from plate to the fluid in terms of Nusselt number at 
the plate is given by 

( ) 00
Nu

=∞
⎥
⎦

⎤
−

ν−=
yw yd

Td
TTGU

 

( ) .2
1

00 =η=
⎥⎦

⎤η′−=⎥⎦
⎤θ−= Pcerft

P
dy
d

y
 (4.2) 

The non-dimensional current density is given by 

 .
00

uBU
JJ =

σ
=  (4.3) 
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Figure 1. The velocity field u versus η 
for ,7.0=P  ,5.0=K  .5.0=t  

Figure 2. The velocity field u versus 
η for ,7=P  ,5.0=K  .5.0=t  

 

Figure 3. The velocity field u versus 
η for ,7.0=P  ,5=K  .5.0=t  
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Figure 4. The velocity field u versus η 
for ,7=P  ,02.=K  .5.0=t  

Figure 5. The velocity field u versus 
η for ,7=P  ,5=K  .5.0=t  

 

 Figure 6. Skin friction τ at the plate   
0=y  versus time t for ,7.0=P  .5.0=K  

Figure 7. Skin friction τ at the plate 
0=y  versus time t for ,7=P  .5.0=K  
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Figure 8. Skin friction τ at the plate 

0=y  versus K for ,7.0=P  .5.0=t  
Figure 9. Skin friction τ at the plate 

0=y  versus K for ,7=P  .5.0=t  

5. Discussion of the Results 

In order to get physical insight into the problem, we have carried out the 
numerical calculations for the velocity field and skin friction at the plate and the 
values are demonstrated in graphs. The Prandtl number P is taken to be equal to 0.7 
and 7 which correspond to air and water, respectively, and the values of the porosity 
parameter K are chosen as 0.02, 0.5 and 5. The values of M, η, t, H, mP  and y are 

selected arbitrarily. The velocity profiles under the influence of magnetic field are 
displayed in Figures 1-5. We observe from Figures 2, 4 and 5 that in case of water 
( ),7=P  the fluid velocity quickly increases up to some layer of the fluid adjacent 

to the plate and after this fluid layer the fluid velocity asymptotically tends to 1 (free 
stream velocity). There is an indication from these figures that in case of moderate 
and high porosity of the medium, an increase in the strength of the applied magnetic 
field causes the velocity to increase (Figure 2). 

In case of air (Figures 1 and 3), it is seen that for the large magnetic field, the 
fluid flows vertically downwards near the plate up to a layer in the immediate 
neighbourhood of the plate and after that it begins to flow in the upward vertical 
direction. That is, there occurs a surface of separation in the boundary layer flow. 
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The same figures also indicate that when the strength of the applied magnetic field is 
moderate or small, the velocity of air behaves like water. The influence of the 
applied magnetic field in the flow seems unaffected due to porosity in case of air. 

Figures 6, 7, 8 and 9 depict the change of behaviour of the skin friction τ at the 
plate due to variation of the Hartmann number M. It is inferred from Figure 6 that in 
case of air, τ increases as M and t. The same figure also indicates that the effect of M 
on τ is very pronounced for large t and its effect is negligible for small t. In case of 
water (Figure 7), it is observed that the application of the magnetic field causes τ to 
decrease. Figure 7 also shows that τ is significantly affected by M for small t and as t 
increases the magnetic field ceases to affect τ. Figures 8 and 9 indicate that τ 
decreases as M increases whereas it increases for the increasing values of K. 

It is observed that the rate of coefficient of heat transfer is not affected by the 
applied field. From equation (4.3), it is inferred that the behaviour of current density 
is exactly same as the convective velocity. 

6. Conclusions 

(a) The fluid velocity, skin friction and current density at the plate are 
significantly affected by the applied magnetic field. 

(b) The effect of the magnetic field is not pronounced on the temperature field 
and on the rate of heat transfer coefficient. 
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