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Abstract 

A generalization of the famous KdV equation is investigated where 
applications to unidirectional propagation of long water waves on            
a viscous liquid are considered. The emphasis of this paper is on  
rigorous mathematical analysis to prove the existence, uniqueness     
and like properties of the solution of this partial differential equation.        
In addition, a second generalization equation, KdV with constant 
coefficients, is considered and like results are provided. 

1. Introduction 

In 1975, a ground breaking work (1) was published by J. L. Bona and   
R. Smith where the equation 
 ( ) 01 =+++ xxxxt uuuu  (1) 

was investigated with applications to long range water wave on an 
inviscous liquid. They analyzed a basic theory of equation (1) and its 
extension 
 ( ) ( )txfuuuu xxxxt ,1 =+++  (2) 

with the term ( )txf ,  treated as an external force in the physical sense. 
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They showed that equations (1) and (2) have wholly satisfactory 
mathematical properties. In particular, they discussed existence, 
uniqueness, regularity and established the stability of solutions with 
respect to variations in prescribed influences is a favorable property with 
regards to applications of the model. 

As it is well known when doing mathematical modeling for any 
physical problem there are often a great deal of assumptions made, 
conditions overlooked and/or simplified. This is indeed the case when 
modeling long range water waves. Namely, if all of the assumptions and 
simplifications are made, then one will obtain equation (1) as the 
mathematical model. However, it is often necessary for some of these 
assumptions to be modified. In these cases one will often obtain a similar 
partial differential equation as the original model but with a new term 
that is not including the dependent variable, hence, the prior interest of 
equation (2). In some cases this equation will not suffice and the new f 
term will also need to include some appearance of the dependent variable; 
for example the equation 

 ( ) ( )uFuuuu xxxxt =+++ 1  (3) 

may be of need. 

In the following work, we will examine how the equation and results 
are changed when the problem of long range water waves is considered in 
viscous liquids. The model considered relates to the initial-value problem 
for the equation 

 ( ) ,1 xxxxxxt vuuuuu =+++  (4) 

where v is nondimensional kinematic viscosity of the liquid; moreover, 
the solution ( )txu ,  is considered in a class of real nonperiodic functions 

defined for ,∞<<∞− x  .0≥t  The notation ( )
nm

nm
nm

tx
uu

∂∂
∂=

+
,  will be 

frequently utilized, and the appropriate function spaces will be discussed 
in the statement of the results. In addition, several other results will be 
given for similar partial differential equations which appear during the 
analysis. An interesting note for further research is to either consider the 
general equation (3) in order to gain more information regarding what 
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kind of forcing terms ( )uF  could be introduced and/or consider equation 
(3) with coefficients that are functions of the independent variables x 
and t. 

2. Statement of Results 

In the following section, our main partial differential equation of 
interest will be 

 ( ) ( )( ) ( ) ( )0,20,30,10,1 1 vuuuuu =+++  (5) 

with the initial value conditions ( ) ( ).0, xgxu =  With ( )xg  begin considered 
as a continuous and bounded nonperiodic function and the solutions 
( )txu ,  are considered in a class of real nonperiodic functions defined for 

,∞<<∞− x  .0≥t  

Theorem 1. Let ( )xg  be a continuous function such that 

( ) .sup ∞<≤
ℜ∈

bxg
x

 

Then there exists a ( )bt0  such that the integral equation 

( ) ( ) ( ) ( ) ( ) ( )( )∫ ∫
∞+

∞−
τξ⎟

⎠
⎞⎜

⎝
⎛ τξ−τξ+τξξ−+=

x
ddvuuuxKxgtxu

0
0,12 ,,2

1,,  (6) 

which can alternatively be written as 

( ) ( ) ( )∫ τ−=
x

xvuxgtxu
0

,,  

( ) ( ) ( ) ( )∫
∞+

∞−

ξ−− τξτξ−⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ τξ+τξξ−+ dduveuuxK x ,,2

1, 2  

has a solution that is bounded and continuous for Rex ∈  and ∞<≤ b0  

such that ( ) ( ),0, xgxu =  where ( ) ( ) .2
1 xexsgnxK −=  The coordinates ( )tx ,  

in which the integral equation is given in can be obtained from the 
original coordinate system ( ),, tx  where equation (5) was given in by the 

transformation ( )txx −ε= 21  and .23 tt ε=  Moreover, if ( ) ( )xgxu =0,  

and ( ),22 RCg ∈  then any solution of the integral equation (6) is a 
classical solution of the partial differential equation (5). 
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Theorem 2. Let ( )xg  be a continuous function such that 

( ) .sup ∞<≤
ℜ∈

bxg
x

 

Then there exists a ( )bt0  such that the integral equation 

( ) ( ) ( ) ( ) ( ) ( )( )∫ ∫
∞+

∞−
τξ⎟

⎠
⎞⎜

⎝
⎛ τξ−τξ+τξξ−+=

x
ddvuuuxKxgtxu

0
0,12 ,,2

1,,  

has a solution that is bounded and continuous for Rex ∈  and ∞<≤ b0  

such that ( ) ( ),0, xgxu =  where ( ) ( ) .2
1 xexsgnxK −=  Moreover, if ( )0,xu  

( )xg=  with ( ),22 RCg ∈  then there is a unique classical solution of the 

partial differential equation 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,01,20,10,11,0 =−++ utduutcutbuta  (7) 

where provided that ( ) ( ) .0≠= tdta  

3. Proofs and Auxiliary Statements 

In [3] it is shown that the partial differential equation 

( ) ( )( ) ( ) ( ) 01 1,20,30,11,0 =ε−+++ uuuuu  

can be rewritten as 

( ) 01 =−++ txxxt uuuu  

by utilizing the standard change of variables process with ( )txx −ε= 21  

and ,23 tt ε=  hence, txx 2321 −ε+ε=  and .23 tt −ε=  Now, by following 
the same scheme one sees the equation 

 ( ) ( )( ) ( ) ( ) ( )0,21,20,30,11,0 1 vuuuuuu =ε−+++  (8) 

can also be rewritten in a similar manner. However, one must note by the 
chain rule that 

( ) ( ) ( ).0,2
xxxxtxxttxxtxxxtxxx uxuttuxuxux

x
x
tux

xuu ε=++++
∂
∂

⎟
⎠
⎞⎜

⎝
⎛

∂
∂+

∂
∂=  
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Doing so one obtains that equation (8) can be rewritten as 

 ( ) .1 xxtxxxt uvuuuu ε=−++  (9) 

Proof of Theorem 1. To begin we note that (9) can be rewritten as 

( ) ( ) ( ) ( ) ( )uuuvuuu 0,10,10,21,21,0 −−ε=−  

which can be rewritten as 

[( )] ( ) ( ) .2
11 0,121,02

⎥⎦
⎤

⎢⎣
⎡ ε−+∂−=∂− vuuuu xx  

Now viewing the above equation as differential equation for ( )1,0u  one 
obtains that 

( ) ( ) ( ) ( ) ( )( )∫
∞+

∞−
ξ⎟

⎠
⎞⎜

⎝
⎛ ξε−ξ+ξξ−= ,,,2

1, 0,121,0 dtvututuxKu  

where the Kernel is defined as ( ) ( ) .2
1 xesgnxxK −=  

The above differential equation can easily be rewritten as an integral 
equation as 

( ) ( ) ( ) ( ) ( ) ( )( )∫ ∫
∞+

∞−
τξ⎟

⎠
⎞⎜

⎝
⎛ τξε−τξ+τξξ−+=

t
ddvuuuxKxgyxu

0
0,12 .,,2

1,,  (10) 

Now, we will write (10) in operator notation as 

[ ] [ ],uBguAu +==  

and for our considerations let us denote 0tζ  as the class of functions 

( )txv ,  which satisfy (10) that are continuous and uniformly bounded on 

the infinite strip [ ].,0 0tRe ×  Moreover, we will consider this set of 

functions 0tv ζ∈  that have the norm ( )txvv
ttRex

,sup
00, ≤≤∈

ζ =  which is 

a Banach space of bounded continuous functions where 0t  is left as 

arbitrary. 



SHAHR SAJJADI, TIMOTHY SMITH and JOERN MUMME 6 

If we consider two functions 021, tvv ζ∈  and consider [ ] [ ] ,21 vAvA −  

then after some algebra, we obtain 

[ ] [ ] .2
1

2
11 2121021 ζζζ −⎟

⎠
⎞⎜

⎝
⎛ ++ε+≤− vvvvvtvAvA  

From this it follows that A  is a continuous mapping; moreover, A  is a 
contraction of the ball Rv <ζ  if 

.12210 <≤⎟
⎠
⎞⎜

⎝
⎛ ++ε+ LRRvt  

If this condition is satisfied, then by the Theory of fixed points one can 
assure that A  has a unique fixed point in the ball .Rv <ζ  Hence, we 

have obtained that equation (9) has a unique solution for the restrictive 
value of .0t  

In order to investigate equation (5) we first consider equation (8)       
in the ( )tx,  coordinate system. Now, by applying the ( ) ( )txtx ,, →  

transformation, we obtain equation (9). However, we have just proven 
that equation (9) has a unique solution. Thus, we can obtain that 
equation (5) has a unique solution by taking the uniqueness of     
equation (9) and inverting the transformation, hence, obtaining the 
uniqueness of equation (8). Finally, by taking the limit as 0→ε  we see 
that equation (8) becomes equation (5), hence, the Theorem 1 is proven. 

Proof of Theorem 2. To begin we divide equation (7) through by 
( ),ta  then noting that ( ) ( )tdta =  we obtain 

( ) ( ) ( ) ( ) ,01,20,10,11,0 =−++ uuCuBuu  

where ( )
( )ta
tbB =  and ( )

( ) .ta
tcC =  Now, following a similar argument as in 

the proof of Theorem 1 we obtain that (7) can be rewritten as 

[( )] ( ) .2
11 21,02

⎥⎦
⎤

⎢⎣
⎡ +∂−=∂− uCBuu xx  
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Following a similar argument one views the above equation as differential 

equation for ( );1,0u  hence, one obtains that 

( ) ( ) ( ) ( )∫
∞+

∞−
⎟
⎠
⎞⎜

⎝
⎛ ξ+ξξ−= ,,2

1, 21,0 tuCtBuxKu  

where the Kernel is defined as ( ) ( ) .2
1 xesgnxxK −=  

Now, the above differential equation can easily be rewritten as an 
integral equation as 

 ( ) ( ) ( ) ( ) ( )∫ ∫
∞+

∞−
τξ⎟

⎠
⎞⎜

⎝
⎛ τξ+τξξ−+=

t
dduCBuxKxgyxu

0
2 .,2

1,,  (11) 

Now, we will write (11) in operator notation as 

[ ] [ ].uBguAu +==  

Using the same notations as discussed in the proof of Theorem 1, we    
will consider the class of functions ( )txv ,  which satisfy (11) that are 

continuous and uniformly bounded on the infinite strip [ ].,0 0tR ×  

If we consider two functions 021, tvv ζ∈  and consider [ ] [ ] ,21 vAvA −  

then after some algebra, we obtain 

[ ] [ ] ,2
1

2
1

2121021 ζζζ −⎟
⎠
⎞⎜

⎝
⎛ ++≤− vvvCvCBtvAvA  

where the values of B and C are understood to be bounds of the functions 
( )tB  and ( ).tC  From this it follows that A  is a continuous mapping; 

moreover, A  is a contraction of the ball Rv <ζ  if 

.1220 <≤⎟
⎠
⎞⎜

⎝
⎛ ++ LRCRCBt  

If this condition is satisfied, then by the Theory of fixed points one can 
assure that A  has a unique fixed point in the ball .Rv <ζ  Hence, we 

have obtained that equation (11) has a unique solution. 
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It is noted that in the prior discussion the values of B and C were 
treated as constants that bounded the respective functions ( )tB  and ( ).tC  
Moreover, if the argument was redeveloped for B and C being either 
functions of x or x, t, then one could redo the argument but would need to 
include an additional term on the right hand side to take into 
consideration the standard product rule. Hence, in the latter case the 
integral equation (11) would have a slightly different form, but still only 

contains a u and 2u  appearance of the dependent variable. The actual 
fixed point argument would not have any major differences except in the 
final inequality, of course, one would replace the current B and C values 
by bounds on the functions ( )txB ,  and ( )txC ,  and of course it would be 
expected that these functions would also need to satisfy a Lipschitz type 
condition. The details of this are not included here as it is a routine 
modification. 
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