
 

JP Journal of Biostatistics 
Volume 3, Number 2, 2009, Pages 145-169 
Published Online: July 16, 2009 
This paper is available online at http://www.pphmj.com
© 2009 Pushpa Publishing House  

 :tionClassificajectSubsMathematic2000 62G09, 62G35, 62-07, 62P10.
 Keywords and phrases: PTE measure, multiple endpoints, association measures, surrogate 

endpoints, marginal model, conditional model, bootstrapping methods, meta-analysis. 

Received February 4, 2009 

 

UNDERSTANDING THE NATURE OF TREATMENT 
EFFECTS OF MULTIPLE ENDPOINTS OF A 

CLINICAL TRIAL USING BOOTSTRAP 

MUSHFIQUR RASHID and M. F. HUQUE 

Division of Biometrics IV 
Office of Biostatistics/CDER/FDA 
Room WO 21-3644 
10903 New Hampshire Avenue 
Silver Spring, MD 20993, U. S. A. 
e-mail: mushfiqur.rashid@fda.hhs.gov 

Abstract 

In a clinical trial, treatment effects of multiple endpoints can be either of 
overlapping (partially or completely) or of non-overlapping nature, in the 
sense that a single or a group of multiple endpoints is jointly able to 
explain or not able to explain a part or whole of the treatment effect of an 
endpoint of interest. This information is useful in assessing the total 
benefit of a treatment for a set of multiple endpoints of a trial. An easy-to-
understand measure for this purpose is the proportion of the treatment 
effect (PTE) of a clinical endpoint explained by the treatment effects of 
other endpoint(s) of interest. Conventionally, it is estimated by the ratio of 
two statistics. However, this ratio estimate has been statistically 
challenging for some applications as it can produce a wide confidence 
interval beyond the [ ]1,0  interval and even the point estimate may fall 

outside this interval. This article presents a bootstrapping based measure 

using linear models and a simple bootstrapping based ∗r  measure that 
avoid the weakness of the conventional PTE measure. The former is a 
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conditional probability measure involving PTE and the latter one is an 
association measure between the induced treatment effects of a clinical 
endpoint versus the part of it that is explained by other endpoint(s) of 
interest. These measures can help in understanding the nature of the 
treatment effects of multiple endpoints of a clinical trial, for finding 
whether some of these treatment effects are of overlapping nature or of 
independent nature in adding to the treatment benefit. 

1. Introduction 

Randomized clinical trials generally include multiple response variables called 
endpoints for characterizing clinically meaningful benefits of a study intervention. 
Causal pathways by which an intervention induces treatment effects in endpoints in a 
patient population can be of different nature for different endpoints. It is of interest 
to learn about the nature of treatment effects found for different endpoints in a trial, 
whether some of these treatment effects are of overlapping or non-overlapping 
nature for adding to the treatment benefit. If treatment effects in two endpoints of a 
trial are mostly of overlapping nature, then these treatment effects for the two 
endpoints can be considered as corroborative, strengthening each other’s result. On 
the other hand, these treatment effects can be typically non-overlapping, i.e., one 
does not explain the other. In that case, each endpoint can be of different clinical 
value. This can happen when the test treatment targets the two endpoints differently. 

For example, consider a primary clinical endpoint and a key secondary endpoint 
for a confirmatory controlled clinical trial. The role the secondary endpoint may be 
either for strengthening the result of the primary endpoint or for additional treatment 
benefit. If the secondary endpoint treatment effect result explains little or none of the 
treatment effect of the primary endpoint, then this secondary endpoint treatment 
benefit may qualify for an additional benefit of the treatment in addition to that 
already contributed by the primary endpoint. However, if this secondary endpoint 
treatment effect explains most of the treatment effects of the primary endpoint, then 
this secondary endpoint result strengthens the result of the primary endpoint but may 
not qualify for an extra benefit of the treatment. Such information can be of 
considerable value in proper labeling of a new drug or treatment for the benefit of 
patients and prescribing physicians. 

Some statistical methods are already available that can help in this endeavor, 
though these methods were developed mostly under the umbrella of evaluation of 
surrogate endpoints, i.e., for validating an intermediate endpoint or a surrogate 
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marker endpoint for the purpose of replacing a late observable clinical endpoint for 
accelerating the drug approval process (Chakravarty [4]). Weir and Walley [7] have 
reviewed some of these methods. For example, Buyse and Molenberghs [3] 
introduced a method based on the RE (relative efficacy) concept. Buyse et al. [2] 

considered the coefficient of determination 2R  and Alonso et al. [1] introduced an 
interesting Likelihood Reduction Factor (LRF) measure. 

On the other hand, Freedman et al. [5] proposed the concept of PTE, which 
stands for the proportion of treatment effect of a clinical endpoint explained by other 
endpoint(s) of interest. They considered this other endpoint as an intermediate 
endpoint in the context of a surrogate endpoint. Conventionally, this PTE is 
estimated on taking the ratio of two statistics. The denominator of this ratio is a 
measure of the total treatment effect of a clinical endpoint and numerator is a 
measure of the treatment effect of this clinical endpoint explained by the other 
endpoint(s) of interest. This ratio estimate, though conceptually popular, is 
statistically a challenging measure as its sampling distribution can be poorly heavy 
tailed, and consequently for some applications, the confidence interval may be wide 
often exceeding the [ ]1,0  interval, and even the point estimate may fall outside this 

interval. Nonetheless the PTE is an attractive and easy-to-understand concept for 
clinical trial applications and for clinicians, and there is a need for a different 
approach for evaluating PTE that can be free from these problems. 

This article presents a bootstrapping based measure using linear models and a 

simple bootstrapping based ∗r  measure that avoid the weakness of the conventional 
PTE measure. The former is a conditional probability measure involving PTE. It is 
bootstrapping based and involves linear modeling for evaluating PTE that avoids the 
troubling concerns of the conventional ratio estimate. In this approach, we set two 
linear models for a given primary endpoint. The first model is the marginal model 
which has three terms: an intercept, a treatment effect term and the error term. This 
model provides a least squares estimate of the ‘total treatment effect’ of a primary 
clinical endpoint. We represent this estimate by the notation U. The second model is 
the conditional linear model of the main endpoint given the other endpoints of 
interest. This conditional model gives the so called the ‘adjusted treatment effect’ for 
the primary clinical endpoint. The direct difference between the two, i.e., the 
difference between the ‘total treatment effect’ of the primary endpoint and its 
‘adjusted treatment effect’ along with the ‘total treatment effect’ itself, are the two 
key quantities for estimating how much of the treatment effect of the primary 
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endpoint is explained by the treatment effects of the other endpoints included in the 
conditional model. We denote this direct difference by the notation D. The ratio 

,UD  i.e., of this direct difference measure to the total treatment effect of the 

primary endpoint is the conventional PTE measure. 

Our measure differs from this conventional ratio estimate in the sense that these 
two treatment effect random variables D and U are converted into a binary outcome 
on checking whether a value D exceeds a fraction c times the corresponding value of 
U or not. A conditional probability curve cP  is obtained as a function of c that is the 

probability that the value of D exceeds a fraction c times the corresponding value of 
U given that the primary endpoint treatment effect is statistically significant in the 
trial. A maximum value of c is then read from this curve so that γ−≥ 1cP  

( ).20.0,e.g. =γ  This c then serves as a lower bound for PTE with the conditional 

probability of cP  associated with it. For example, if for such a 50.0=c  the 

associated 80=cP  percent, then one may conclude that the chances are fairly high 

for concluding that the true PTE value is at least 50 percent. And, if for such a c of 
0.75 the associate value of 10=cP  percent, then one may conclude that chances are 

fairly low for the true PTE of greater than 75 percent. This lower bound is different 
from the conventional lower confidence interval for the PTE as it is obtained under 
the restriction that the treatment difference U is statistically significant at a specified 
significance level of α. The article proposes a bootstrapping based approach for 
determining this cP  curve and provides an algorithm for its computation. 

The above bootstrapping method, while computing cP  for a given c, also 

provides a bootstrapping joint distribution of U and D which readily gives a 

bootstrapping based ∗r  correlation measure between U and D, i.e., between the 
induced treatment effects of a clinical endpoint versus the part of it that is explained 

by other endpoint(s) of interest. A larger value of ∗r  in the interval [ ]1,0  indicates a 

larger overlap in sharing the treatment effect of the clinical endpoint by the joint 
treatment effect contributed by the other endpoints. In this regard, a value 
approaching one indicates that the other endpoints in the model can be treated as 
joint surrogates for the clinical endpoint, if clinically meaningful. 

We illustrate the use of our resampling based measures through a clinical trial 
example in which the main endpoint is a key clinical endpoint. The interest is to find 
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out how much of the treatment effect of this clinical endpoint overlaps with the joint 
treatment effect of the other two endpoints. The two other endpoints in the trial are 
objective endpoints but individually of lesser importance. This example shows that 
this overlap is not small and also not large enough for replacing the clinical endpoint 
by these two objective endpoints. On the other hand, the extent of this overlap in this 
trial, though partial, suggests that positive findings in objective endpoints strengthen 
the positive finding of the clinical endpoint. For such a trial, it would be surprising 
to observe a statistically significant positive finding for the clinical endpoint without 
any positive finding individually or jointly for the other two endpoints. In this 
example, we also calculate a likelihood based measure introduced by Alonso et al. 

[1]. The developments in this paper for determining cP  and ∗r  are trial specific and 

assume that the treatment effect of the key clinical endpoint that is being explained is 
statistically significant in the trial. The methods of this article are intended towards 
understanding the nature of the treatment effects of multiple endpoints of a clinical 
trial, for finding whether some of these treatment effects intersect each other or are 
of non-overlapping nature in adding to the total treatment benefit. 

The rest of the article is organized as follows. Section 2 discusses model setting 
and parameter estimation for the two-endpoint case with assumptions. Section 3 
gives concepts about the total treatment effect and the “treatment effect explained”. 
Section 4 introduces the probability curve ,cP  addresses its properties and 

interpretation, and gives a bootstrapping based algorithm for computing it. Section 5 
provides extension to more than two endpoints. Section 6 includes a bootstrapping 

based ∗r  correlation. Section 7 includes a numerical example, and finally, Section 8 
makes some concluding remarks. Appendices A to C include derivations, a table and 
the steps of the bootstrapping algorithm for computational purpose. 

2. Models and Estimation of Parameters 

In this section, we discuss models and their parameter estimation for the two 
linear models in the setting of clinical trials. The first model provides a least squares 
estimate of the ‘total treatment effect’ of the primary clinical endpoint which we 
have called U. The second model is the conditional linear model of the primary 
clinical endpoint given the other endpoints of interest. This conditional model gives 
the so called the ‘adjusted treatment effect’ for the primary clinical endpoint. The 
direct difference U minus this ‘adjusted treatment effect’, which we have called D, is 
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the other statistic of interest. These two statistics are key statistics in estimating how 
much of the treatment effect of the primary clinical endpoint is explained by the 
treatment effects of the other endpoints included in the conditional model. In the 
following development, we assume that endpoints under consideration are 
continuous (or score) variables and the uses of linear models are appropriate. 

2.1. Marginal model and estimation of its parameters 

Consider a 2-arm clinical trial that compares a treatment to a control for a 
relevant clinical benefit of the treatment. Let T be a key clinical endpoint for this trial 
and S be any other endpoint of interest or a surrogate endpoint. Let Z be an indicator 
variable that takes value 1 if a patient is in the treated group and zero if a patient is in 
the control. Let the data on ( )SZT ,,  be {( ) }2,1and...,,1:,, == injSZT iijijij  

with 1n  patients in the treated group ( )1=i  and 2n  in the control group ( ).2=i  

Let T and S be both continuous (or score) variables with non-zero correlation, i.e., an 
increase or decrease in T is associated with a corresponding increase or decrease in 
S. In addition, we assume statistically significant treatment effect for T in the trial. 
The marginal treatment effect models for S and T can then be stated as: 

( ) ,S
ijijSSij ZS ε+β+μ=  with ( ( ) ) 0=ε S

ijE  and ( ( ) ) ,Var 2
S

S
ij σ=ε  (2.1) 

( ) ,T
ijijTTij ZT ε+β+μ=  with ( ( ) ) 0=ε T

ijE  and ( ( ) ) ,Var 2
T

T
ij σ=ε  (2.2) 

where ,...,,1 inj =  and ;2,1=i  1=ijZ  if 1=i  and 0 if ;2=i  ( )S
ijε  and ( )T

ijε  are 

independently and identically distributed random variables. In addition, we assume 
that there exists a joint statistical distribution between T and S with covariance 

.STTS σρσ=σ  

With notations .iS  and .iT  as sample means of the endpoints S and T, 

respectively, for the ith treatment group ( ),2,1=i  least square unbiased estimators 

of ,Sβ  ,Tβ ,2
Sσ  2

Tσ  and TSσ  are, respectively, given by 

,.2.1 SSbS −=  

,.2.1 TTbT −=  

( ) ( )∑ ∑= =
−=−+=σ

2

1 1
2

.
2

21
22 ,,2ˆ

i

n

j iijS
i SSSnnS  
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( ) ( )∑ ∑= =
−=−+=σ
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1 1
2
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22 ,2ˆ
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n

j iijTTT
i TTSnnS  

and 

( ) ( ) ( )∑ ∑ =
−−=−+=σ

2

1 ..21
2 .,2ˆ

i

n

j iijiijTSTSTS
i SSTTSnnS  

2.2. Conditional model and estimation of its parameters 

A linear conditional model that expresses values of the endpoint T in terms of 
values of the endpoint S can be written as considered in (2.3). We use a bold lower 
case letter or symbol for a vector, a bold upper case letter for a matrix, and the 
symbol ′ for the transpose of a vector or a matrix 

,222120 ijijijij SZT ε+β+β+β=  with ( ) 0=|ε ijij SE  and ( ) ,Var 2τ=|ε ijij S  

 (2.3) 

where as above ,...,,1 inj =  and ;2,1=i  1=ijZ  if 1=i  and 0 if .2=i  Model 

(2.3) can be conveniently written in matrix notation as .εβ += Xt  In this notation, t 

is a column vector with ( )′= 21 221111 ...,,,...,, nn TTTTt  of observations on the key 

endpoint T; ( )′βββ= 222120 ,,β  is a column vector of the model parameters, 

( )′εεεε= 21 ...,,,...,, 2111 nnε  is a column vector of errors; X is the design matrix 

with ( )21 nn +  rows and 3 columns. The matrix XX ′  is given by 

 

( ) ( )

( ) ( )

.
2
.22

2
.11

2
.11.22.11

.1111

.22.11121

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+++

++

=′

SnSnSSnSnSn

Snnn

SnSnnnn

XX  (2.4) 

In addition, the matrix ( ( )) .,, .2.22.1.11.11.22.11 ′++=′ STnSTnTnTnTntX  Then the 

least square estimator of β  is given by ( ) ( )tXXXb ′′= −1  and conditional variance-

covariance matrix ( ) ( ) .12 −
| ′τ= XXbV ST  Using the decomposition of ( ) 1−′XX  

(see Appendix A) gives the following unbiased estimators and the estimators of their 
conditional variances and covariances: 
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( ) [ ],1, 22
.22

2
20.222.220 SSnbVSbTb ST +τ=−= |  (2.5) 

( ) ( ),.2.122.2.121 SSbTTb −−−=  

( ) [( ) ( ) ],11 22
.2.121

2
21 SSSnnbV ST −++τ=|  (2.6) 

( ) ,, 22
22

2
22 SbVSSb STTS τ== |  (2.7) 

( ) [ ( ) ],1,COV 2
.2.1.22

2
1120 SSSSnbbST −+−τ=|  (2.8) 

( ) [ ],,COV 2
.2

2
2220 SSbbST τ−=|  (2.9) 

( ) [( ) ]2
.2.1

2
2221,COV SSSbbST −τ−=|  (2.10) 

and 

( ) ( )∑ ∑= =
−+−−−=τ

2

1 1 21
2

222120
2 .3ˆ

i

n

j ijijij
i nnSbIbbT  (2.11) 

3. Total Treatment Effect and Treatment Effect Explained 

In this section, we introduce the concept of the total treatment effect of a key 
clinical endpoint T and the part of this total treatment effect “explained” by another 
endpoint S. An estimate of the total treatment effect of the endpoint T from the 
marginal model (2.2) is 

 .2.1 TTU −=  (3.1) 

and the adjusted treatment effect of this endpoint from the conditional model (2.3)              

is ( ) ( )..2.122.2.121 SSbTTb −−−=  Note that the adjusted treatment effect is a 

measure of treatment effect of T that is adjusted for S through a linear model. The 
adjustment is to remove from the treatment of T the portion explained by S. 
Therefore, a direct measure of treatment effect of T that is explained by S is the 

difference between the two estimators, .2.1 TT −  and ( ) ( )..2.122.2.121 SSbTTb −−−=  

This difference is 

 ( )..2.122 SSbD −=  (3.2) 

Then the PTE is simply the ratio .UD  See Freedman et al. [5]. The joint sampling 

distribution of D and U contains information about the extent of dependency that 
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exists between the treatment-induced effects of endpoints T and S. Note that TbU =  

and 21bbD T −=  are functions of least square estimators of their corresponding 

parameters in the models (2.2) and (2.3), respectively. 

In Appendix B, we derive the variances and covariances for U and D . If error 
terms in the models (2.2) and (2.3) follow normal distribution, the joint distribution 
of U and D follows a bivariate normal distribution. The means ,TU β=μ  

SD ββ=μ 22  and variances and covariances are derived in Appendix B. In a general 

situation, the joint distribution between U and D can be evaluated by the 
bootstrapping based technique. We use this joint distribution information to compute 
PTE value by our approach. 

It is important to note that U and D will enjoy the same sign as shown in Table 
B1 (see Appendix B). This situation will also hold when generating the 
bootstrapping based joint distribution of D and U. The estimate 22b  will have the 

same sign as the estimate of ρ, because .2
22 SSb TS=  Therefore, the sign of D will 

simply be product of the signs of 22b  and ..2.1 SS −  The sign of U will be the same 

as that D, because, given the models (2.2) and (2.3), covariance between U and D is 
always positive (see Appendix B for the proof). 

4. Bootstrapping Based Evaluation of PTE for a Trial 

In this section, we discuss a method of evaluating the true PTE value on using a 
probability curve cP  which for its determination uses the joint sampling distribution 

of the sample statistics .2.1 TTU −=  and ( )..2.122 SSbD −=  These two statistics 

and their concepts are already addressed in the previous section. 

Without loss of generality, we can assume that both U and D are positive, 
because if U and D are both negative, they can be converted both to positive 
numbers. For a given c in the interval [ ],1,0  let cP  be the conditional probability 

 ( ),Pr 0uUcUDPc >|>=  where .10 << c  (4.1) 

Notice that it is a non-decreasing conditional probability function in c given 
.0uU >  In this function, the value of 0u  is to form the statistical test of the primary 

endpoint for treatment efficacy. It is the critical value for rejecting the null 
hypothesis of 0H  of no treatment efficacy for the clinical endpoint T. That is, 
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( ) =|> 00Pr HuU  21 α−  for a 1-sided test at the significance level of .2α  We 

make this condition of 0uU >  because, in a clinical trial, unless the treatment effect 

for the primary clinical endpoint is statistically significant (or at least marginally 
significant) there may not be any interest in explaining it through other endpoints. 
Note that cP  by definition (4.1) is basically a conditional probability curve for a 

binary event obtained on checking whether the extent of the treatment effect 
explained D exceeds a fraction c times the total treatment effect U or not. 

Once this cP  curve is established (we give a bootstrapping based method for 

this), a value of c as ∗c  is then read on this curve such that this ∗c  is the maximum 

value of c satisfying ( ).20.0or10.0for .,e.g1 =γγ−≥cP  This ∗c  then serves as 

a lower bound for PTE with the conditional probability of .1 γ−  If in a trial, for a 

value of 50.0=c  the corresponding value of 80=cP  percent, then one may 

conclude that the chances are fairly high for concluding that the true PTE value is at 
least 50 percent. However, if in a trial, for a 50.0=c  the corresponding value of cP  

happens to be fairly low, e.g., less than 10 percent, then one may conclude that 
chances are fairly low for the true PTE value of greater than 50 percent. Note that 
this lower bound is different from the conventional lower confidence interval for the 
PTE as it is derived under the condition .0uU >  

There is no interpretational difficulty in evaluating PTE on using the new 
measure cP  discussed above. Suppose that the unknown true value of PTE given 

endpoints T and S for a clinical trial is .0c  Then ( ) ( ),0 UEDEc =  where E stands 

for the expected value. As D and U are consistent estimators of ( )DE  and ( ),UE  

respectively, the conditional probability measure cP  will converge to a single-step 

function as the sample size is large. That is, 1=cP  when 0cc ≤  and 0=cP  when 

.0cc >  In this case, for any ,1<γ  .PTE0 ==∗ cc  Note that for the case when cP  

is near 1 for all ,1<c  then S will be the perfect surrogate of T. For other cases, S 
will be a partial surrogate or not even a partial surrogate of T depending on the 
properties of cP  curve for a trial. 

The cP  curve for observed treatment effects of T and S can be directly 

computed by a numerical integration method (see Appendix D) under the 
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assumptions D and U follow a bivariate normal density and estimates of the 
covariance matrix of T and S, and that of the error variance in the model (2.3) can be 
treated as true values. This may be reasonable approach to follow a sufficiently large 
size trial. However, the cP  curve can easily be computed by the following 

bootstrapping technique. Original data can provide a pair of ( )du,  values from 

equations (2.1) and (2.3). Then repeated bootstrapping aN  times with replacement 

from the original data, and using of (3.1) and (3.2), can give aN  paired data on U 

and D as {( ) },...,,1:, ajj Njdu =∗∗  asterisks indicating data points obtained by the 

bootstrapping method. Suppose that for this data, 

{ } ,andtimesof# 01 akkk NuucudA >>= ∗∗∗∗  

{ } ,timesof# 02 ak NuuA >= ∗∗  

then ∗∗∗ = 21 AAPc  is a bootstrapping estimate of cP  for a given c. This algorithm is 

then repeated for different values of c for getting the cP  curve (see Appendix C). 

This algorithm also allows ∗r  calculations from a bootstrapped data {( ) :, ∗∗
jj du  

}aNj ...,,1=  by the usual product moment correlation coefficient formula. 

5. General Case 

5.1. Model specification and estimation 

In this section, we discuss the extension of cP  measure to more than two 

endpoints. We assume that along with T there are several other endpoints (e.g., likely 
surrogates or other endpoints of interest) and one is interested in finding out as to 
how much of the treatment induced effect of T can be explained jointly by the 

treatment effects of these other endpoints. Let ( ) ( ) ( )KSSS ...,,, 21  be such K 

endpoints. The model (2.3) when updated takes the form 

 ( ) ( ) ( ) ,1,2
2

23
1

222120 ij
K

ijKijijijij SSSZT ε+β++β+β+β+β= +  (5.1) 

with ( ) 0=εijE  and ( ) 2Var τ=εij  conditional on ( ) ( ) ( )KSSS ...,,, 21  for inj ...,,1=  

and .2,1=i  
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The design matrix X for this model is given by 

 
( ) ( ) ( )

( ) ( ) ( )
.

...

...

2
2

2
1

222

1
2

1
1

111

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

K
nn

K
nn

sss

sss
X

01

11
 (5.2) 

In (5.2), 1n1  and 2n1  are column vectors of ones of dimensions 1n  and ,2n  

respectively; 2n0  is a column vector of zeros of dimension ;2n  ( )k
is  (for 

Kk ...,,1=  and )2,1=i  are column vectors of observations for the k endpoints in 

the ith treatment group. Let ( )′ββββ= +1,2222120 ...,,,, Kβ  be the parameter 

column vector and let ( )′= 21 221111 ...,,,...,, nn TTTTt  be the column vector of 

observations on the key endpoint T. Then the least square estimate 

( )′= +1,2222120 ...,,,, Kbbbbb  of β  is given by ( ) .tXXXb ′′= −1  It is easy to 

verify that the random measure D is given by 

( ( ) ( ) ) ( ( ) ( ) ) ( ( ) ( ) ),.2.11,2
2
.2

2
.123

1
.2

1
.122

KK
K SSbSSbSSbD −++−+−= +  (5.3) 

and ( ).2.1 TTU −=  as before. Therefore, cP  can be calculated on using the 

bootstrapping algorithms of the previous section. In practice, as before, D should 
have the same sign as U. It is also desirable that each component 1,2 += kk bD  

( ( ) ( ) )kk SS .2.1 −  ( )Kk ...,,1for =  should be of the same sign as that of U, otherwise, 

there can be difficulty in interpretation of the results. The conditional variance 2ˆ ST |σ  

is given by (5.4): 

{ ( ( ) ( ) ( ) )}∑∑
= =

+| +++++−=σ
2

1 1

2
1,2

2
23

1
222120

2 .ˆ
i

n

j

K
ijKijijijijST

i

nSbSbSbZbbT  

 (5.4) 

Example in Section 7 estimates cP  for the case when along with T there are two 

endpoints of interest are included in the conditional models to see as to how these 
two endpoints jointly explain the treatment effect of T. The above theory and 
calculations are meant for the continuous or score type endpoints. 
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6. Correlation Measure ∗r  and the Likelihood Measure LRF 

6.1. Correlation measures ∗r  

The bootstrapping algorithm introduced in Section 4, gives a simple bootstrap 

based correlation measure ∗r  from the data {( ) }ajj Njdu ...,,1:, =∗∗  when calculated 

by the usual product moment correlation coefficient formula. This ∗r  provides a 
simple measure of association between the induced treatment effect of a primary 
clinical endpoint and the part of it that is explained by other endpoints of interest. 

Note that ,10 ≤≤ ∗r  because covariance between U and D is non-negative (see 

Appendix B). An ∗r  value close to 1 would indicate that the other endpoints in the 

conditional model are joint surrogates for the primary clinical endpoint. This ∗r  
calculation can be made with or without the restriction that the treatment effect for 
the clinical endpoint is statistically significant in the trial at a specified significance 
level. 

An r value similar to ∗r  value can also be calculated for the simple case of two 
endpoints without the bootstrapping technique on using the variances and 
covariances expressions for U and D given in Appendix B on replacing the unknown 
parameters by their corresponding sample estimates (see equations (B.2), (B.3) and 
(B.5)). The confidence interval for this r, however, can be calculated by the 
bootstrapping technique. 

6.2. The LRF (likelihood reduction factor) measure 

In this section, for comparison purposes we discuss another measure known as 
the LRF or the likelihood reduction factor (see Alonso et al. [1]). One can think of 
LRF as a sample estimate of a general measure of association between endpoints 
based on the information gain about the true endpoint on using the surrogate. 

However, we like the idea of using LRF  instead. The measures ∗r  and LRF  
can be thought of as global measures for explaining the treatment effect of a clinical 
endpoint by other endpoints. That is, greater is the value of D relative to U, greater 
will be the values of these measures. On the other hand, cP  based PTE measure 

provides more specific information in this regard as a function of c. For example, a 

value of ∗r  or LRF  of 0.8 would suggest that a significant portion of the 
treatment effect of the clinical endpoint is being explained by other endpoints, but it 
does not convey the information as to how much and with what probability. The 
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measure cP  addresses this later question conditionally given that the result in the 

trial for the main endpoint T is statistically significant. 

In the following, we describe the calculations of this LRF. Let the errors for the 
marginal model (2.2) and the conditional model (2.3) be normally distributed as 

( )2,0 TN σ  and ( ),,0 2
STN |σ  respectively, for inj ...,,1=  and .2,1=i  Then the 

likelihood ratio statistics Λ for evaluating the added information by the model (2.3) 
is given by 

 ,
ˆ

ˆ
2

2

2 n

T

ST

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

σ

σ
=Λ |   where ,21 nnn +=  (6.1) 
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j
ijijijST

i

nSbIbbT  

Estimators ,ˆ Tμ  ,Tb  ,20b  21b  and 22b  are maximum likelihood estimators. They 

are the same as given in Section 3. Therefore, if 2G  is the log-likelihood ratio 
statistics, the LRF, as defined by Alonso et al. [1], is given by 

 ( ) .ˆˆexp1LRF 2
TSTnG σσ=−−= |  (6.2) 

7. A Numerical Example of an Acne Trial 

Acne clinical trials, for evidence of efficacy of a treatment, typically analyze 
three endpoints after 11 weeks of treatment. These endpoints are: (1) IGA 
(investigator global assessment) on an improvement scoring scale, (2) inflammatory 
lesion counts, and (3) non-inflammatory lesion counts. Clinicians consider IGA an 
important clinical endpoint. The IGA endpoint is expected to consider a wider aspect 
of the disease as it considers facial lesions and other clinical aspects, such as, the 
extent of facial itching, burning, etc. Such acne trials, for a clinically meaningful 
evidence of treatment benefit, generally require that, the IGA endpoint shows 
convincing evidence of treatment efficacy, and the two lesion count endpoints also 
show some evidence of treatment efficacy. 
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It is of interest to know as to how much of the treatment efficacy in the IGA 
endpoint is explained jointly by the treatment effects of the two lesion count 
endpoints. In this regard, we first briefly describe the results a specific vehicle-
controlled acne clinical trial without mentioning the name of the trial and the name 
of the product studied. We then illustrate the determination of cP  and PTE for 

answering, for this specific trial, as to how much of the IGA treatment effect is being 
explained by the joint treatment effects of the other two endpoints by the linear 
modeling technique we have presented in this article. Our results show that for this 
trial treatment effects for the two lesion count endpoints do explain a certain 
percentage of the treatment effect of the IGA endpoint but this percentage is not 
large enough to ignore requiring a convincing result of efficacy for this endpoint for 
a clinically meaningful benefit of the study treatment. 

This specific acne trial was a double-blind randomized trial in which the 
treatment arm was compared to a vehicle arm after 11 weeks of treatment. After 
excluding a very few dropouts, there were 931 =n  patients in the treated arm and 

562 =n  patients in the vehicle arm. The randomization scheme for the trial was 

,1:2  i.e., for every 2 patients assigned to a treated arm, one patient was assigned to 
the vehicle arm. In this trial, each of the three endpoints, i.e., the IGA and the two 
lesion count endpoints, showed evidence of treatment efficacy at the significance 
level of ,01.0=α  and there was evidence of associations among the three endpoints 
(see box plots and scatter plots in Figure 1). In this example, T stands for the IGA 

and ( )1S  and ( )2S  for the non-inflammatory and inflammatory lesion counts, 
respectively. The Q-Q normal plot (Figure 2) showed that the residuals for the 
conditional model in (5.1) followed normal density except for a few points in the 
tail.  
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Figure 1 (Acne trial). Box plots and scatter plots for the three endpoints, investigator 
global assessment (Iga), inflammatory lesion counts (inflam) and non-inflammatory 
lesion counts (non.inflam). 
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Figure 2. Q-Q normal plot for the residuals of the conditional model (5.1) for the 
acne trial example shows that, except for a few points in the right tail, residuals 
pretty much follow normal distribution. 
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Figure 3 (Acne trial). 
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• (a) Scatter plot ( )∗∗ du ,  is based on 1,997 bootstraps from a total of 

2,000 bootstraps drawn with replacement from the original acne trial 

data. In a pair ( ),, ∗∗ du  ∗u  is a treatment effect for the endpoint T 

=( Investigator global assessment), and ∗d  is the extent of it explained 

jointly by the endpoint ( )1S  (non-inflammatory lesion counts) and ( )2S  

(inflammatory lesion counts). Correlation ( ) .64.0, == ∗∗∗ rdu  

• (b)-(c) Density plots of ∗u  and ∗d  based on the 1,997 bootstraps in (a). 

• (d) Plot of ∗
cP  versus c. In this plot, points ( )∗cPc,  were obtained by the 

Bootstrapping Algorithm 1 (Appendix C). 

Figures 3(a) to 3(c) display some properties of a data set on ( )DU ,  generated 

by the bootstrapping of the original data by using equation (5.3) for D and equation 
(3.1) for U. A scatter plot of this data set indicates association between the two 

statistics U, D with ;64.0=∗r  U is a treatment effect measure for T and D is the 

part of the treatment effect of T that is explained jointly by ( )1S  and ( ).2S  Density 

plots for D and U show that they are about normally distributed. Values of ∗
cP  for 

different c were from the bootstrapping algorithm of Appendix C (Table C1). Figure 

3(d) shows a plot of ∗
cP  versus c. In Figure 3(a), the scatter plot ( )∗∗ du ,  is based 

on 1,997 bootstraps from a total of 2,000 bootstraps drawn with replacement from 

the original acne trial data. In three bootstraps, ∗u  did not meet statistical 

significance at the 0.025 level by 1-sided test, and in one case ∗d  exceeded .∗u  In a 

pair ( ),, ∗∗ du  ∗u  is a treatment effect for the endpoint T (IGA) and ∗d  the extent 

of it that is explained jointly by the endpoint ( )1S  (non-inflammatory lesion counts) 

and ( )2S  (inflammatory lesion counts). The value of ∗r  without the treatment effect 

restriction based on 10,000 bootstraps was 625.0=∗r  and the value of LRF  was 
0.518 with 95% confidence interval of (.436, 618). This confidence interval was the 
bootstrapping method. 

Values of ∗
cP  at 40.0=c  and 0.45 are 93 and 82 percent, respectively. The 

value of ∗
cP  at ,21=c  although not in the 80 to 90 percent range, is 64 percent 
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which is greater that 50 percent. However when the value of c is 0.70 the value ∗
cP  

is relatively very small. Therefore, it is less likely that the true value of PTE is 
greater than 70 percent but there is a high probability that it is at least 45 percent. 
For the endpoints 1S  and 2S  to be joint surrogates for T, one would expect a high 

value of ∗
cP  at 21=c  (e.g., 90 percent) and value ∗

cP  of greater than 50 percent at 

.43=c  These results for this trial indicate that there is some overlap between 

treatment effect of T and that contributed jointly by the treatment effects of 1S  and 

.2S  However, this overlap is not small and also not large enough for replacing the 

clinical endpoint by these two objective endpoints. On the other hand, the extent of 
this overlap suggests that positive findings in objective endpoints strengthen the 
positive finding of the clinical endpoint. In addition, the IGA endpoint justifiably 
provides some extra information regarding the treatment effect than those provided 
by the two lesion count endpoints. 

8. Some Concluding Remarks 

The results of this article can be useful for Phase III confirmatory clinical trials 
and also for early phase exploratory trials. Early phase trials explore the effects of a 
test compound on many different types of endpoints. Some are for capturing 
pharmacologic or biologic effects of the test treatment. These endpoints are different 
from the clinical endpoints but early trials are easier to do with these endpoints. 
There is generally an interest in learning if the treatment effects for some of these 
non-clinical endpoints can be used to explain the treatment effect for certain clinical 
endpoints. The proposed method can be used for this purpose if appropriate data are 
available for the test compound or for compounds of similar mechanism of actions. 

Late phase confirmatory trials generally include primary clinical endpoints for 
addressing primary objectives of a trial and a few key secondary clinical endpoints 
for either strengthening the results of the primary endpoints or for additional 
treatment benefit. In this regard, it is of interest to know how the treatment effects 
for these endpoints overlap in explaining each other. The proposed methods can be 
used for this purpose. The results obtained can be useful in claiming an extra benefit 
for a secondary endpoint if this secondary endpoint had a beneficial treatment effect 
for the experimental treatment with little or no explaining ability of the beneficial 
treatment effects already found for the primary endpoints. On the other hand, if this 
secondary endpoint treatment effect is able to explain most of the treatment effects 



MUSHFIQUR RASHID and M. F. HUQUE 164 

of the primary endpoint, then this secondary endpoint result would strengthen the 
results of the primary endpoints but may not qualify for an extra benefit of the 
treatment. 

Methods proposed can be further improved on including baseline covariates in 
the marginal and conditional models of this article. This can reduce the error 
variances of these models, and thus can further refine the conditional probability 

curve of this article for evaluating PTE and in providing the ∗r  estimate. These 
methods, however, are for continuous type endpoints and assume that the use of 
linear models is justified. The later can be checked by investigating the residuals of 
the fitted models. These methods may not be appropriate for other types of endpoints 
such as binary and for other types of modeling. 

It is worth mentioning that there may be some other clinical or biological 
phenomenon for which the two endpoints do not associate directly, but one of them 
could be capable of capturing an effect of the other. This can happen in a clinical 
trial when two endpoints for a given drug are not on the same linear causal pathway 
but link through an indirect network of pathways which may or may not be 
identifiable depending on the complexity of the mechanism of the action of the drug 
and the site of the action of the drug. For example, the test drug may breakdown 
within the human body after some chemical reactions into multiple active 
metabolizes which may form an indirect complex bio-chemical metabolic network 
for targeting the two endpoints in inducing treatment effects. The methods proposed 
in this article are not meant to capture this type of complex dependence between the 
induced treatment effects of the two or more endpoints. A meta-regression approach 
of multiple similar studies, however, may be able to better capture such dependence. 
This is an area of further research. 

Disclaimer 

The views expressed in this article are of the authors and not necessarily of the 
U.S. Food and Drug Administration. 

Appendix A 

On partitioning the matrix XX ′  as 
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where ,2111 nnA +=  [ ( )].22.11112 SnSnnA +=  and 22A  is the matrix formed on 

deleting the first row and first column of the matrix XX ′  in (2.4). Let the matrix C 

be the inverse of XX ′  with sub-matrices ,11C  ,12C  21C  and 22C  corresponding 

to sub-matrices ,11A  ,12A  21A  and ,22A  respectively. Then 

( ) 1
2212

1
2.1112

1
21

1
221211

1
2.1111 , −−−−− −=−== AAACAAAAAC  

and 

( ) .1
22

1
2212

1
2.1121

1
2222

−−−− += AAAAAAC  

On evaluating the above C sub-matrices, 
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Appendix B 

Variances and covariances of D and U 

( )DVar  follows from the standard formula: 

( ) [ ( )] [ ( )].Var .2.122.2.122| SSbEVSSbVED STSSTS −+−= |  

As [ ] ,ˆ
2222 β=β| STE  the second term reduces to 

[ ( )] ( ).11 21
22

22.2.122 nnSSV SS +σβ=−β  

The first term is [( ) ]22
.2.1

2 SSSES −τ  from (2.7). This term, however, reduces to 

[( ) ].2
.2.1 SSES −  [ ]21 SES  under the assumption that observations in each 

treatment arm are independently and identically distributed as normal random 

variables. Also, under this normal distribution assumption, ,2
2

22
21 −+χ=σ nnSS  a 

chi-square random variable with 221 −+ nn  degrees of freedom with ( )2
221

1 −+χ nnE  
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( ).41 21 −+= nn  Therefore, the first term [ ( )].2.122 SSbVE STS −|  reduces to 

( ) ( ) ( ) ( ).2114 2121
2

21
222 −++τ+−+σβτ nnnnnnSS  

Consequently, 

( ) ( ) [( ) ]22
.2.1

2
21

22
22 11Var SSSEnnD SS −τ++σβ=  (B.1) 

 ( ) ( ) ( )411 21
222

21
22

22 −+σβτ++σβ= nnnn SSS  

( ) ( ).211 2121
2 −++τ+ nnnn  (B.2) 

The result in (B.1) is general, but the result (B.2) is based on the normal assumption. 

The quantity [( ) ]22
.2.1 SSSES −  in (B.1) for non-normal situations can be found, 

for example, by the bootstrapping technique. For sufficiently large sample sizes, the 

last term in variance formula (B.2) can be ignored as it is of order ( ),1 2nO  

 ( ) ( ) ( )212121Var bEVbVEb STSSTS || +=  

[( ) [( ) ] .011 22
.2.121

2 +−++τ= SSSEnn S  

However, 

( ) ( ) ( ) ( ).COV2VarVarVar 21 DU,DUb −+=  

Therefore, 

( ) ( ) ( ) ( ){ } .2VarVarVarCOV 21bDUDU, −+=  

This simplifies to 

 ( ) ( )21
22

22 11,COV nnDU S +σβ=  (B.3) 

 ( ).11 21
22 nnT +σρ=  (B.4) 

The expression (B.4) follows under the normal distribution assumption which gives 

.2222
22 sT σσρ=β  The variance ( )UVar  can also be written as 

 ( ) ( ) ( ) ( ).1111Var 21
222

2221
2 nnnnU ST +τ+σβ=+σ=  (B.5) 
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Table B1. Justification for the same sign for U and D 

Cases Est. of ρ 22b  .2.1 SS − .2.1 TTU −=  ( ).2.122 SSbD −=  

I + + + + + 

II + + – – – 

III – – + – – 

IV – – – + + 

Appendix C 

Bootstrapping Algorithm 1 

Step 1: 

(a) Check that both T and S enjoy evidence of some treatment effect and ρ is 
different from zero. 

Step 2: 

(a) Calculate .2.1 TTU −=  and ( ).2.122 SSbD −=  from the original data 

{( ) }.2,1and...,,1:,, == injSIT iijijij  

(b) Check that both U and D  have the same sign. If both U and D  are 
negative numbers then change them to both positive numbers. 

Step 3: 

(a) Create a new data {( ) }2,1and...,,1:,, ==∗∗∗ injSIT iijijij  by bootstrapping 

the original data by the method of bootstrapping with replacement. 

(b) Calculate new statistics ∗U  and ∗D  from this new data using the same 
formulae as for U and D. 

(c) Retain ∗U  and ∗D  if both have the same sign otherwise discard these values 
and repeat 3(a)-3(b). 

(d) If both ∗U  and ∗D  are negative numbers then change them to both positive 
numbers. 

Step 4: 

(a) Repeat Step (3) aN  times giving paired data {( ) }....,,1:, akk NkDU =∗∗  
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Step 5: 

(a) Calculate { } { timesof#,andtimesof# 201 =>= ∗>∗∗∗∗ ANuUcUDA akkk  

} .0 ak NuU >∗  

(b) Calculate ∗∗∗ = 21 AAPc  and calculate ∗r  value from the bootstrapped data 

{( ) }ajj Njdu ...,,1:, =∗∗  by the product moment correlation coefficient 

formula. 

Table C1 (Acne trial). Values of ( )*, cPc  from the bootstrapping distribution of 
statistics ( )DU ,  

c *
cP  c *

cP  

0.30 0.994 0.35 0.980 

0.40 0.931 0.45 0.819 

0.50 0.640 0.55 0.438 

0.60 0.261 0.65 0.138 

0.70 0.067 0.75 0.030 
The given trial was re-sampled 2,000 times satisfying certain condition 

(see Bootstrapping Algorithm 1) 

Appendix D 

Calculation of cP  by numerical integration method 

Calculation of cP  readily follows from the bivariate normal distribution of U 

and D with means ( )DU μμ ,  and 2
Dσ  (given in (B.1)), DUσ  (given in (B.4)) and 

2
Uσ  (given in (B.5)). In which case, the conditional distribution of D given uU =  

is normal with mean ( ) ( ),UUDDUD u μ−σσρ+μ  and variance ( ).1 2
DUρ−  It is 

easy to verify that 

 ( )
( )( ) ,1

,1
0

0
UU

c u
cuIP

σμ−Φ−
−=  (D.1) 

where the integral 

( ) ( ) ( ) ( )
( )∫
∞

σμ− ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

ρ−σ

μ−μ+σρ−σ
Φϕ=

UUu
DUD

DUDDUU dxccxxcuI
0

.
1

,
20  (D.2) 
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Functions ( )xϕ  and ( )xΦ  are, respectively, the density and cumulative distribution 

functions of a standard normal random variable X. The integral ( )cuI ,0  in (D.2) 

can be readily calculated by a standard numerical method. One can use the SAS/IML 
function QUAD (1999) for calculating this integral on assuming the unknown 
parameters. 
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