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Abstract

Under the assumption of the well-known heuristics of Cohen and

Lenstra (and the new extensions we propose) we give proofs of several

new properties of class numbers of imaginary quadratic number fields,

including theorems on smoothness and normality of their divisors. Some

applications in cryptography are also discussed.

1. Introduction

The theory of class numbers ( )∆−h  of imaginary quadratic fields

( ),∆−Q  aspects of which we would like to discuss in this paper, has a

long history dating back to Gauß and his Disquisitiones Arithmeticae [13]

of 1801. There he proved that the ring of integers of the imaginary

quadratic number field ( )∆−Q  is a principal ideal domain for the
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following nine values of ∆: ,163,67,43,19,11,8,7,4,3=∆  and he

conjectured that these were the only values of ∆ for which the class

number is 1. This is equivalent to the statement that binary quadratic

forms ,22 CyBxyAx ++  with ,4 2BAC −=∆  will always have more

than one class if .163>∆  This tantalizing conjecture was proved by

Heegner [14] in 1952. Today two main research problems in the theory of
class numbers of imaginary quadratic fields deal with:

(A) General growth properties of class numbers.

(B) Divisibility properties of class numbers.

While these two aspects are related, the more difficult of the two - the
group of questions labelled (B) - is something we would like to investigate
in detail with the help of Dirichlet’s class number formula, Siegel’s
theorem and the Cohen-Lenstra heuristics.

Let us begin by giving a brief explanation of the role of the two
conjectures in the theory.

(A) Gauß himself conjectured that ( ) ∞→∆−h  as ,∞→∆  a theorem

that was proved by Heilbronn only in 1934. Following Dirichlet (see [25]),
one defines ( )∆χ,sL  as:

( ) ( ) ( )∑ ∏
∞

=

−
∆∆

∆ 




 χ−=χ=χ
1

1

,1:,
n p

ss p

p

n

n
sL

where ∆χ  is the Kronecker symbol ( ) ( ).nn ∆−=χ∆  His class number

formula states

( ) ( ),,1 ∆χπ
∆=∆− Lh

and this shows that many growth questions concerning ( )∆−h  could be

resolved if we had more information about the behavior of ( )∆χ,sL  at

the line .1=s

It was Littlewood [17] who proved that

( ) 0, ≠χ∆sL   for  ( ) ( ) ,
loglog

21
∆

∆
>>∆−⇒>ℜ hs (†)
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i.e., the Riemann Hypothesis (see [20]) can be used to give us a very
good lower bound on ( ).∆−h  In 1935 Siegel [23] proved - this time

unconditionally - that if χ  is any real primitive Dirichlet character

(mod p), and ,0>ε  then we have

( ) ( ) ( ) ,,1 2
1 ε−

ε
∆>>∆−⇒ε>χ h

q

C
L (††)

as .∞→∆  For our counting applications bounds of this type will be

sufficient.

(B) Questions concerning distribution and divisibility properties of
class numbers are even more difficult. In fact, in many situations it is
very hard, if not impossible, then to even conjecture anything plausible
about a given class number phenomenon. The remarkable heuristics due
to Cohen and Lenstra (see [4, 5] and [2, 3]), which are notoriously
unprovable right now, but describe very accurately the most fundamental
property of class numbers - the prime divisibility - are an exception to
this rule. For class numbers of imaginary quadratic fields we restate a
special case of these heuristics, together with our extensions, in the form:

Conjecture 1.1. Let 2>p  denote a prime number. Then, in the

above notation, we have

(a) (Divisibility) The probability ( )p  that p divides ( )∆−h  is equal to

( ) ( )[ ] ( ) ∏
∞

=

+−−+=







−−==≡∆−

1
752

.1111111:mod0Pr
n

n ppppp
pph (1)

(b) (Uniformity) The property (a) can be refined as follows: As
,∞→x

( ) ( ){ } ( ),~mod0:# pxphx ≡∆−≤∆

where p is fixed, or - more generally - a prime that satisfies ( ),α= xop

for all .0>α

(c) (Independence) If p and q are fixed odd primes, and ( )pq  denotes

the probability that both p and q divide ( ),∆−h  i.e., ( ) ( ),mod0 pqh ≡∆−

then ( ) ( ) ( ).qppq =  More generally, the density statement remains

true as ,∞→x  as long as ( ),, α= xoqp  for all .0>α
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(d) (Equidistribution) For a given prime p and an integer ,0 pa <≤

define ( )pa  to be the probability that ( ) ( ).mod pah ≡∆−  Then all

moduli 0≠a  are equidistributed, i.e.,

( ) .1111
1

1
752 








+−−+

−
= L

ppppp
pa (2)

Remark. The parts (a), (b) and (c) of Conjecture 1.1 implicitly follow
from ideas behind the Cohen-Lenstra heuristics, and will be the starting
points of most of our investigations. The part (d) is our new addition,
which abundant numerical evidence seems to support, see Appendix.

2. Lemmas

Let N  denote the set of all natural numbers and S denote the set of

all square-free integers ,0<  and let ( )xS  be the number of ,Sn ∈  such

that .xn ≤  Due to the congruence conditions on fundamental

discriminants ∆, we will consider two cases. The set 1S  will be the set of

all ,0<∆  such that ( )4mod1≡∆  and ,S∈∆  the set 2S  will be the set

of all negative ∆ with ( ) ( )4mod3,24,4mod0 ≡∆≡∆  and .4 S∈∆  Also,

we will let =∗S  21 SS ∪  and ( )xS∗  be the number of elements ,∗∈ Ss

with .xs ≤  The symbol [ ]x  will denote the integer part of x, and as

usual, we define { } =x  [ ]xx −  to be the fractional part of x.

The following elementary lemmas will be applied:

Lemma 2.1 (Euler [10, 11]).

∑ ∑
∞

=
=π=<=

p n np
A

1

2

22
...64493.1

6
11:

and

∑ ∑
≤≤ ≤≤

<<
xpy xny

ynp
,111

22
(3)

where the sums are extended over primes, A is an absolute constant and
.2 xy ≤≤
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Lemma 2.2 (Mertens [18]).

( )∑
≤≤

+−=
xpy

Oyx
p

,1loglogloglog1 ( )∗3

for ,3 xy ≤≤  where the absolute value of the O-constant is smaller than 1.

Lemma 2.3 (Landau [15]). If ,3 xy ≤<  then for a product of k

distinct primes we have

( ) ( ) (( ) )∑
≤≤

−+−=
xppy

k
k

kk

k
k

xOyx
pp

1

,loglogloglogloglog1 1

1
(4)

where the absolute value of the constant kO  is smaller than k.

Corollary 2.4. Let M be the set of all the integers m, fixed

factorization of which has exactly s primes in the first power, t primes

in the second power, etc. Then for xy ≤≤3  we have

( ) ( ) (( ) )∑
≤≤

∈

−+−=

xmy
Mm

s
A

ss xOyx
m

.loglogloglogloglog1 1 (5)

Lemma 2.5 (Dirichlet [6]). The number of square-free numbers below

x can be estimated as:

( ) ( ) ( )∑ ∑
∈
≤ ≤

+
π

=µ==

Sn
xn xn

xOxnxS .61:
2

2 (6)

Corollary 2.6. In the above notation,

( ) ( ) ( ) ( ).31
4

6
3
2~,26

3
1~

2222221 xOxxSxxxSxxxS +
π

=⇒
π

=⋅
π
⋅

π
=

π
⋅ ∗ (7)

The estimate (8) will be used extensively in Section 4.

3. Smoothness of Class Numbers

In this section we show that the difference in the smoothness
probability of class numbers of imaginary quadratic number fields and
that of ordinary integers is negligible. Some new notation is needed. An
integer n is said to be B-smooth, if all its prime factors are .B≤  Let D

be a positive integer and H be an upper bound for the class numbers of
fundamental discriminants ∆ such that .D≤∆  Then we prove
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Theorem 3.1. Let 1>u  be a fixed real number and let uHB 1=  be a

smoothness-bound. Let ∆ be a randomly chosen fundamental discriminant

such that ,D≤∆  and let x be a randomly chosen integer such that x≤1

.H≤  Then under the assumption of Conjecture 1.1, we have

( )[ ]
[ ] .

smoothBisx
smoothBish

D
1

-Pr
-Prlim =∆−

∞→
(8)

Remark. For the smoothness probability of integers, we have

[ ] [ ],smooth-notisPr1smooth-isPr BxBx −= (9)

where

[ ] ( )∑
>

−−=
0

1 ,1smooth-notisPr
i

i
i SBx (10)

with

∑ ∏=
∞→

i jpp p j
iD p

S
...,,1

1lim (11)

such that each product of primes appears only once. Accordingly,

   ∑ ∑
≤⋅⋅
≤≤<i
Hipp

ipp ppB...,,1
1

1

,forshorthandais

where each iS  is the sum of products that involves exactly i primes.

Clearly, we have 0=iS  for all .ui >

Expressions similar to (10) and (11) can be found for class numbers

if one replaces p1  by ( )p  in (11), as claimed by the Cohen-Lenstra

heuristics, so that

( )[ ] ( )∑
>

−−=∆−
0

1 ,1smooth-notisPr
i

i
i TBh (12)

with

( )∑ ∏=
∞→

i jpp p
jiD

pT
...,,1

.lim (13)
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Again, 0=iT  for all .ui >  Let .iii STE −=  Then we prove that

1lim =∞→ iiD ST  or 0lim =∞→ iiD SE  for all .ui ≤  This is equivalent

to the main result of Theorem 3.1.

Theorem 3.2. Let ui ≤≤1  and let ,iii STE −=  with iT  and iS  be

defined as in equations (13) and (11). Then .0lim =∞→ iiD SE

Proof. Since jpB <  for all primes jp  and ( ) ,111




 +<

jj
j pp

p  we

have

( ) ( )∑ ∑ ∏ ∏∏ ∏ 












−⋅=














−=

i i j jj jpp pp p p
jj

jp p j
ji pp

pp
pE

...,, ...,,1 1

111

∑ ∏ ∑ ∏∏ 





−


 +<














−





+<

i j i jjpp p pp p

i

jp jj Bppp
...,, ...,,1 1

11111111

( ) .1

2

1
2 B

iS
B

ii
B
iS ii

+⋅<




 +−+=

The last inequality holds for sufficiently large B, e.g., ,2iB >  which is a

modest requirement. Therefore, ( ) BiSE ii 1+<  and since ui ≤  with u

fixed, and ,∞→B  this proves the result.

Since u is fixed and ( )[ ]smooth-isPr, Bhui ∆−≤  differs from

[ isPr x  ]smooth-B  only by finitely many vanishing terms. This proves

Theorem 3.1.

Remark. Using a similar argument, one might even let u grow
modestly.

Remark. Buchmann and Williams demonstrated in [1] how to exploit
class groups of imaginary quadratic number fields for cryptography.
Since class groups are finite abelian groups, they can be, in principle,
used for cryptographic public-key primitives of Diffie-Hellman type.
However, no efficient algorithm is known for computing the class number
or non-trivial
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divisors thereof. Thus, it cannot be efficiently checked whether the class
number is smooth or whether it is divisible by a large prime; moreover, it
cannot be efficiently checked whether a randomly chosen element of the
class group generates the class group or a large subgroup thereof. The
only thing one can do is to resort to a probabilistic argument. Specifically,
another conjecture of Cohen-Lenstra claims that the class group is cyclic
or, with high probability, contains a large cyclic class group. Therefore, a
randomly chosen element will most likely generate a large subgroup of
the class group. But for cryptographic purposes, this is not sufficient.
Instead, it is necessary that the class number is divisible by a large
prime. Hence, upper bounds for the smoothness probability of class
numbers are required.

4. Number of Divisors of Class Numbers

For any positive integer n and any real number y, with ,2 xy ≤≤  let

us define

( ) ∑
≤
|

=ω

yp
np

y n 1    and   ( ) .∑
≤
||

=Ω

yap

a np

y an (14)

For xy =  this reduces to the well-known functions ( )nω  and ( ),nΩ  both

of which will be subjects of our investigations. In general, an arithmetic
function ( )nf  is said to have a normal order ( ),nF  if for any ,0>ε  for

almost all ( ) ( ) ( ) ( ) ( ).11, nFnfnFxn ε+<<ε−≤

Lemma 4.1 (Turán [26]).

For all ,0>x

( )( )∑
≤

<<−ω
xn

xxxn .loglogloglog 2 (15)

Remark. It follows that the normal order of ( )nω  is nloglog  (the

same is true for ( )).nΩ

Here we prove a Turán-type theorem for class numbers of imaginary

quadratic fields. The estimation of the first two moments of ( )( )∆−ω h  is

required.
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Theorem 4.2. Let us assume the truth of our Conjecture 1.1. Then, for

all ,0>x

( )( )( )∑
∗∈∆

≤∆<

<<−∆−ω

S

x

xxxh
0

2 .loglogloglog (16)

Proof. For the first moment, interchanging the order of summation,
and by applying (1), Lemma 2.1 and Lemma 2.2, we obtain

( ) ( )( )
( )( )

∑ ∑ ∑ ∑ ∑
∗∈∆ ∗∈∆ ≤ ≤∆<
≤∆< ≤∆< ∆−| ≤ ∆−|

==∆−ω=

S S yp x
x x hp yp hp

yy hx
0 0

1

0

11:M

[ ( ) ( )] ( ) ( ) { ( ) ( )}∑ ∑ ∑
≤ ≤ ≤

∗∗∗ −==
yp yp yp

pxSpxSpxS

( ) ( ) ( )( )∑
≤

∗ π+=
yp

xOpxS

( ) ( )∑ ∏
≤≤

∞

=

∗ +

















−−=

yp n
n

xO
p

xS
3 1

111

( ) ( ) ( )∑
≤≤

∗∗
+











+=

yp

xO
p

xSO
p

xS

3
2

( ) ( ).loglog xOyxS += ∗

For the second moment, interchanging the order of summation gives us

( ) ( )( )
( )

∑ ∑ ∑
∗∈∆ ∗∈∆ ≤
≤∆< ≤∆< ∆−| 


















=∆−ω=

S S yp
x x hp

yy hx
0 0

2

22 1:M

( ) ( )

( )

( )
∑ ∑ ∑ ∑ ∑ ∑∑

∗∈∆ ≤ ∗∈∆ ∆−|
≤ ∗∈∆ ≤≤

≤∆< ∆−| ≤∆< ≠ ≤∆< ∆−|∆−|

+==

S yp S hpq
yqp S ypyq

x hp x qp x hphq0 0 0
,

111

( )( )

( )

∑ ∑ ∑
≤
≤

∆−|
∗∈∆ ∗∈∆

≠ ≤∆< ≤∆<

∆−ω+=

xpq
yqp

hpq
S S

qp x x
y h

,
0 0

.1



w
w

w
.p

ph
m

j.c
om

SAFUAT HAMDY and FILIP SAIDAK138

And therefore, using Lemma 2.1 and Corollary 2.4, we obtain

( ) ( ) ( )

( )

∑ ∏∏
∆−≤
≤<≤

∞

=

∞

=

∗ +





























−−


















−−=

hpq
yqp n

n
n

ny yxO
qp

xSx
3 11

2 loglog111111M

( ) ( )

( )

∑ ∏∏
∆−≤
≤<≤

∞

=

∞

=

∗ +

















−−


















−−=

hpq
yqp n

n
n

n
yxO

qp
xS

3 11

loglog111111

( ) ( )∑ ∑
≤
≤<≤ ≤<≤

∗∗













+=

xpq
yqp yqp pq

xSO
pq

xS

3 3
2

( ) ( )yxO
qp

xSO
yqp

loglog
3

2
+












+ ∑

≤<≤

∗

( )( ) ( ).loglogloglog 2 yxOyxS += ∗

From unconditional lower and upper bounds similar to (††) it follows

that choosing, in estimates for ( )xy
1M  and ( ),2 xyM  the parameter y as

,δ= xy  for a constant ,
2
1 ε−<δ  will give

( ) ( )( )( )∑
∗∈∆

≤∆<

−∆−ω=

S

x

xhx
0

2loglog:T

( )( ) ( )( ) ( )∑ ∑ ∑
∗∈∆ ∗∈∆ ∗∈∆

≤∆< ≤∆< ≤∆<

+∆−ω−∆−ω=

S S S

x x x

xhxh
0 0 0

22 1loglogloglog2

( ) ( ) ( ) ( ( ) ( ))xOxxSxxxOxxS +−+= ∗∗ loglogloglog2loglogloglog2 2

( ).loglog xxO=

This proves Theorem 4.2.

Remark. From the first moment estimate alone it is easy to deduce

that the average number of prime factors of ( ),∆−h  for ,0 x≤∆<  is
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simply

( )
( )( )∑

∗∈∆

≤∆<
∗

→∆−ω

S

x

xh
xS 0

,loglog1  as .∞→x (17)

Estimating the higher moments can be done by using methods

analogous to those employed in the proof of our Theorem 4.2. And with

the help of the powerful Fréchet-Shohat theorem (see [12]) this in fact

yields a more general result:

Theorem 4.3. Assuming the Conjecture 1.1, as ,∞→x  we have

( )( )








≤
−∆−ω

≤∈∆≤∆< ∗ B
x

xh
ASx

loglog
loglog

,:0#

∫ −

π

B

A

t dtex .
2

3~ 2
25

2
(18)

Not unlike most results discussed in [19] and [21], this is another

example of a non-abelian extension of the fundamental Erdös-Kac

theorem [9].

5. Open Problems

(1) The most natural extension of Conjecture 1.1 seems to be the one
concerning arbitrary composite divisors. Using the special case of d being
a square-free integer as a guide, the independence of probabilities of each
of its prime factors dividing a class number translates into: ( ) =d

( )∏ |dp
p .  In cases when ,dp ||α  for some ,2≥α  the assumption of the

change of variable α→ pp  in the formula for ( )p  seems the most

logical one. This would give us:

Conjecture 5.1. For any ,N∈d  we have

( )[ ] ( )
( )∏ ∏

||

∞

=
α

α 




















−−==∆−|

dp n
np

dhd .111:Pr
1

(19)
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In other words, if ,21
21

k
kpppd ααα=  then

( ) 









+−+= ααα 111 5

1
2
11

111

ppp
d













++










+−+⋅ ααααα kk

kk ppppp 25
2

2
22

11111
222













+= ∑

≤≤
ααααα

ki ikk
ikk ppppp 111

111
11

+













+ ∑

≤≤
αααα

kji jik
jik pppp ,11

11
1

,1111111





+=+





















+















+= κ

||
βα

||
α ∑∑

||β
αα d

O
dqpdpdd

dq

dpdp

where one should expect ( ) .1 1−ω+≥κ d  Now, since for most d we have

( ) ,logloglog ddd <ω  it follows that ( ) ,logloglog 1 ddd −ω<  and so

( ) .log
1−ω< ddd  This implies

( ) .
log
11

ddd
d <− (20)

(2) However, on average better error terms should be expected.
Precise information concerning these error terms could then lead to
estimates such as:

( ) ( )( )
( )

∑ ∑ ∑
∗∈∆ ∗∈∆

≤∆< ≤∆< ∆−|

=∆−σ=σ

S S

x x hd

Axdhx
0 0

21 ,~:,M  and

( ) ( )( ) ( ) ( )

( )
∑ ∑ ∑

∗∈∆ ∗∈∆

≤∆< ≤∆< ∆−|

∆−µ=∆−φ=φ

S S

x x hd

Bx
d

h
dhx

0 0

21 .~:,M
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(3) Another fundamental arithmetical property of integers one should

investigate is primality. Although it is unlikely that minor modifications

of the above methods would be sufficient to resolve this question, the

following conjecture seems plausible:

Conjecture 5.2. Let ( )x∗π  be the number of fundamental

discriminants ∆, with ,0 x≤∆<  for which ( )∆−h  is a prime number.

Then there exists a constant Θ, such that

( ) ( ( ))
x

xxSx
log

~li~ Θπ ∗∗  as .∞→x (21)
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Appendix

Class numbers distributed over residue classes modulo primes p,

with 302 << p  and .20 28≤∆−<  (The number of fundamental

discriminants ∆ for 2820 ≤∆−<  is 81 594 634.)

Class numbers modulo 3

r { }rhh ≡∆∆ : ratio

0 34689718 0.425147

1 23453706 0.287442

2 23451210 0.287411

Class numbers modulo 5

r { }rhh ≡∆∆ : ratio

0 19378805 0.237501

1 15549859 0.190575

2 15551471 0.190594

3 15556711 0.190659

4 15557788 0.190672

Class numbers modulo 7

r { }rhh ≡∆∆ : ratio

0 13239196 0.162256

1 11394295 0.139645

2 11387680 0.139564

3 11394471 0.139647

4 11390686 0.139601

5 11394647 0.139649

6 11393659 0.139637
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Class numbers modulo 11

r { }rhh ≡∆∆ : ratio

0 8034025 0.098463

1 7356266 0.090156

2 7354544 0.090135

3 7357121 0.090167

4 7354471 0.090134

5 7357417 0.090170

6 7361052 0.090215

7 7355405 0.090146

8 7357165 0.090167

9 7354244 0.090131

10 7352924 0.090115

Class numbers modulo 13

r { }rhh ≡∆∆ : ratio

0 6701937 0.082137

1 6240173 0.076478

2 6240889 0.076487

3 6246710 0.076558

4 6239184 0.076466

5 6239812 0.076473

6 6238677 0.076459

7 6241920 0.076499
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8 6241192 0.076490

9 6239307 0.076467

10 6244486 0.076531

11 6239754 0.076473

12 6240593 0.076483

Class numbers modulo 17

r { }rhh ≡∆∆ : ratio

0 5035875 0.061718

1 4788327 0.058684

2 4783983 0.058631

3 4783129 0.058621

4 4785807 0.058653

5 4780801 0.058592

6 4784558 0.058638

7 4783602 0.058626

8 4783894 0.058630

9 4789743 0.058702

10 4783779 0.058629

11 4785142 0.058645

12 4785824 0.058654

13 4785692 0.058652

14 4782903 0.058618

15 4786811 0.058666

16 4784764 0.058641
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Class numbers modulo 29

r { }rhh ≡∆∆ : ratio

0 2864412 0.035105

1 2812552 0.034470

2 2808860 0.034425

3 2813833 0.034486

4 2809880 0.034437

5 2813562 0.034482

6 2811339 0.034455

7 2812631 0.034471

8 2815450 0.034505

9 2815420 0.034505

10 2811288 0.034454

11 2811522 0.034457

12 2816226 0.034515

13 2814790 0.034497

14 2810376 0.034443

15 2810169 0.034441

16 2808037 0.034414

17 2811677 0.034459

18 2807920 0.034413

19 2809479 0.034432

20 2815502 0.034506

21 2809836 0.034437

22 2812796 0.034473

23 2811959 0.034463
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24 2808975 0.034426

25 2810773 0.034448

26 2811934 0.034462

27 2813283 0.034479

28 2810153 0.034440

Class numbers modulo 19

r { }rhh ≡∆∆ : ratio

0 4467172 0.054748

1 4285531 0.052522

2 4286500 0.052534

3 4284351 0.052508

4 4282174 0.052481

5 4288423 0.052558

6 4284006 0.052504

7 4284048 0.052504

8 4285689 0.052524

9 4288849 0.052563

10 4283502 0.052497

11 4284986 0.052516

12 4282311 0.052483

13 4281232 0.052470

14 4283882 0.052502

15 4286770 0.052537

16 4284237 0.052506

17 4286552 0.052535

18 4284419 0.052509
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Class numbers modulo 23

r { }rhh ≡∆∆ : ratio

0 3656305 0.044811

1 3544348 0.043438

2 3540027 0.043386

3 3544626 0.043442

4 3544497 0.043440

5 3545250 0.043450

6 3541255 0.043401

7 3542184 0.043412

8 3543479 0.043428

9 3541454 0.043403

10 3544149 0.043436

11 3543545 0.043429

12 3542744 0.043419

13 3540607 0.043393

14 3544661 0.043442

15 3547696 0.043480

16 3542390 0.043414

17 3540010 0.043385

18 3541053 0.043398

19 3538114 0.043362

20 3542505 0.043416

21 3542606 0.043417

22 3541129 0.043399

g


