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SOLVABLE BRIOSCHI QUINTICS OVER Q
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Abstract

A Brioschi quintic is a form of the general quintic whose coefficients
are integer polynomial functions in a single variable. Viewed as an
algebraic curve, it is a smooth, irreducible curve admitting of a rational
parametric representation. Thus Brioschi quintics solvable by radicals
with one rational root are numerous, however, irreducible quintics may
also be solvable by radicals. In this paper, solvable Brioschi quintics
with rational coefficients are described in full. Remarkably, any Brioschi

quintic with integer coefficients is unsolvable by radicals.
1. Introduction

A Brioschi quintic
Bs(x, Z) = x° —10Zx> + 452%x — Z* 1)

is a form of the general quintic that depends on a single parameter Z.
The study of Brioschi quintics was primarily motivated by numerical
computation of their roots via modular functions [1, 8, 9]. This intriguing
way to solve quintics is now obscured by efficient numerical methods for
computing the roots of any polynomial using the power of today’s
computers. Nevertheless, the solution of quintics by radicals still
deserves considerable attention for theoretical and aesthetical reasons.
Notably, the problem has been settled for Bring-Jerrard quintics with
integer
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coefficients, [6, 11]. However, Brioschi quintics are unsolvable when Z is
an integer, whereas with rational coefficients they may be either
reducible or irreducible and if solvable, then their Galois group is
isomorphic to the Frobenius group.

2. Irreducible Brioschi Quintics

Let Gal(p(x)| Q) denote the Galois group of a polynomial p(x) over
Q. Any irreducible quintic Bs(x, Z) is unsolvable by radicals, if
Gal(Bs(x, Z)|Q) is the symmetric group S;, whereas it is solvable, if
Gal(Bs(x, Z)|Q) is either the cyclic group Cj of order 5, or the dihedral
group Dy of order 10, or the Frobenius (metacyclic) group Foo of order
20. Although any quintic can be transformed into some Brioschi quintic,
the special form of Brioschi quintic coefficients, when constrained to be
rational, fixes their Galois groups.

Theorem 1. If Bs(x, Z) is irreducible over the field of rational Q,
then Gal(Bs(x, Z)|Q) is isomorphic either to the symmetric group Sy or
to the Frobenius group Fo.

Proof. Since the discriminant A = 55Z8(1728Z—1)2 of Bs(x, Z)
with respect to x is not a perfect square over Q when Z is rational,
Gal(Bs(x, Z)|Q) cannot be a subgroup of the alternating group Ajs
[6, p. 397]. Thus the Galois group of a solvable Brioschi quintic is

necessarily isomorphic to Fa.

If Z is transcendental over Q, then any Bs(x, Z) is irreducible over
the transcendental extension field Q(Z), and its Galois group is Ss.

Irreducibility is immediately assessed by a specialization principle
[12, 15], since Bs(x, 1) is easily checked to be irreducible modulo 19. The

proof that Bs(x, Z) is unsolvable makes use of Theorem 3, whose proof

requires a criterion for checking when an irreducible quintic is solvable

over Q. To this aim, a theorem [2, 5, 13] will be used, which is quoted

from [5, p. 389], in a form specialized to Brioschi quintics, without proof.
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Theorem 2. The irreducible quintic Bs(x, Z), Z € Q is solvable by
radicals if and only if the polynomial

qo0(x, Z) = x% + 3602%x5 + 540002 *x*
+(64800002° - 125025)x>
+(583200000Z°% — 22500027 ) x>
+(186624000002'° — 27000002° - 312528)x

+186624000000Z'2 + 1080000002 - 109375210 2)

has a rational root. If this is the case, then the sextic qq90(x, Z) factors

into the product of a linear polynomial and an irreducible quintic.

Since a Brioschi quintic is irreducible when Z is transcendental over

@Q, (1) defines an algebraic curve in the (x, Z)-plane, which turns out to

be a smooth irreducible curve which is isomorphic to p! (curve of genus
0). Thus it admits of a one-parametric representation with rational
functions, and a classical theorem of algebraic geometry states that over
Q 1t 1s isomorphic to either a line or a plane conic [4, p. 4] and [10,
Theorem 16, p. 417]. Since (1) is a quadratic polynomial in Z, the
following representation is immediately obtained by requiring that the

discriminant A, = —4(20x — 1)x° be a perfect square:
x = —qz
207 +1
a4 . ®3)
q

B (5¢ —1)(20¢% +1*

Furthermore, by setting 20q2 +1 = p, an isomorphism with a plane

conic (parabola) is obtained

2 ./
p o x“ —-bZ
q5 B Z2
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Since not every rational Z is given by (3) with a rational g, the
characterization of all solvable quintics with rational Z is not entirely
trivial. The following theorem is a completion of a theorem given in
[14, p. 449], and characterizes, using the same terminology as [14], the
parametric family of solvable irreducible Brioschi quintics.

Theorem 3. If Bs(x, Z), Z € Q is irreducible over Q and can be
solved by radicals, then

(¢ +12q + 40)(¢® - 6q + 4)* ’

“4)

with q € Q. Conversely, if Z is given by (4), then Bs(x, Z) is always

solvable by radicals, but it is irreducible if and only if q #5+
1

25m® + 256m* +15m® + 5m* + m

for some m € Q.

Proof. Let Bs(x, Z) be irreducible and solvable by radicals. Theorem
1 implies that two rational numbers ¢ and Z exist such that gy (¢, Z) = 0.

The substitution x = tZ2 — 60Z2 does not change the rational character

of the roots of (2), and the resulting sextic in ,

Qeo(t, Z) = (—9331200000¢ + 2160000 + 233280000000 + ¢4)Z?2

+(10800000¢ — 270000000 — 1250t3)Z — 3125t + 78125 (5)

is a quadratic equation in Z. For any rational root ¢ of Qq(t, Z), Z is
rational if and only if discriminant A, =12500(; +100)¢% is a square,
that is, ¢ + 100 = 5q2 with ¢ € Q. Substituting ¢ = 5q2 —100 in (5), and
solving for Z, both roots are given as a function of ¢ (—q gives the second

root), as

- had ©
(q2 +12q + 40) (q2 - 6q + 4)2

Then Q9 (t, Z) splits as

(¢t +100 - 5¢%)Q%)(¢, Z)
(q2 +12q + 40)2(q2 - 6q + 4)4

Qy(t, Z) =
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with
QY Z) = (q - 5)°¢° +5(q” - 20) (g - 5)°¢*
+25(q - 5)%(q% - 20)%¢3 +125(q - 5) (¢ + 5) (¢% - 20)>¢?
+625(q — 5)(q +5) (g — 20)*t — 15625(¢> — 20)°,

where quintic Qg(’))(t, Z) is irreducible over Q. Conversely, if Z is of the
form (6), then @y (¢, Z) splits into a linear factor and quintic Qé%)(t, Z).
Thus Bs(x, Z) is always solvable, although, to a reducible Qg’o)(t, Z)
corresponds a reducible Bjs(x, Z). The factorization of Qg%)(t, Z) is

clarified, if the substitutions are done in the order ¢ = £ +5, 6 = 5¢ (k2
+10k +5), and k =1/z, which does not alter the degrees of factors of
Qg%)(t, Z), obtaining Q(6,z)=0°+0%+0% +(1+102)6 +(1+102)0 - 5z°.

This polynomial defines an algebraic curve admitting of the following

parametric rational representation

= 5m?
{9 m m e Q.

z = 25m® + 25m* +15m® + 5m? + m

Then Q(6, z) splits into 6 — 5m? and a quartic factor, which turns out to

be always irreducible when z is rational: first, let the z denominator be
taken prime with 3. Then z mod 3 is either O, 1 or 2, and the three
decompositions

0(0* +03 +0%2+0+1) z=0mod3
0* +02+20+41)(0+1) z=1mod3
0*+02+0+1)(0+1) z=2mod3

show that quartic factors of Q(0, z) are irreducible. Second, let the z

denominator be divisible by 3™, writing z,/3™ for z, with the z,

denominator prime with 3, after some simplification we get
Q(O, z) = 9™0° + 9™0* + 9™ + 9™p?

+10-3M0% + 9™0 + 10 - 3™0z, — 528
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which may be split into irreducible polynomials necessarily of the forms
(3m03 +3Mmb0% + 3™ +uy) and (302 +3™ab +ug), with uy and u;
units modulo 3, as a simple argument modulo 3" shows. The proof is
completed by observing that the coefficient of 0% in the product is
3™(ug + 3™ab +3™c) and cannot be equal to the coefficient 32" of 2%,

since u is a unit modulo 3.

Theorem 4. Any Brioschi quintic Bs(x, Z), with integer Z # 0, is

irreducible over Q, and its Galois group is Ss.

Proof. The condition Z # 0 excludes the trivial case Bs(x, 0) = x°.
If Bs(xg, Z) splits over Q, then either at least one linear factor or two

irreducible factors occur
Bs(x, Z) = (x — ) (x* + xqx® + Bx? + Cx + D), (7)
Bs(x, Z) = (x% + Ax + B)(x® — Ax® + Cx + D), (8)
with xy, A, B, C, D € Z by a theorem of Gauss’.

Factorization (7) is easily excluded, since Bs(xg, Z)=0 has an
integer solution Z if and only if its discriminant A, is a square integer,
namely —20x(2) + %9 = w?. But, writing this equation as 80w? +
(40xg —1)* =1, it is clear that the only integer solution is w = xq = 0,

giving Z =0, which is excluded by hypothesis. Factorization (8) is

excluded as follows. Comparing the coefficients of equal x powers on both
sides of (8), produces the system

B+C- A% =-10Z, BC+ AD = 45Z%, ©
D+A(C-B)=0, BD-=-Z2

Substituting C = -B + A2 ~10Z and D = A(2B - A% +10Z), computed

from the first two equations, in the other two equations, then A, B and Z

satisfy the following system:
B(-B + A% -10Z) + A%2(2B - A? +10Z) = 4572,
BA(2B - A? +10Z) = -Z2.
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The resultant with respect to B yields an integer Diophantine equation

connecting A and Z,
(3600A2 — 80A +1)Z* + (1004* — 4043) 23
+(-165A°% +114%)2% + 30487 — A0 = 0. (10)

Evidently A3 | Z 4 and, a fortiori, A|Z 2, Thus, dividing each term in (10)

by A4,
72Y z4
3600 7] +100Z°% —165422% - 80 = +30A%Z
3 4
_40Z _ 46 v11422 4+ 2 2,
A A4

it is seen that A|Z. Substituting Z = zA in (10), the resulting equation
shows immediately that A2 |24, thus A\zg, and certainly A|23. Then,
dividing by A3, the resulting expression

3

4
(360042 - 80A + 1)% +(-40 + 100A)% +(11-1654)22 + 304%2 - A% = 0

shows that A3 |z4 and, together with A| 22, implies A* |z6 = A? |23.
Thus, dividing again by A, the final expression shows that A|z. Finally,
the quadratic equation for A, obtained by setting z = Ay,
(3600y* +100y> —165y% + 30y —1) A% + (-40y> — 80y* +11y%)A + y* =0,
admits of an integer solution only if the discriminant A, is a perfect
square, but

A =-125(16y% + 4y — 1) (-1 + 2y)*y*

is not positive for any integer y, hence A cannot be an integer. Since

Bs(x, Z) is irreducible for any given Z, by Theorem 3 its Galois group is

Foo, if Z admits of a representation (4) for some rational q. Setting
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_bu+v

, with © and v relatively prime integers, the expression

ULL5

7 =
(12562 + 22uv + v2) (~u? + duv + v?)?

shows that no rational g gives an integer Z: in the last expression the
numerator is relatively prime with the denominator, unless v is a power
of 5. If v i1s a power of 5, after simplification a non-integer is still
obtained. This completes the proof.

3. Reducible Brioschi Quintics

In the previous section it was shown that Brioschi quintics over Z
are irreducible and unsolvable by radicals. On the other hand, equations
(3) show that Brioschi quintics over Q are reducible, in particular they

trivially split into a linear factor, which may have multiplicity greater
than 1. The linear factor has multiplicity greater than 1 if and only if the

discriminant 3125Z°(1728Z — 1)2 with respect to x is zero. This occurs
only for Z = 0, which is trivial, and Z = 1/1728, to which corresponds

the factorization

B xL = x‘?+lx+L x—Lg
5" 1728 ) ~ 8 216 24 )

To complete the factorization of Bs(x, Z), it remains to settle the

splitting into a pair of irreducible factors of degree 2 and 3, respectively.

To this aim, it is convenient to perform the substitutions x = % and

Z = %, which do not change the irreducible character of the factors.

Comparing the coefficients of equal X powers on both sides of
X5 —10WTX? + 45W2T2X - W3T? = (X2 — aX + b) (X3 + aX? + cX + d)
the following system is obtained

¢ =-b+a®-10WT, be — ad = 45WT?

{d = a(-b+c) = a(-2b + a® —10WT), bd = -W3T?.
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The equation d = a(-b+c¢) shows that a # 0, for otherwise d =0

contradicts the assumption Z # 0. Using the first two equations to

eliminate d and c, the system
45W2T? - (=106 + 10a?)WT + a* + b% = 3ba® = 0
W3T? —10baWT + ba® - 2b%a = 0

1s obtained, thus W is computed as a root of their resultant with respect
to T,

RW) = W[(a® + b* - 6ba® - 6b3a® +11b%a*)W?
+ (80b*a + 4506%a® — 90a"b — 5306%a® )W
- 81006%a* + 3600b%a? + 2025624 ]

= Whw).

Since W = 0 is excluded, a rational W is obtained if the discriminant
of r(W) is a perfect square, which amounts to requiring that a and b
satisfy the Diophantine equation —5(a® — 4b)(4a? — b) = . From its

one-parametric solution [3], the following rational Z is obtained

7 (5q2 +10q - 4)5

— e Q. (11)
1728(1 + 5¢2) (1 + 5¢%)?(5¢2 + 25q + 11)?

For example, g = -2/5 yields Z = % and the quintic

Bx_—l —x5+£x3+ 5 x — 1
147 )~ 147 2401~ ~ 21609
(2l Y3, 12,2 1
‘(x 7x+21)(x TTY T ag” 1029)'

The polynomial Bs(x, Z) may split into a linear factor and a pair of

2-degree polynomials. This occurs if and only if Z admits both
representations (3) and (11) at the same time. For example, ¢ = -11/73

in (3), and ¢ = —-73/110 in (11) yield the same Z = 161051/7686016128,
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and the quintic

Bi(x, Z) = 5 805255 I 129687123005 x
5 3843008064 6563871546652901376
3 25937424601
59074843919876112384
factors as
121 9 1707552 14641 2 1428768
X — = + x + X4 - x
7749 62487936 62487936 122000256

N 14641
122000256 )

This completes the characterization of solvable Brioschi quintics over

the rational field. As a simple application, let us find every Brioschi

quintic that, in the isomorphism with a conic curve, corresponds to a

point (g, p) with integer coordinates which satisfy the further condition

of p being a square integer. Coordinates g and p are expressed in terms of

Fibonacci and Lucas numbers, specifically ¢ = Fg,/4 and p = LZ,/4.

These quintics are always solvable by radicals.

(1]

(2]

(3]
(4]

(5]
(6]

(7

(8]
(9]

References

B. Berndt, B. Spearman and K. Williams, Commentary on an unpublished lecture by
G. N. Watson on solving the quintic, Math. Intelligencer 24(4) (2002), 15-33.

W. E. H. Berwick, The condition that a quintic equation should be solvable by
radicals, Proc. London Math. Soc. (2) 14 (1915), 301-307.

R. D. Carmichael, Diophantine Analysis, Dover, New York, 1959.

J. W. S. Cassels, Lectures on Elliptic Curves, Cambridge University Press,
Cambridge, 1995.

D. S. Dummit, Solving solvable quintics, Math. Comp. 57(195) (1991), 387-401.

M. Elia and P. Filipponi, Equations of the Bring-Jerrard form, the golden section and
square Fibonacci numbers, Fibonacci Quart. 36(3) (1998), 282-286.

E. Galois, Ecrits et Mémoires Mathématiques d’Evariste Galois, R. Borgne and J. P.
Azra, eds., Gauthier-Villars, Paris, 1962.

R. B. King, Beyond the Quartic Equation, Birkhduser, Basel, 1996.

F. Klein, The Icosahedron and the Solution of Equations of the Fifth Degree, Dover,
New York, 1956.



SOLVABLE BRIOSCHI QUINTICS OVER Q 127

[10] J. Kollar, Which are the simplest algebraic variety?, Bull. Amer. Math. Soc. 38(4)
(2001), 409-433.

[11] S. Rabinowitz, The factorisation of O txa n, Math. Mag. 61(3) (1988), 191-193.

[12] J. P. Serre, Topics in Galois Theory, Jones and Bartlett Publishers, Boston, 1992.
[13] J. Shurman, Geometry of the Quintic, Wiley, New York, 1997.

[14] B. K. Spearman, Solvable Brioschi resolvents, AAECC 13 (2003), 447-452.

[15] B. L. van der Waerden, Modern Algebra, Vol. 2, Ungar, New York, 1966.



