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Abstract

A Brioschi quintic is a form of the general quintic whose coefficients

are integer polynomial functions in a single variable. Viewed as an

algebraic curve, it is a smooth, irreducible curve admitting of a rational

parametric representation. Thus Brioschi quintics solvable by radicals

with one rational root are numerous, however, irreducible quintics may

also be solvable by radicals. In this paper, solvable Brioschi quintics

with rational coefficients are described in full. Remarkably, any Brioschi

quintic with integer coefficients is unsolvable by radicals.

1. Introduction

A Brioschi quintic

( ) 2235
5 4510, ZxZZxxZxB −+−= (1)

is a form of the general quintic that depends on a single parameter Z.
The study of Brioschi quintics was primarily motivated by numerical
computation of their roots via modular functions [1, 8, 9]. This intriguing
way to solve quintics is now obscured by efficient numerical methods for
computing the roots of any polynomial using the power of today’s
computers. Nevertheless, the solution of quintics by radicals still
deserves considerable attention for theoretical and aesthetical reasons.
Notably, the problem has been settled for Bring-Jerrard quintics with
integer
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coefficients, [6, 11]. However, Brioschi quintics are unsolvable when Z is
an integer, whereas with rational coefficients they may be either
reducible or irreducible and if solvable, then their Galois group is
isomorphic to the Frobenius group.

2. Irreducible Brioschi Quintics

Let Gal ( )( )Q|xp  denote the Galois group of a polynomial ( )xp  over

.Q  Any irreducible quintic ( )ZxB ,5  is unsolvable by radicals, if

Gal ( )( )Q|ZxB ,5  is the symmetric group ,5S  whereas it is solvable, if

Gal ( )( )Q|ZxB ,5  is either the cyclic group 5C  of order 5, or the dihedral

group 5D  of order 10, or the Frobenius (metacyclic) group 20F  of order

20. Although any quintic can be transformed into some Brioschi quintic,

the special form of Brioschi quintic coefficients, when constrained to be

rational, fixes their Galois groups.

Theorem 1. If ( )ZxB ,5  is irreducible over the field of rational ,Q
then Gal ( )( )Q|ZxB ,5  is isomorphic either to the symmetric group 5S  or

to the Frobenius group .20F

Proof. Since the discriminant ( )285 117285 −=∆ ZZ  of ( )ZxB ,5

with respect to x is not a perfect square over Q  when Z is rational,

Gal ( )( )Q|ZxB ,5  cannot be a subgroup of the alternating group 5A

[5, p. 397]. Thus the Galois group of a solvable Brioschi quintic is

necessarily isomorphic to .20F

If Z is transcendental over ,Q  then any ( )ZxB ,5  is irreducible over

the transcendental extension field ( ),ZQ  and its Galois group is .5S

Irreducibility is immediately assessed by a specialization principle

[12, 15], since ( )1,5 xB  is easily checked to be irreducible modulo 19. The

proof that ( )ZxB ,5  is unsolvable makes use of Theorem 3, whose proof

requires a criterion for checking when an irreducible quintic is solvable

over .Q  To this aim, a theorem [2, 5, 13] will be used, which is quoted

from [5, p. 389], in a form specialized to Brioschi quintics, without proof.
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Theorem 2. The irreducible quintic ( ),,5 ZxB  Q∈Z  is solvable by

radicals if and only if the polynomial

( ) 44526
20 54000360, xZxZxZxq ++=

( ) 356 12506480000 xZZ −+

( ) 278 225000583200000 xZZ −+

( )xZZZ 8910 3125270000001866240000 −−+

101112 109375108000000001866240000 ZZZ −++ (2)

has a rational root. If this is the case, then the sextic ( )Zxq ,20  factors

into the product of a linear polynomial and an irreducible quintic.

Since a Brioschi quintic is irreducible when Z is transcendental over

,Q  (1) defines an algebraic curve in the ( )Zx, -plane, which turns out to

be a smooth irreducible curve which is isomorphic to 1P  (curve of genus
0). Thus it admits of a one-parametric representation with rational
functions, and a classical theorem of algebraic geometry states that over
Q  it is isomorphic to either a line or a plane conic [4, p. 4] and [10,

Theorem 16, p. 417]. Since (1) is a quadratic polynomial in Z, the

following representation is immediately obtained by requiring that the

discriminant ( ) 51204 xxZ −−=∆  be a perfect square:

( ) ( )









+−
=

+
=

.
12015
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22
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2

2
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qZ

q

qx

(3)

Furthermore, by setting ,120 2 pq =+  an isomorphism with a plane

conic (parabola) is obtained

( ) ( )
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Since not every rational Z is given by (3) with a rational q, the
characterization of all solvable quintics with rational Z is not entirely
trivial. The following theorem is a completion of a theorem given in
[14, p. 449], and characterizes, using the same terminology as [14], the
parametric family of solvable irreducible Brioschi quintics.

Theorem 3. If ( ) Q∈ZZxB ,,5  is irreducible over Q  and can be

solved by radicals, then

( ) ( )
,

464012

5
222 +−++

−=
qqqq

qZ (4)

with .Q∈q  Conversely, if Z is given by (4), then ( )ZxB ,5  is always

solvable by radicals, but it is irreducible if and only if +≠ 5q

mmmmm ++++ 2345 5152525

1  for some .Q∈m

Proof. Let ( )ZxB ,5  be irreducible and solvable by radicals. Theorem

1 implies that two rational numbers t and Z exist such that ( ) .0,20 =Ztq

The substitution 22 60ZtZx −=  does not change the rational character

of the roots of (2), and the resulting sextic in t,

( ) ( ) 263
20 00233280000021600009331200000, ZtttZtQ +++−=

( ) 781253125125027000000010800000 3 +−−−+ tZtt (5)

is a quadratic equation in Z. For any rational root t of ( ),,20 ZtQ  Z is

rational if and only if discriminant ( ) 610012500 ttZ +=∆  is a square,

that is, 25100 qt =+  with .Q∈q  Substituting 1005 2 −= qt  in (5), and

solving for Z, both roots are given as a function of q q−(  gives the second

root), as

( ) ( )
.

464012

5
222 +−++

−=
qqqq

qZ (6)

Then ( )ZtQ ,20  splits as

( )
( ) ( )( )

( ) ( )4222

5
20

2

20
464012

,5100
,

+−++

−+
=

qqqq

ZtQqt
ZtQ
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with

( )( ) ( ) ( ) ( ) 422525
20 52055, tqqtqZtQ −−+−=

( ) ( ) ( ) ( ) ( ) 2323222 205512520525 tqqqtqq −+−+−−+

( ) ( ) ( ) ( ) ,20156252055625 5242 −−−+−+ qtqqq

where quintic ( )( )ZtQ ,5
20  is irreducible over .Q  Conversely, if Z is of the

form (6), then ( )ZtQ ,20  splits into a linear factor and quintic ( )( ).,5
20 ZtQ

Thus ( )ZxB ,5  is always solvable, although, to a reducible ( )( )ZtQ ,5
20

corresponds a reducible ( ).,5 ZxB  The factorization of ( )( )ZtQ ,5
20  is

clarified, if the substitutions are done in the order ,5+= kq  ( 25 kt=θ

),510 ++ k  and ,1 zk =  which does not alter the degrees of factors of

( )( ),,5
20 ZtQ  obtaining ( ) ( ) ( ) .5101101, 22345 zzzzQ −θ++θ++θ+θ+θ=θ

This polynomial defines an algebraic curve admitting of the following
parametric rational representation







∈
++++=

=θ
.

5152525

5
2345

2
Qm

mmmmmz

m

Then ( )zQ ,θ  splits into 25m−θ  and a quartic factor, which turns out to

be always irreducible when z is rational: first, let the z denominator be
taken prime with 3. Then z mod 3 is either 0, 1 or 2, and the three
decompositions

( )

( ) ( )

( ) ( )








=+θ+θ+θ+θ

=+θ+θ+θ+θ

=+θ+θ+θ+θθ

3mod211

3mod1112

3mod01

24

24

234

z

z

z

show that quartic factors of ( )zQ ,θ  are irreducible. Second, let the z

denominator be divisible by ,3m  writing mz 30  for z, with the 0z

denominator prime with 3, after some simplification we get

( ) 2345 9999, θ+θ+θ+θ=θ mmmmzQ

2
000

2 53109310 zzz mmm −θ⋅+θ+θ⋅+
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which may be split into irreducible polynomials necessarily of the forms

( )1
23 333 ucb mmm +θ+θ+θ  and ( ),33 0

2 uamm +θ+θ  with 0u  and 1u

units modulo 3, as a simple argument modulo m3  shows. The proof is

completed by observing that the coefficient of 3θ  in the product is

( abu mm 33 0 +  )cm3+  and cannot be equal to the coefficient m23  of ,3z

since 0u  is a unit modulo 3.

Theorem 4. Any Brioschi quintic ( ),,5 ZxB  with integer ,0≠Z  is

irreducible over ,Q  and its Galois group is .5S

Proof. The condition 0≠Z  excludes the trivial case ( ) .0, 5
5 xxB =

If ( )ZxB ,05  splits over ,Q  then either at least one linear factor or two

irreducible factors occur

( ) ( ) ( ),, 23
0

4
05 DCxBxxxxxxZxB ++++−= (7)

( ) ( ) ( ),, 232
5 DCxAxxBAxxZxB ++−++= (8)

with Z∈DCBAx ,,,,0  by a theorem of Gauss’.

Factorization (7) is easily excluded, since ( ) 0,05 =ZxB  has an

integer solution Z if and only if its discriminant Z∆  is a square integer,

namely .20 2
0

2
0 wxx =+−  But, writing this equation as +280w

( ) ,1140 2
0 =−x  it is clear that the only integer solution is ,00 == xw

giving ,0=Z  which is excluded by hypothesis. Factorization (8) is

excluded as follows. Comparing the coefficients of equal x powers on both
sides of (8), produces the system

( )





−==−+

=+−=−+

.,0

,45,10

2

22

ZBDBCAD

ZADBCZACB
(9)

Substituting ZABC 102 −+−=  and ( ),102 2 ZABAD +−=  computed

from the first two equations, in the other two equations, then BA,  and Z

satisfy the following system:

( ) ( )

( )





−=+−

=+−+−+−

.102

,4510210

22

2222

ZZABBA

ZZABAZABB
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The resultant with respect to B yields an integer Diophantine equation

connecting A and Z,

( ) ( ) 33442 401001803600 ZAAZAA −++−

( ) .03011165 108256 =−++−+ AZAZAA (10)

Evidently 43 ZA |  and, a fortiori, .2ZA |  Thus, dividing each term in (10)

by ,4A

ZA
A

ZZAZ
A

Z 4
3

4
223

22
30801651003600 +−−+









,01140
4

4
26

3
=++−−

A

ZAZA
A

Z

it is seen that .ZA |  Substituting zAZ =  in (10), the resulting equation

shows immediately that ,42 zA |  thus ,2zA |  and certainly .3zA |  Then,

dividing by ,3A  the resulting expression

( ) ( ) ( ) 03016511100401803600 322
3

3

4
2 =−+−++−++− AzAzA

A
zA

A

zAA

shows that 43 zA |  and, together with ,2zA |  implies .3264 zAzA |⇒|

Thus, dividing again by A, the final expression shows that .zA |  Finally,

the quadratic equation for A, obtained by setting ,Ayz =

( ) ( ) ,01180401301651003600 42432234 =++−−+−+−+ yAyyyAyyyy

admits of an integer solution only if the discriminant A∆  is a perfect

square, but

( ) ( ) 422 211416125 yyyy +−−+−=∆

is not positive for any integer y, hence A cannot be an integer. Since

( )ZxB ,5  is irreducible for any given Z, by Theorem 3 its Galois group is

,20F  if Z admits of a representation (4) for some rational q. Setting
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,5
u

vuq +=  with u and v relatively prime integers, the expression

( ) ( )22222

5

422125 vuvuvuvu

vuZ
++−++

−=

shows that no rational q gives an integer Z: in the last expression the
numerator is relatively prime with the denominator, unless v is a power
of 5. If v is a power of 5, after simplification a non-integer is still
obtained. This completes the proof.

3. Reducible Brioschi Quintics

In the previous section it was shown that Brioschi quintics over Z
are irreducible and unsolvable by radicals. On the other hand, equations
(3) show that Brioschi quintics over Q  are reducible, in particular they

trivially split into a linear factor, which may have multiplicity greater
than 1. The linear factor has multiplicity greater than 1 if and only if the

discriminant ( )28 117283125 −ZZ  with respect to x is zero. This occurs

only for ,0=Z  which is trivial, and ,17281=Z  to which corresponds

the factorization

.
24
1

216
1

8
1

1728
1,

3
2

5 




 −





 ++=





 xxxxB

To complete the factorization of ( ),,5 ZxB  it remains to settle the

splitting into a pair of irreducible factors of degree 2 and 3, respectively.

To this aim, it is convenient to perform the substitutions 
W
Xx =  and

,
W
TZ =  which do not change the irreducible character of the factors.

Comparing the coefficients of equal X powers on both sides of

( ) ( )dcXaXXbaXXTWXTWWTXX ++++−=−+− 232232235 4510

the following system is obtained

( ) ( )





−=−+−=+−=

=−−+−=

.,102

45,10

232

222

TWbdWTabacbad

TWadbcWTabc
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The equation ( )cbad +−=  shows that ,0≠a  for otherwise 0=d

contradicts the assumption .0≠Z  Using the first two equations to

eliminate d and c, the system

( )







=−+−

=−+++−−

0210

03101045

2323

224222

abbabaWTTW

babaWTabTW

is obtained, thus W is computed as a root of their resultant with respect

to T,

( ) [( ) 242236484 1166 WababbabaWWR +−−+=

( )Wabbaabab 337524 5309045080 −−++

]622443 202536008100 ababab ++−

( ).4 WrW=

Since 0=W  is excluded, a rational W is obtained if the discriminant

of ( )Wr  is a perfect square, which amounts to requiring that a and b

satisfy the Diophantine equation ( ) ( ) .445 222 ubaba =−−−  From its

one-parametric solution [3], the following rational Z is obtained

( )
( ) ( ) ( )

.
1125551511728

4105
22222

52
Q∈

++++

−+
= q

qqqq

qq
Z (11)

For example, 52−=q  yields 
147

1−
=Z  and the quintic

21609
1

2401
5

147
10

147
1, 35 −++=




 − xxxxB

.
1029

1
49
2

7
1

21
1

7
1 232 





 −++





 +−= xxxxx

The polynomial ( )ZxB ,5  may split into a linear factor and a pair of

2-degree polynomials. This occurs if and only if Z admits both

representations (3) and (11) at the same time. For example, 7311−=q

in (3), and 11073−=q  in (11) yield the same ,7686016128161051=Z
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and the quintic

( ) xxxZxB
6529013766563871546

051296871230
3843008064

805255, 35
5 +−=

98761123845907484391
12593742460−

factors as



 −





 ++





 − xxxxx

122000256
1428768

62487936
14641

62487936
1707552

7749
121 22

.
122000256

14641


+

This completes the characterization of solvable Brioschi quintics over
the rational field. As a simple application, let us find every Brioschi
quintic that, in the isomorphism with a conic curve, corresponds to a
point ( )pq,  with integer coordinates which satisfy the further condition

of p being a square integer. Coordinates q and p are expressed in terms of

Fibonacci and Lucas numbers, specifically 46nFq =  and .42
6nLp =

These quintics are always solvable by radicals.
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