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Abstract

In this note we provide congruences for the numbers defined to be the
“odd part” of the tangent numbers. As a result, we obtain congruences
for Genocchi numbers whose indexes are powers of two, and also
intriguing congruences for alternating power sums of natural numbers.

1. Introduction

Consider the following power series:
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n  where the numbers 1,2 ≥nG n

are called Genocchi numbers (see, e.g., [7]). Now, define the tangent
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,12 −nT  1≥n  to be the coefficients in the power series
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Proposition 1 [4]. Consider the set of n-tuples ( ) n
nuuuu N∈= ...,,, 21

such that 11 =u  and 1−= ii uu  or 11 += −ii uu  for .2≥i  Then, the

Genocchi numbers are given by ( ) ( )∑ −−=+ .1 2
2122 n

u
n uuuG n

Remark 1. As a consequence of this result, one concludes that 22 +nG

is an odd number. In fact, the only odd term in ( ) ( )∑ −− 2
211 n

u uuun  is

( ).111 ×××

Proposition 2 [10]. Let p be an odd prime and let λ be the period-

length of the sequence ( ),mod pTn  for n odd. Then,

( )



+=−
+=−

=λ
,34,12
;14,1

kpifp

kpifp

and ( ),mod pTT nn ≡λ+  for all odd numbers .1≥n

2. Results

Many authors have found interesting congruences for tangent and

Genocchi numbers, like Gandhi [5], Carlitz [2], Gessel [6] and Chen [3].

Nevertheless, we shall prove a simple result concerning tangent
numbers, which seems to have been so far (at least partially) unnoticed.
In fact, items (ii) and (iii) of our theorem have been stated in terms of
Bernoulli numbers by Srinivasa Ramanujan (see, e.g., [8]).

Definition. Let ( )nα  be the exponent of the highest power of two

that divides ,12 +nT  and define ( ).2ˆ
1212

n
nn TT α
++ =
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Theorem. Let .+∈ Zn  Then,

  (i) ( );3mod1212 ≡+
n

nT

 (ii) ( );30mod1ˆ
14 ≡+nT

(iii) ( );30mod1ˆ
38 ≡+nT

(iv) ( ),30mod17ˆ
34 ≡+nT  if ( ).4mod1≡n

Moreover, if ( ) ,1212 −+= tn r  with ,0,2 ≥≥ tr  then

  (v) 
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Proof. (i) It is well known that the numbers 12 +nT  are divisible by

n2  (see [9] for an elementary proof). By Proposition 2,

( ).3mod4 nn TT ≡+  Thus, since
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we conclude that

( ).13212 +=+ sT n
n

(ii)-(v) By Proposition 2,
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Furthermore, we also have ( )2mod4 nn TT ≡+  for .3≥n  Hence,

( ) .3,30mod4 ≥≡+ nTT nn

Since ,23 =T  we obtain ( ).30mod234 ≡+nT  Analogously, since ,165 =T

( ).30mod1614 ≡+nT
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(ii) We have that ( ) ( )122122 4
24

4
14 +=+= ++ cnGT n

n
n

n  for some

.+∈ Zc  Since ( ) ,1,30mod1624 ≥≡ nn  we have ( ) ( ).30mod112 ≡+c

Thus,

( ).13024
14 +=+ sT n

n

(iii) We have ( ) ( ).12 14
14

34 += +
+

+ nGT n
n

n  Then, if n is even, we have

( )122 14
34 += +

+ cT n
n  for some .+∈ Zc  Since ( ) ,1,30mod22 14 ≥≡+ nn

we have ( ) ( ),30mod112 ≡+c  and so

( ),1302 14
34 += +

+ sT n
n  if n is even.

(iv) Let ( ).4mod1≡n  Then, ( ),1221 +=+ kn  and then =+34nT

( ),1224 +cn  for some .+∈ Zc  Since ( ),30mod1624 ≡n  ,1≥n  we have

( ) ( ),30mod1712 ≡+c  and thus

( ),173024
34 +=+ sT n

n  if ( ).4mod1≡n

(v) Let ( ).4mod3≡n  Then, we can write ( ) ,1212 −+= tn r  with ,2≥r

.0≥t  Hence, ( ) ( ) ( ),122212 14
14

14
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Remark 2. Chen [3] has obtained a variant of item (i) of our theorem.
He proved, using a lemma on regular continued fractions, that

( ).6mod4
2

112 −+ ≡ n
n

nT

Corollary 1. Let .+∈ Zr  Then,
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Proof. Since 14 =G  and ,178 =G  the result holds for .1,0=r  For

,2≥r  apply the identity ( ) ( ) 3414
14 12 ++
+ += nn

n TnG  to the expressions

for 34 +nT  when ,12 −= rn  obtained in the proof of the theorem.

Now we provide two intriguing congruences for alternating power
sums of natural numbers, as a corollary of item (i) of our theorem and of
a result of Arnol’d [1].

Corollary 2. Given ,+∈ Zk  there exists ( ) +∈ Zku  such that

( ) ( ) ( ) ( );14mod13244321 12121212 ++−≡−−++−−+ ++++ rur kkkkk

( ) ( ) ( )( ),34mod132244321 12121212 ++−≡++++−−++− ++++ rur kkkkk

for all .N∈r

Proof. Let the numbers ( )nf  be defined by ( )∑∞
= =
1

1!
n

n nznf

( ).tanh z+  Since ( ) ( ),tanh ixixtg −=  we have ( ) ( ) .112 12 +−=+ m
mTmf

The just mentioned result of Arnol’d says that for each odd number
1>p  one has the following:

( ) ( ) ( );14mod14321 +=≡−−−++−−+ rpnfp nnnnn

( ) ( ) ( ).34mod14321 +=−≡−−−−++−− rpnfp nnnnn

Hence, Corollary 2 readily follows by applying this result to 12 += kn

and using item (i) of our theorem.
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