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Abstract 

In this paper, a novel hyperchaotic system with one nonlinear term and 
its fractional-order system are proposed. Furthermore, synchronization 
between two fractional-order systems is achieved. The proposed 
synchronization scheme is simple and theoretically rigorous.  Numerical 
simulations coincide with the theoretical analysis. 

1. Introduction 

Although fractional calculus is a 300-year-old topic, the basic theory 
of fractional-order differintegration was founded mainly in the 19th 
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century, and developed comprehensively in the last century due to its 
applications in a wide variety of scientific and technological fields such as 
thermal, viscoelastic, acoustic, electrochemical, rheological and polymeric 
disciplines. In recent years, study on the dynamics of fractional-order 
differential systems has attracted interest of many researchers. It is 
demonstrated that some fractional-order differential systems behave 
chaotically or hyperchaotically such as the fractional-order Chua’s 
system, the fractional Rossler system, the fractional modified Duffing 
system and Chen system [5-8, 11, 17]. 

Over the last two decades, since the pioneering work by Carroll and 
Pecora [1, 13], synchronization of chaotic systems has become more and 
more interesting to researchers in different fields. Synchronization of 
chaotic system with integer order is understood well. Recently, studies on 
chaos synchronization for the fractional-order systems are just beginning 
to attract some attention due to its potential applications in secure 
communication and control processing [9, 10, 12, 15, 16, 18]. But in these 
literatures [9, 10, 12, 15, 16, 18], the synchronization among the 
fractional-order systems is only investigated through numerical 
simulations. In our work, a novel hyperchaotic system with one nonlinear 
term is proposed, and its fractional-order system is studied numerically. 
In this paper, we also investigate the theoretically rigorous 
synchronization of the novel fractional-order hyperchaotic system. 

This paper is organized as follows: In Section 2, a novel hyperchaotic 
system with one nonlinear term as well as the corresponding fractional-
order system is proposed. In Section 3, the synchronization of the novel 
fractional-order hyperchaotic system is investigated. Finally, in Section 
4, conclusions are drawn. 

2. A Novel Hyperchaotic System with One Nonlinear Term 

Consider the following new 4D dynamical system: 
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where x, y, z and w are state variables. The new system (1) is symmetric 
with respect to the origin, since it is invariant for the coordinate 
transformation ( ) ( ).,,,,,, wzyxwzyx −−−−→  

The Lyapunov exponents of system (1) are ,074726.01 =λ  =λ2  
,021509.0  ,03 =λ  ,43386.04 −=λ  respectively. So, system (1) is a 

hyperchaotic system only with one nonlinear term. The Lyapunov 
dimension is ( ) .2218.33 421 =λλ+λ+=LD  Figure 1 shows the 
hyperchaos phase portraits. 

The corresponding fractional-order hyperchaotic system is presented 
as follows: 
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where q is fractional order, .10 ≤< q  The numerical simulation is 
shown in Figure 2 with .95.0=q  

 
Figure 1. Hyperchaotic phase portraits of system (1): (a) x-y plane; (b) x-z 
plane; (c) x-w plane; (d) y-z plane; (e) y-w plane; (f ) z-w plane. 
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Figure 2. Hyperchaotic phase portraits of the system (2) for :95.0=q            
(a) x-y plane; (b) x-z plane; (c) x-w plane; (d) y-z plane; (e) y-w plane;                  
(f ) z-w plane. 

Remark 1. There are two approximation methods for solving 
fractional differential equation. The first method is an improved version 
of Adams-Bashforth-Moulton algorithm [3, 4, 11] and is proposed based 
on the predictor-correctors scheme for this system [2]. The second method 
is frequency domain approximation. It is well known that the frequency 
domain approximation of fractional-order operators is a very good 
candidate to realize the fractional-order controllers. Also, these 
approximation methods provide a simple procedure to simulate the 
fractional-order systems numerically. However, the frequency domain 
approximation in the numerical simulations of fractional systems may 
result in wrong consequences [14]. For example, this approximation can 
numerically demonstrate chaos in the non-chaotic fractional-order 
systems. Unfortunately, this mistake has occurred in the recent 
literature [14] that found the lowest-order chaotic systems among 
fractional-order systems. In this paper, we use the first method for 
solving fractional differential equation (2). 
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3. Synchronization between Two Fractional-Order 
Hyperchaotic Systems 

In this section, we will focus on the synchronization of two identical 
fractional-order hyperchaotic systems (2) with different initial values. 

Consider another fractional-order hyperchaotic system which is 
described by 
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System (2) is regarded as the driving system, then the coupled slave 
fractional-order hyperchaotic system is given as follows: 
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where k is a constant to be designed. To investigate the synchronization 
of systems (3) and (4), we define the error states ,1 xXe −=  ,2 yYe −=  

,3 zZe −=  and .4 wWe −=  Then, the corresponding error dynamics 
system can be obtained by subtracting system (2) from system (4): 
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If the zero solution of error dynamics system (5) is globally 
asymptotically stable under a suitable constant k, then the two systems 
(2) and (4) are realized to synchronization. 

From error dynamics system (5), we can obtain that === 321 eee  
04 =e  is an equilibrium point of system (5). Linearizing system (5) at 

this equilibrium yields the Jacobian matrix 
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and its characteristic equation 

 ( ( ) ) ( ) .02.22.0156.0 22 =++++− rrrkr  (6) 

Then the eigenvalues of (6) are 

( ) ( ) .19.21.0,456.05.056.05.0 4,3
2

2,1 irkkr ±−=−+±+=  

When ,56.0−<k  the eigenvalues of matrix J all have negative real 

part. Therefore, the equilibrium point 04321 ==== eeee  of error 
dynamics system (5) is globally asymptotically stable, which implies that 
the systems (2) and (4) are realized to synchronization. 

When 56.0−≥k  and ( ) 56.056.04arctan,256.02 2 ++−<+<− kkk  
,5.0 qπ>  i.e., ,4031.056.0 −<≤− k  then the eigenvalues of matrix J 
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satisfy qrj π> 5.0  ( ),4,3,2,1=j  which implies that the equilibrium 

point 04321 ==== eeee  of error dynamics system (6) is globally 
asymptotically stable, which implies that the synchronization between (2) 
and (4) can be achieved. 

The above results manifest the fractional-order hyperchaotic systems 
(2) and (4) can be synchronized under suitable constant k. The simulation 
result is shown in Figure 3 with 95.0=q  and 1−=k  and the initial 
states of the drive system and the response system are taken as 
( ) ,10 −=x  ( ) ,5.10 =y  ( ) ,10 −=z  ( ) 20 −=w  and ( ) ,00 =X  ( ) ,10 =Y  
( ) ,10 =Z  ( ) ,10 −=W  respectively. 

 

Figure 3. The synchronization error functions of four state variables 
versus time t. 

4. Conclusion 

In this paper, a novel hyperchaotic system with one nonlinear term 
and its fractional-order system were proposed, and its dynamical 
behaviors were studied. Moreover, synchronization between two such 
fractional-order hyperchaotic systems has been achieved via feedback 
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control. The proposed synchronization approach is simple and 
theoretically rigorous. Finally, numerical simulation was given to verify 
the effectiveness of the proposed synchronization scheme. 
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