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Abstract
In this paper, by considering the following boundary value problem

(p()x'(t)) + 1(t) f(t, x(t) = 0, ¢ € (0, +o0),
2O _ ®

lim 0,

t—>0" (t)

o lim x(t)+p lim 20O _
t—+oo t—>+00 ’"(t)

where p e C([0, +®), [0, +®)) with p >0 on (0, +x), r € C2(0, +x)

e dt
0 plt) (t)

Ve > 0, we can establish sufficient conditions to guarantee the existence

and p is singular at ¢ =0, i.e., J = 400, and I < 400, for

of positive solutions of BVP (*) under proper conditions.

1. Introduction

The history of boundary value problems on infinite intervals started
at the end of the nineteenth century with the pioneering work of A.

Kneser about monotone solutions and their derivatives on [0, +o) for

2000 Mathematics Subject Classification: 34B40.

Keywords and phrases: Sturm-Liouville BVP on the half-line, singularity at ¢=0,
generalized Green function, positive solutions.

Received August 9, 2008



2 ZHONGHAI XU, ZHENGUO FENG and SHENGQUAN LIU

second-order ordinary differential equations. The Kneser-type results

were then followed by others until now, such as [8, 9].

Recently, several facts from classical analysis and topology combined
with arguments of the modern fixed point theorems have been employed
to study the existence of solutions to various types of nonlinear boundary
value problems on infinite intervals. For example, the nonlinear
alternative theorem used in [2, 10], a wonderful diagonalization process
adopted in [2, 6], the fixed point theorems in Fréchet space used in [1, 2,
3, 4], these results were used to study the existence of nontrivial
solutions for differential equations on the half-line.

In [5], Lian and Ge considered the following Sturm-Liouville
boundary value problem (BVP)

(PO)='Q)) + 1) (2, () = 0, ¢ € (0, +0),
o1x(0) - By lim p(¢)x'(t) = 0, (%)
t—0"
ag lim x(t)+ By lim p(t)x'(t) =0
t—>+0 t—>+o

where A is a positive parameter, f :[0, +0)x [0, +o0) > R and
¢ : (0, +0) = (0, +0) are continuous functions, p : C([0, +x), [0, +x))
< +oo, the authors

F0)

obtained the existence of positive solutions for the problem (**).

with p > 0 on (0, +). Under the condition of J'(;

In this paper, under the condition of p is singular at ¢ = 0, i.e.,
e dt
f he BVP
,[0 p(t) and I (t) < +oo, for Ve > 0, by considering the BVP (*)

and constructing the generalized Green function, we obtain some
existence theorems of positive solutions of BVP (¥) by using the fixed
point theorems in cone under proper conditions.

As far as we know, the existence of positive solutions of Sturm-
Liouville boundary value problem on the half-line usually needs the

condition of I < +o, however, the most interesting point of our

(t)

results is that the condition of I < 400 can be removed.

()
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Remark 1.1. When -[0 < 4o, r(t) = t, the BVP (%) returns to

( )
the BVP (+).

Finally, we give a brief outline of the rest of the paper. In Section 2,
we do some preliminary knowledge for the discussion; in Section 3, we
prove the existence of the positive solutions.

2. Preliminary

In this paper, we consider the space X = {x € C[0, +): lim x(¢)
t—>+o0

exists} with the supremum norm and the cone K = {x € X : x(¢) > 0,

t € [0, +)} of X, and study the BVP

(P()x(@)) +1b(2) f(¢, x(1)) = 0, ¢ e (0, +o0),

Jim, p(t)(f)(t) 0 @.1)
a hm x(t) + BtEIPoo (f")(jzf)(t) 0,

under the following assumptions throughout the paper:
(H1) peC(0,+x)), p>0 on (0,+o), ¢ e C((0,+»o), (0, +x0)),
o e LH0, +);

(H2) if f € C([0, +0]x [0, +x), R), and || x || < L, then | f(t, x)| < S,

for Vt € [0, +), where L > 0, S;, > 0 are constants;

(H3) r(t) satisfies

r(t) € C%(0, +), r(0) = 0, lim r(t) = +oo,

t—>+o0

r'(t) > 0 on (0, +»), hm r'@t) =1, lim r'(t) =
t—0"

and
J t d(s)ds
0

lim 2% _o;
1ot T'(t)



4 ZHONGHAI XU, ZHENGUO FENG and SHENGQUAN LIU
(H4)
I 1(:))
(H5) a, B >0, and o > 0.
Remark 2.1. When p(t) = t3/2, J‘sﬁ = 4o, I+w dt < +oo for any
0 p(t) e plt)
>0, if rt)=t2 on [0,¢], r(t)=¢ on [T, +x) which has enough

smoothness, where ¢ > 0 is small enough, and T > 0 is large enough,

then J.JrooL < 400,

O p(r'(x)
Writing
alt) =1,
b(t):%aj‘:(:ﬁ, (2.2)
a(+o) = 1,
b0) < B aJ.Mﬁ’ (2.3)

and

%a(t)b(s), 0<t<s<+om,
G(t, s) = (2.4)
éa(s)b(t), 0<s<t<+o

0 8(c)de
Vy(t) = o | (2.5)

Lemma 2.1. Suppose (H1)-(H5) hold. For any v e Ll(O, +o) which

t
v(s)ds
satisfies lim

= 0, the following BVP
t—0" r( )
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(p(t)x'(t)) +v(t) =0, ¢ e (0, +x),

. p)x'(t)
Am S O @6
¢ tEIPoo x(t) " B tgr-{loo % =0

has a unique solution. Moreover, this unique solution can be expressed in
the form

x(t) = J.OJroo G(t, s)V,(s)ds,

’

j ° v(t)dt
where G(t, s) is defined by (2.4), V,(s) = O"'T :
Set
wlt) = j 0+°° G(t, 5)V,(s)ds, @.7)

then w(¢) is the unique solution of BVP (2.6) for v(t) = ¢(¢). Integrating
(2.7) by parts, we get

I: o(t)dr

wit) = o Jm -

be) - J; d(t)dr . I()s d(t)dr

0 0 g,
a g0t 7(s) ¢ D)

from the condition (H3), we obtain

o I; d(t)drx

+J' 0 gsso. (2.8)

’ d(r)dr
o
wlt) = : t p(s)

o s>+ r’(s)

Jtd)(r)dr
Due to ¢ e I}0, +x), then lim 0

+0
. O = J.O #(t)dt < +0, moreover,
—>+00

t t
[, 4(@)ds [, o0
= 0, then there exists @ > 0 such that ——~—

r'(¢)

1i <
v 0 @ on

[0, +o0). Furthermore
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L awa [ s )y, g i

-[0 p(s) ds:jo r'(s)  pls) o i)

S0
40
T)dt
lim w(t) = 2 lim Iod)— _ EJM o(t)dr < 4o,
t—>+o0 O s—+o0 r(s) aJo
Then we get:

Lemma 2.2. Suppose (H1)-(H5) hold. Then w(t) € K.

Next, we introduce the following lemmas:

Lemma 2.3 [5]. Let X, K be defined as before. Suppose T : X — X is
completely continuous. Define 6 : TX — K by

(6y)(t) = max{y(t), 0}, ¢ € [0, + ),
where y e TX. Then 0T : X — K is also a completely continuous
operator.

Lemma 2.4 [2]. Let X be defined as before and M < X. Then M is

relatively compact in X if the following conditions hold:
(a) M is uniformly bounded in X;

(b) the functions from M are equicontinuous on any compact interval
of [0, +e0);

(c) the functions from M are equiconvergent, that is, for any given
€ >0, there exists T =T(c) >0 such that |f(t)- f(+)| <&, for any

t>T,feM.

Lemma 2.5 [11]. Let P be a cone of real Banach space E, Q < P be a

bounded open set, 6 € Q, and T : Q — P be a completely continuous
operator. Suppose Tx # Jx, Vx € 0Q, A > 1. Then deg,{I - T, Q, 0} = 1.

3. Existence of Solutions

Theorem 3.1. Suppose (H1)-(H5) and the following conditions hold:
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(C1) let x,, x € X, if x, - x, then f(¢, x,,) 3 f(t, x);

(C2) there exist R > M > 0 such that

O<a<b= +OOR ’
OSt<+oo,mJl§jIlzf)((t)sst jo G(t, 5)V(s, (s, x(s))ds
where
4= hin f](‘f Mu(D)’ V¢, f(t, () = max{V(t, f(t, x(t))), 0}, ¢ € [0, +o0),
0<t<too =
and

’

[\ o616 wtohas
Vit £t x(t)) = ()

Then when M\ € [a, b), BVP (2.1) has at least one positive solution x
satisfying 0 < Mw(t) < x(t) < R on [0, +).

Proof. Consider the following BVP

(PO @) +20()f*(2, x(t) = 0, ¢ € (0, +o),
i POX@) _
i 205 o @

) . p(e)x'(t)
1 1 =
¢ t—l>IPoo x(t) P t—l>I4I—100 T’(t) 0

where

. x(1)) = {f(t, x(t),  x(t) = Mw(), 3.2)
f(t, Mw(t)), x(t)< Muw(t).

Define T : K - X by

(Tx)(t) = j 0+°° G(t, 5)V(s, f*(s, x(s)ds, 0 < ¢ < 4o,

In view of Lemma 2.1, it is clear that a fixed point of T is also a
solution of BVP (3.1).
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In the same way as we get (2.8), we can obtain

[Joorwatnde [ 407 e x(e)ds
0 Y J‘ 0
) : »6)

(Tx) () = x% lim ds. (3.3)

In view of (H1), H2) and (H3), for any given x e K,

[ 0@ (5, x()dx
sl_i)r}ruoo ) exists.

We claim that T : K — X is a completely continuous operator. To

justify this, the proof is split into three steps:
Step 1. T : K — X is well defined.

In order to prove T : K —» X 1is well defined, we will show that
(Tx)(t) € C[0, +) and for Vx € K, tlim (Tx)(t) exists.
—>+00

(1) (Tx)(t) € C[O, +x).

In view of (H1), (H2) and (H3), from (3.2) and (3.3), we know that
(Tx)(t) € C[O, +x).

2) tETw(Tx)(t) exists.

From (H2), for any given x € K, there exist L > 0, S;, > 0 such that
x| <L,|fE x@)| < S on [0, +), we have

[0 s | e
IO 0 PO ds| < SLIO OpTds < +oo,

from (3.3), we know that tlim (Tx)(t) exists.
—>+0

Step 2. The operator T is continuous.
In order to prove T : K — X 1is continuous, we only prove that
Vx, e K,|x, —x| > 0= |Tx, -Tx | > 0, ie., Vx, € K, x,(t) 3 x(¢)

= Tx,(t) 3 Tx(t), as n — +o.
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Because x, € K, x € K, x, > x, there exist L >0 and Sy >0
such that max {|x|, |, [} < L, | f*(x, x,(v)) | £ Sz, | F(x, x(z)) | < S,
neN-{0}
for V1 € [0, +x).
(1) | (Tx,,) (+0) = (Tx) (+0) | > 0, n — +o0.

From (3.3), we know

(Tie,) (+0) = 2.2 1im I o YO (@ (D) de

oL 5—>-+o0 r'(s)

(Tx) (+o0) = K% lim -[0 o(t)f*(x, x(1))dt

S—>+0 r’(s)

from (C1), we have

t
| (Tx,,) (+o0) — (Tx) (+0) | < XE i Jo ¢(T)| i (r, x,(1)) - £ (x, x(7)) |d1:

oL t—>+o0 r’(t)

<2 B [ 76 50D - (s 560

— 0, asn — +oo.

Then
|(Tx,)(+%) = (Tx)(+)| > 0, as n — +x. (3.4)

2) | (Tx,,) () — (Tx,) (+)| = 0, as t — +x, for Vx, € K.

From (3.3), we have

o I; o(t)dr
O I R
" S(I)(r)dr
due to j(: —Iop(s) ds < +owo, then

|(Tx,)@) - (Tx,)(+o)| > 0, ast — +o, for x, € K. (3.5)



10 ZHONGHAI XU, ZHENGUO FENG and SHENGQUAN LIU

(3) In the same way as we get (3.5), we have

|(Tx)(t) — (Tx)(+0)| - 0, ast — +oo. (3.6)

(4) For any positive number T, < +owo, for V¢ € [0, Ty], we prove that
| (Tx,)(t)— (Tx)(¢)| > 0, as n — +oo.

From (C1) and (3.3), we have

[ 601 7 5= (e x(0)
20

| (T, @)~ (1) @)| < 2.2 tim

o f§¢(r)| fr(t, %, (1) = £ (x, x(1)) |dr
i xj t p(s) ds

— 0, asn — +oo.

Then Vt € [0, Ty,
|(Tx,)(t) - (Tx)()| > 0, asn — +w. (3.7

Combining (3.4), (3.5), (3.6) and (3.7), we can get that the operator T

1s continuous.

Step 3. 7' maps a bounded subset B — K into a relatively compact
set in X.

In order to prove that, we only show that 7'(B) is uniformly bounded,

equicontinuous and equiconvergent.

Let B be a bounded subset of K, there exist L > 0 and S;, > 0 such
that Vx € B, | x| < L and | f(x, x(t))| < S, for any function x € B.

(1) T(B) is uniformly bounded.

For Vx e B, from (3.3), we have

| (Tx)(t)| < 1S, gslﬂwofT . stj

so T(B) is uniformly bounded.
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(2) T(B) is equicontinuous.

We only prove that Ve > 0,38 >0, |t —ty | <8, [(Tx)(t;)— (Tx)(t2)| < &,
Vx € B, th, t2 € [Tl? T2], where Tl’ T2 € [0, +OO).

For x € B, from (3.3), when t; — t9, we have

| (Tx) (81) = (Tx) (t2) |

) j; (I)(‘E)f*(r, *n (1)) de 1) .[; o(1)dr

=xj' ds| <28 j—ds >0,
t p(S) L t p(S)

v |80
due to -[0 OPT

(3) T(B) is equiconvergent.

ds < +o0, we get |(Tx)(t)— (Tx)(t2)| = 0, as t; > to.

We only prove that Ve > 0,37y > 0,¢ > Ty = | (Tx)(t) - (Tx)(+0)| < ¢,
Vx € B, where Tj € [0, +»).

From (3.3), we can get that

[ 401 (s (0 e

[T 0) = (Tx) (o) | = 2 20 ——ds
. I+w d(t)dr
< XSLJ.t e A p(s) dS,
. I:w d(t)dr
due to .[0 st < 4o, we get |(Tx)(t)— (Tx)(+o)| > 0, as

t - 4w, for Vx € B.

Combining Steps 1 and 2 with Step 3, we know that 7T'is a completely

continuous operator.
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For the operator 0 : X — K defined by (0y)(¢) = max{y(¢), 0}, Lemma

2.3 implies that 6T : K — K 1is also completely continuous.

Set Q={x e K:|x|<R}and A, ={t [0, +0): V(¢, f(, x(t))) > O}.
Then Vx € 0Q, we have

(00T)x(t) = max{kjgw G(t, s)V(s, f(s, x(s)))ds, O}
< xIA G(t, )V (s, [*(s, x(s))ds

<b G(t, s)V(s, f*(s, x(s)))ds

max J
0<t<+oo, 0<x(¢)<R Ay

+0 -
0<t <+, rlrv}gé)Sx(t)sR J.o G, )V (s, fls, x(s))ds = R,

which concludes that
degK{I— GOT, Q, 0} =1,

where degg stands for the degree in cone K. Then 607 has a fixed

point x € Q. Obviously, || x || < R.
Now, for this x, we claim that
(Tx)(t) = Mw(t), t e [0, +m).

Otherwise, sup {Mw(t) - (Tx)(t)} > 0.

0<t<+o0

Case 1. If ¢; € (0, +o) such that

Muw(ty) - (Tx) (to) = te[sougw){Mw(t) - (Tx) @)} > 0,

we have Muw'(ty) — (Tx) (to) = O.
Furthermore, if there exists ¢, € [0, ¢y) such that

Muw(t;) - (Tx)(t;) = 0 and Mw(t) - (Tx)(¢) > 0, ¢t e (4, ty],
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then for any ¢ € (¢, tg], we have

M) - (1) () =~ [ (906) (') - (1) (5) ds
| t:q)(s) (£ (s, x(s) - M)ds

1 t
ol OG5, Muuls) - M)ds <0,

and so Mw(t;)— (Tx)(¢) = Mw(tg) — (Tx)(ty) > 0, which is a contradiction.
Then we have Mw(t) — (Tx)(t) > 0 on ¢ € [0, ty]. Similarly, we can show
that Mw(t) - (Tx)(¢) > 0 on ¢ € [ty, +].

So,

Muw(to) - (Tx) (£)

RGO EL T A7 AR O B
0 0

N Eslirfw r'(s) to p(s) ds
[T - afe Muds [T oM - 1f(x Mu()ds
P 20 : + J- 0 ds <0,
oL s—>+0 r'(s) to p(s)

which is a contradiction to Case 1.
Case 2. lim Muw(t) - (Tx)(t) = sup {Mw(t)- (Tx)(t)} > 0.
t—>+oo 0<t <+
For this case, we can get immediately that there exists T > 0 such
that

Muw(t) - (Tx)(t) > 0, Muw'(t) - (Tx) (t) > O, (3.8)

’

for V¢ > T, where Muw'(¢t) - (Tx) (¢) = 0, otherwise Case 2 returns to
Case 1.
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Notice that both Mw(¢) and (Tx)(¢) satisfy the boundary value

conditions of (2.1) and we have

o Jim (M) - () () + p Jim 2OHEO-EIE) o,

due to (3.8) and the properties of r(t), we get that

L PO = (Tx) () _

t—>+0 r'(t)

Because r'(t) — 1, when ¢t — +oo, tlim p(t) (Mw'(t) - (Tx) (t)) = 0.
—>+0

Furthermore, if there exists ¢; € [0, +o) such that
Muw(ty) - (Tx)(t;) =0 and Mw(t) - (Tx)(¢) > 0, ¢ e (t, +»),

then Vit e (¢, +o), we have

Mw(e) = (1 ©) = = [ (o) [M(s) - (T )] s
1 [ *
=), =G, x(e)lds

_ % I t+°° o(s) [M = Mf(s, Muw(s))]ds < O,

and so Muw(t;) - (Tx)(t) > thw(Mw(t) —(Tx)(¢)) > 0, which is a

contradiction. Then we have

Muw(t) - (Tx)(t) > 0, t e [0, +»o),

and so
s O G st
lim (Muw(t) - (Tx) () = £ lim :
15> o0 O s—>+o0 r'(s)
By RIS Y()r, peés

which 1s a contradiction to Case 2.
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Case 3. If t; = 0 such that
Multo) = (Ty) (to) = 'sup {Mu(t) - (Ty)()} > O,
then 38 > 0, when ¢ € [0, §], we have
Muw(t) - (Tx)(t) > 0, Muw'(t)— (Tx) () < 0,

where Mw'(t) - (Tx) (t) # 0 on [0, 8], otherwise Case 3 returns to Case 1.

From (2.8) and (3.3), we have

I; d(t)drx
w (t) = —W dS,
| z j Ot () (5, x(0))d
(/@) = -

plt) ’

then V¢ € (0, 8],

Muw'(t) - (Tx) (2) = —ﬁ f ; o(s) [M — 2£(s, Mu(s))]ds > or = 0,

which is a contradiction to Case 3.

Above all, we get that (Tx)(t) > Mw(t) on [0, +). Then (00 7T)x =
Tx = x and x is a positive solution of BVP (2.1) with Mw(t) < x(¢) < R. [

Corollary 3.1. Suppose (H1)-(H5) and (C1l) hold. Further suppose
f(¢, 0) > 0. If there exists R > 0 such that
b= — R > 0,
max I G(t, s)V (s, f(s, x(s)))ds
0

0<t<w,0<x<R

where V(t, f(t, x(2))), V(t, f(, x(t))) are defined as in Theorem 3.1.

Then when 0 < A < b, BVP (2.1) has at least one nonnegative solution

x(¢) satisfying 0 < | x| < R.
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Remark 3.1. If ¢(t)f(¢, 0) = 0 in Corollary 3.1, x is a positive

solution with 0 < || x || < R to corresponding BVP.

Corollary 3.2. Suppose (H1)-(H5) and (C1) hold. If there exists

M > 0 such that

and

= M >0
ofi 2y, [ M)

+00 ~

max I G(t, s)V (s, f(s, x(s)))ds
. 0<t<+o0 J

lim =0,

X —>+00 X

where V(t, f(t, x)), V(t, f(¢t, x)) are defined as in Theorem 3.1. Then when
A = a, BVP (2.1) has at least a positive solution x with

(1]

(2]

(3]

(4]

(5]

(6]

(7

(8]

0 < Muw(t) < x(t), | x| <.
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