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Abstract 

In this paper, by considering the following boundary value problem 
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where [ ) [ )( )∞+∞+∈ ,0,,0Cp  with 0>p  on ( ) ( )∞+∈∞+ ,0,,0 2Cr  

and p is singular at ,0=t  i.e., ( )∫
ε

+∞=
0

,tp
dt  and ( )∫

∞+

ε
+∞< ,tp

dt  for 

,0>ε∀  we can establish sufficient conditions to guarantee the existence 
of positive solutions of BVP (∗) under proper conditions. 

1. Introduction 

The history of boundary value problems on infinite intervals started 
at the end of the nineteenth century with the pioneering work of A. 
Kneser about monotone solutions and their derivatives on [ )∞+,0  for 



ZHONGHAI XU, ZHENGUO FENG and SHENGQUAN LIU 2 

second-order ordinary differential equations. The Kneser-type results 
were then followed by others until now, such as [8, 9]. 

Recently, several facts from classical analysis and topology combined 
with arguments of the modern fixed point theorems have been employed 
to study the existence of solutions to various types of nonlinear boundary 
value problems on infinite intervals. For example, the nonlinear 
alternative theorem used in [2, 10], a wonderful diagonalization process 
adopted in [2, 6], the fixed point theorems in Fréchet space used in [1, 2, 
3, 4], these results were used to study the existence of nontrivial 
solutions for differential equations on the half-line. 

In [5], Lian and Ge considered the following Sturm-Liouville 
boundary value problem (BVP) 
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where  λ is a positive parameter, [ ) [ ) Rf →∞+×∞+ ,0,0:  and 
( ) ( )∞+→∞+φ ,0,0:  are continuous functions, [ ) [ )( )∞+∞+ ,0,,0: Cp  

with 0>p  on ( ).,0 ∞+  Under the condition of ( )∫
∞+

+∞<
0

,tp
dx  the authors 

obtained the existence of positive solutions for the problem (∗∗). 

In this paper, under the condition of p is singular at ,0=t  i.e., 

( )∫
ε

+∞=
0

,tp
dt  and ( )∫

∞+

ε
+∞< ,tp

dt  for ,0>ε∀  by considering the BVP (∗) 

and constructing the generalized Green function, we obtain some 
existence theorems of positive solutions of BVP (∗) by using the fixed 
point theorems in cone under proper conditions. 

As far as we know, the existence of positive solutions of Sturm-
Liouville boundary value problem on the half-line usually needs the 

condition of ( )∫
∞+

+∞<
0

,tp
dt  however, the most interesting point of our 

results is that the condition of ( )∫
∞+

+∞<
0 tp

dt  can be removed. 
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Remark 1.1. When ( ) ( )∫
∞+

=+∞<
0

,, ttrtp
dt  the BVP (∗) returns to 

the BVP (∗∗). 

Finally, we give a brief outline of the rest of the paper. In Section 2, 
we do some preliminary knowledge for the discussion; in Section 3, we 
prove the existence of the positive solutions. 

2. Preliminary 

In this paper, we consider the space { [ ) ( )txCxX
t +∞→

∞+∈= lim:,0  

}exists  with the supremum norm and the cone { ( ) ,0: ≥∈= txXxK  
[ )}∞+∈ ,0t  of X, and study the BVP 
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under the following assumptions throughout the paper: 

(H1) [ )( ),,0 ∞+∈ Cp  0>p  on ( ),,0 ∞+  ( ) ( )( ),,0,,0 ∞+∞+∈φ C  

( );,01 ∞+∈φ L  

(H2) if [ ] [ )( ),,,0,0 RCf ∞+×∞+∈  and ,Lx ≤  then ( ) ,, LSxtf ≤  
for [ ),,0 ∞+∈∀t  where 0,0 >> LSL  are constants; 
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Lemma 2.1. Suppose (H1)-(H5) hold. For any ( )∞+∈ν ,01L  which 
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has a unique solution. Moreover, this unique solution can be expressed in 
the form 
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Then we get: 

Lemma 2.2. Suppose (H1)-(H5) hold. Then ( ) .Ktw ∈  

Next, we introduce the following lemmas: 

Lemma 2.3 [5]. Let X, K be defined as before. Suppose XXT →:  is 
completely continuous. Define KTX →θ :  by 

( ) ( ) ( ){ } [ ),,0,0,max ∞+∈=θ ttyty  

where .TXy ∈  Then KXT →θ :  is also a completely continuous 
operator. 

Lemma 2.4 [2]. Let X be defined as before and .XM ⊂  Then M is 
relatively compact in X if the following conditions hold: 

(a) M is uniformly bounded in X; 

(b) the functions from M are equicontinuous on any compact interval 
of [ );,0 ∞+  

(c) the functions from M are equiconvergent, that is, for any given 
,0>ε  there exists ( ) 0>ε= TT  such that ( ) ( ) ,ε<∞+− ftf  for any 

., MfTt ∈>  

Lemma 2.5 [11]. Let P be a cone of real Banach space PE ⊂Ω,  be a 
bounded open set, ,Ω∈θ  and PT →Ω:  be a completely continuous 
operator. Suppose .1,, ≥λΩ∂∈∀λ≠ xxTx  Then { } .10,,deg =Ω− TIp  

3. Existence of Solutions 

Theorem 3.1. Suppose (H1)-(H5) and the following conditions hold: 



EXISTENCE OF POSITIVE SOLUTIONS … 7 
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Then when [ ),, ba∈λ  BVP (2.1) has at least one positive solution x 
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In view of Lemma 2.1, it is clear that a fixed point of T is also a 
solution of BVP (3.1). 
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In the same way as we get (2.8), we can obtain 
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We claim that XKT →:  is a completely continuous operator. To 
justify this, the proof is split into three steps: 

Step 1. XKT →:  is well defined. 

In order to prove XKT →:  is well defined, we will show that 
( ) ( ) [ )∞+∈ ,0CtTx  and for ( ) ( )tTxKx
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∈∀ lim,  exists. 
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( ) ( ) [ ).,0 ∞+∈ CtTx  
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from (3.3), we know that ( ) ( )tTx
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Step 2. The operator T is continuous. 

In order to prove XKT →:  is continuous, we only prove that 

,00, →−⇒→−∈∀ TxTxxxKx nnn  i.e., ( ) ( )txtxKx nn →→∈∀ ,  

( ) ( ),tTxtTxn →→⇒  as .+∞→n  
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Because ,Kxn ∈  ,Kx ∈  ,xxn →  there exist 0>L  and 0>LS  
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(3) In the same way as we get (3.5), we have 

( ) ( ) ( ) ( ) .as,0 +∞→→∞+− tTxtTx  (3.6) 

(4) For any positive number ,0 +∞<T  for [ ],,0 0Tt ∈∀  we prove that 
( ) ( ) ( ) ( ) .as,0 +∞→→− ntTxtTxn  

From (C1) and (3.3), we have 
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( ) ( ) ( ) ( ) .as,0 +∞→→− ntTxtTxn  (3.7) 

Combining (3.4), (3.5), (3.6) and (3.7), we can get that the operator T 
is continuous. 

Step 3. T maps a bounded subset KB ⊂  into a relatively compact 
set in X. 

In order to prove that, we only show that ( )BT  is uniformly bounded, 
equicontinuous and equiconvergent. 

Let B be a bounded subset of K, there exist 0>L  and 0>LS  such 

that LxBx ≤∈∀ ,  and ( )( ) ,, LSxf ≤ττ  for any function .Bx ∈  

(1) ( )BT  is uniformly bounded. 

For ,Bx ∈∀  from (3.3), we have 
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0
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d
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s

L

s
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so ( )BT  is uniformly bounded. 
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(2) ( )BT  is equicontinuous. 

We only prove that ( )( ) ( )( ) ,,,0,0 2121 ε<−δ<−>δ∃>ε∀ tTxtTxtt  

[ ],,,, 2121 TTttBx ∈∀∈∀  where [ ).,0, 21 ∞+∈TT  

For ,Bx ∈  from (3.3), when ,21 tt →  we have 

( ) ( ) ( ) ( )21 tTxtTx −  

( ) ( )( )

( )

( )

( ) ,0
,

2

1

2

1
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d
s

 we get ( ) ( ) ( ) ( ) ,021 →− tTxtTx  as .21 tt →  

(3) ( )BT  is equiconvergent. 

We only prove that ( ) ( ) ( ) ( ) ,,0,0 00 ε<∞+−⇒>>∃>ε∀ TxtTxTtT  

,Bx ∈∀  where [ ).,00 ∞+∈T  

From (3.3), we can get that 

( ) ( ) ( ) ( )
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∫∞+
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t

s
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dxf
TxtTx 0

,
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∞+
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t

s
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d
S ,  

due to 
( )

( )∫
∫∞+

∞+

+∞<
ττφ

0
,dssp

d
s  we get ( ) ( ) ( ) ( ) ,0→∞+− TxtTx  as 

,∞+→t  for .Bx ∈∀  

Combining Steps 1 and 2 with Step 3, we know that T is a completely 
continuous operator. 
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For the operator KX →θ :  defined by ( ) ( ) ( ){ },0,max tyty =θ  Lemma 

2.3 implies that KKT →θ :  is also completely continuous. 

Set { }RxKx <∈=Ω :  and { [ ) ( ( )( )) }.0,,:,0 ≥∞+∈=Δ ∗ txtftVtx  
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where Kdeg  stands for the degree in cone K. Then Tθ  has a fixed 

point .Ω∈x  Obviously, .Rx <  

Now, for this x, we claim that 
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Otherwise, ( ) ( ) ( ){ } .0sup
0

>−
+∞<≤

tTxtMw
t

 

Case 1. If ( )∞+∈ ,00t  such that 

( ) ( ) ( )
[ )

( ) ( ) ( ){ } ,0sup
,0

00 >−=−
∞+∈

tTxtMwtTxtMw
t

 

we have ( ) ( ) ( ) .000 =′−′ tTxtwM  

Furthermore, if there exists [ )01 ,0 tt ∈  such that 

( ) ( ) ( ) 011 =− tTxtMw   and  ( ) ( ) ( ) ( ],,,0 01 ttttTxtMw ∈>−  
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then for any ( ],, 01 ttt ∈  we have 

( ) ( ) ( ) ( ) ( ( ) ( ( ) ( ) ( )))∫ ′′−′=′−′
t

t
dssTxswMsptptTxtwM

0

1  

( ) ( ) ( ( )( ) )∫ −λφ= ∗
t

t
dsMsxsfstp 0

,1  

( ) ( ) ( ( )( ) )∫ ≤−λφ=
t

t
dsMsMwsfstp 0

,0,1  

and so ( ) ( ) ( ) ( ) ( ) ( ) ,00011 >−≥− tTxtMwtTxtMw  which is a contradiction. 

Then we have ( ) ( ) ( ) 0>− tTxtMw  on [ ].,0 0tt ∈  Similarly, we can show 

that ( ) ( ) ( ) 0>− tTxtMw  on [ ].,0 ∞+∈ tt  

So, 

( ) ( ) ( )00 tTxtMw −  

( )[ ( )( )]

( )

( )[ ( )( )]

( )∫
∫∫ ∞+

∗∗

+∞→

τττλ−τφ
+

′

τττλ−τφ

α
β=

0

00
,,

lim
t

ss

s
dssp

dxfM

sr

dxfM
 

( )[ ( )( )]

( )

( )[ ( )( )]

( )∫
∫∫ ∞+

+∞→
≤

τττλ−τφ
+

′

τττλ−τφ

α
β=

0
,0

,,
lim 00

t

ss

s
dssp

dMwfM

sr

dMwfM
 

which is a contradiction to Case 1. 

Case 2. ( ) ( ) ( ) ( ) ( ) ( ){ } .0suplim
0

>−=−
+∞<≤+∞→

tTxtMwtTxtMw
tt

 

For this case, we can get immediately that there exists 0>T  such 
that 

( ) ( ) ( ) ( ) ( ) ( ) ,0,0 ≥′−′>− tTxtwMtTxtMw  (3.8) 

for ,Tt ≥∀  where ( ) ( ) ( ) ,0≢tTxtwM ′−′  otherwise Case 2 returns to 

Case 1. 
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Notice that both ( )tMw  and ( ) ( )tTx  satisfy the boundary value 
conditions of (2.1) and we have 

( ) ( ) ( )( ) ( ) ( ( ) ( ) ( ))
( ) ,0limlim =
′

′−′
β+−α

+∞→+∞→ tr
tTxtwMtptTxtMw

tt
 

due to (3.8) and the properties of ( ),tr  we get that 

( ) ( ( ) ( ) ( ))
( ) .0lim =
′

′−′
+∞→ tr

tTxtwMtp
t

 

Because ( ) ,1→′ tr  when ( ) ( ( ) ( ) ( )) .0lim, =′−′+∞→
+∞→

tTxtwMtpt
t

 

Furthermore, if there exists [ )∞+∈ ,01t  such that 

( ) ( ) ( ) 011 =− tTxtMw   and  ( ) ( ) ( ) ( ),,,0 1 ∞+∈>− tttTxtMw  

then ( ),,1 ∞+∈∀ tt  we have 

( ) ( ) ( ) ( ) ( ( ) [ ( ) ( ) ( )])∫
∞+

′′−′−=′−′
t

dssTxswMsptptTxtwM 1  

( ) ( ) [ ( )( )]∫
∞+

∗λ−φ=
t

dssxsfMstp ,1  

( ) ( ) [ ( )( )]∫
∞+

≤λ−φ=
t

dssMwsfMstp ,0,1  

and so ( ) ( ) ( ) ( ) ( ) ( )( ) ,0lim11 >−≥−
+∞→

tTxtMwtTxtMw
t

 which is a 

contradiction. Then we have 

( ) ( ) ( ) [ ),,0,0 ∞+∈>− ttTxtMw  
and so 

( ) ( ) ( )( )
( ) [ ( )( )]

( )sr

dxfM
tTxtMw

s

st ′

τττλ−τφ

α
β=−

∫ ∗

+∞→+∞→

0
,

limlim  

( ) [ ( )( )]

( ) ,0
,

lim 0 ≤
′

τττλ−τφ

α
β=

∫
+∞→ sr

dMwfM
s

s
 

which is a contradiction to Case 2. 
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Case 3. If 00 =t  such that 

( ) ( ) ( ) ( ) ( ) ( ){ } ,0sup
0

00 >−=−
+∞<≤

tTytMwtTytMw
t

 

then ,0>δ∃  when [ ],,0 δ∈t  we have 

( ) ( ) ( ) ( ) ( ) ( ) ,0,0 ≤′−′>− tTxtwMtTxtMw  

where ( ) ( ) ( ) 0≢tTxtwM ′−′  on [ ],,0 δ  otherwise Case 3 returns to Case 1. 

From (2.8) and (3.3), we have 

( )
( )

( ) ,0 dstp

d
tw

t

∫ ττφ
−=′  

( ) ( )
( ) ( )( )

( ) ,
,

0
tp

dxf
tTx

t

∫ ττττφλ
−=′

∗

 

then ( ],,0 δ∈∀t  

( ) ( ) ( ) ( ) ( ) ( )( )[ ] ,0or,1
0∫ ≡>λ−φ−=′−′
t

dssMwsfMstptTxtwM  

which is a contradiction to Case 3. 

Above all, we get that ( ) ( ) ( )tMwtTx ≥  on [ ).,0 ∞+  Then ( ) =θ xT  

xTx =  and x is a positive solution of BVP (2.1) with ( ) ( ) .RtxtMw <≤  � 

Corollary 3.1. Suppose (H1)-(H5) and (C1) hold. Further suppose 
( ) .00, ≥tf  If there exists 0>R  such that 

( ) ( )( )( )
,0

,,~,max
00,0

>=

∫
∞+

≤≤∞<≤
dssxsfsVstG

Rb

Rxt

 

where ( )( )( ) ( )( )( )txtftVtxtftV ,,~,,,  are defined as in Theorem 3.1. 

Then when ,0 b<λ<  BVP (2.1) has at least one nonnegative solution 
( )tx  satisfying .0 Rx <≤  
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Remark 3.1. If ( ) ( ) 00, ≢tftφ  in Corollary 3.1, x is a positive 

solution with Rx <<0  to corresponding BVP. 

Corollary 3.2. Suppose (H1)-(H5) and (C1) hold. If there exists 
0>M  such that 

( )( ) 0,min
0

>=
+∞<≤

tMwtf
Ma

t
 

and 

( ) ( )( )( )
,0

,,~,max
lim 00

=
∫

∞+

+∞<≤

+∞→ x

dssxsfsVstG
t

x
 

where ( )( ) ( )( )xtftVxtftV ,,~,,,  are defined as in Theorem 3.1. Then when 

,a≥λ  BVP (2.1) has at least a positive solution x with 

( ) ( ) .,0 ∞<≤< xtxtMw  
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