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Abstract 

This paper investigates selection of moduli in Residue Number System 
(RNS) which is an important issue in the design of digital systems. We 
propose Moduli Selection Guidelines (MSG) for moduli sets 

{ },12,2,12 −+ nnn    { }12,2,12 −+ nnn    and   { }.12,12,2 1 −− −nnn  

We design a program based on the MSG for computing all possible 
multiplicative inverses that may be needed when using different 
conversion techniques. Based on this experiment, we deduce that there is 
a well established relationship between the form of the moduli set, the 
moduli and the multiplicative inverses. These deductions are used to come 
up with the moduli representations of the various multiplicative inverses. 
Hence, using the MSG, the cost of computing the multiplicative inverses 
is eliminated. The experimental results reveal that some of these 
multiplicative inverses will always be unity so their computations are no 
more needed. Consequently, the usage of these guidelines in building a 
RNS-to-decimal converter results in a considerable reduction in the 
number of arithmetic operations required during the conversion process. 
These results provide the possibility of a wide range of applications of 
RNS in Digital Signal Processing. 
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I. Introduction 

The use of RNS in highly intensive computation has received considerable 
attention in the last two decades. RNS is a UNS with inherent parallel characteristics 
which supports carry-free addition, borrow-free subtraction and single step 
multiplication without partial products [2-4]. RNS has not found widespread use in 
general-purpose signal processor architecture because the following operations are 
very difficult to perform: magnitude comparison, overflow detection, sign detection 
and also division are generally slow. However, where these operations are not 
needed, special-purpose Digital Signal Processing (DSP) architectures based on 
RNS have been built [1]. In addition, intermodular operation and conversion 
between numbers are awkward and hence RNS is not widely used. The input 
numbers provided are either in standard binary or decimal which need to be 
converted to RNS before performing the operations and which must be presented in 
the same way as the input at the end of the operations. This implies that data 
conversion is greatly required. Generally, conversion process is very slow. For RNS 
processor to compete favourably with the conventional processor, a very fast 
converter is required. Moduli selection is of crucial importance in RNS design 
because the speed and the hardware complexity of RNS architecture are affected by 
the moduli selected. Particularly, it is the magnitude of the largest modulus that 
determines the speed of the resulting RNS architecture. This implies that moduli 
must be selected in such a way that the largest modulus will be made as small as 
possible. Another factor which contributes to the cost of building a converter is 
computation of multiplicative inverses. The cost of computing multiplicative 
inverses in the existing converters is very high. It is in this line of reasoning that we 
propose MSG for moduli sets 

{ },12,2,12 −+ nnn    { }12,2,12 −+ nnn    and   { }12,12,2 1 −− −nnn  

which result in the elimination of the computation of the multiplicative inverses 
required by the existing conversion techniques such as the Mixed Radix Conversion 
(MRC), Chinese Remainder Theorem (CRT), Yassine and Moore’s MRC and so on. 
We wrote a C++ program based on the MSG, the results of which reveal that there is 
a well established relationship between the form of moduli set, the moduli and the 
multiplicative inverses. With this, we come up with the moduli representations of the 
various multiplicative inverses. Consequently, the usage of the MSG in building an 
RNS-to-decimal converter results in a considerable reduction in the number of 
arithmetic operations required during the conversion process. 



… EFFICIENT RESIDUE-TO-DECIMAL CONVERSION 55 

The rest of the article is organized as follows: In Section II, we introduce the 
necessary background. Section III presents MSG. Section IV gives the effect of the 
MSG on some existing conversion methods. In Section V, we briefly evaluate the 
performance of the MSG and the paper is concluded in Section VI. 

II. Background 

RNS is an integer system having the capabilities of performing carry-free 
addition and multiplication, borrow-free subtraction, fault tolerance and in general 
high speed arithmetic [3]. The main characteristics of RNS is the fact that it is an 
Unweighted Number System (UNS) where digits have no ordering significance. This 
implies that performing arithmetic operations between RNS numbers depend solely 
on the corresponding digits of its suboperations. Errors do not propagate between 
RNS digits because the parallel operations are independent of each other [7]. All 
these properties make RNS suitable in building high speed special purpose 
processor. As mentioned in Section I, an efficient RNS-decimal converter is required 
for RNS processor to compete favourably with the conventional processor. The 
study of moduli selection is of paramount importance because the dynamic range, 
the speed as well as RNS system implementation depend on the form as well as the 
number of moduli chosen [6]. 

RNS is defined in terms of a set of relatively prime moduli set 
{ }nmmmm ...,,,, 321  such that ( ) 1,gcd =ji mm  for ,ji ≠  where gcd means the 

greatest common divisor of im  and jm  while i
n
i mM 1=π=  is the dynamic range. 

The residues of a decimal number X can be obtained as 
imi Xx =  and represented 

as ( )nxxxx ...,,,, 321  and also .0 ii mx <≤  This representation is unique for any 

integer [ ].1,0 −∈ MX  We note here that in this paper, we use 
imX  to denote 

the X mod im  operation and the operator Θ  to represent the operation of addition, 

subtraction and multiplication. If there exists any two integers K and L represented 
by ( )nkkkkK ...,,,, 321=  and ( )....,,,, 321 nllllL =  Given that LKW θ=  and 

( ),...,,,, 321 nwwwwW =  then the arithmetic in RNS can be implemented as 

follows: .
imiii lkw θ=  For the sake of completeness, we briefly review the 

following conversion methods: CRT, MRC, and Yassine and Moore’s MRC. We are 
aware that there are series of other methods emanating from either CRT or MRC. 
We only intend to study the effects of the MSG on these traditional methods and the 
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observation is also applicable to other conversion methods. The inclusion of Yassine 
and Moore’s MRC is because it works in a very similar manner to MRC and more in 
particular, we observe that both MRC, and Yassine and Moore’s MRC are exactly 
the same with regards to the number of arithmetic operations if our MSG is applied. 

CRT. If we have the moduli set { }nmmmm ...,,,, 321  and the dynamic range 

,1 i
n
i mM =π=  then the residue number ( )nxxxx ...,,,, 321  is converted into the 

decimal number X by 

,
1

1

M

n

i
miii i

xMMX ∑
=

−=  

where ii mMM =  and 1−
iM  is the multiplicative inverse of iM  with respect to 

.im  The purpose of the paper is to eliminate the cost of computing .1−
iM  

MRC. The conversion from RNS to decimal using MRC can be formulated as 
follows: 

Given an n-digit number ( )nxxxxX ...,,,, 321=  in an RNS with the set of 

relatively prime integer moduli { } ,...,,1 niim =  find a set of digits { },...,,,, 321 naaaa  

which are the Mixed Radix Digits (MRD) such that the following equation holds 
true: 

.1321213121 −++++= nn mmmmammamaaX  

The MRD can be computed as follows [7]: 

,11 xa =  

( ) ,
22

1
1122 mmmaxa −−=  

(( ) ) ,
333

1
22

1
1133 mmm mamaxa −− −−=  

 

(( ( ) ) ) .1
11

1
22

1
11 nnnn mmnnmmnn mamamaxa −

−−
−− −−−−=  

Again, the purpose of this paper with this conversion technique is to eliminate 
the cost of computing the multiplicative inverses and also to reduce the number of 
arithmetic multiplications required during the conversion process. 

Yassine and Moore’s MRC. Suppose a number system is defined by the set of 
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moduli { },...,,,, 321 nmmmm  associated MRD ( )naaaa ...,,,, 321  of a given 

residue number ( )nxxxx ...,,,, 321  must be computed. It has been shown that it is 

more efficient to find the related variable iU  instead of finding ia  directly and ia  is 

given by ,
imiii VUa =  where iV  are constant predetermined factors given by 

,11 ≡V  

( ) ,
2

1
12 mmV −≡  

( ) ,
3

1
213 mmmV −≡  

 

( ) ,...,,,, 1
1321 nmnn mmmmV −
−≡  

and iU  are computed by using the formula: 

,11 xU =  

,
2122 mxxU −=  

,
32222133 mmVUWxxU −−=  

,
432 333222144 mmm VUWVUWxxU −−−=  

 

.11113332221 32 nmnnnnmmnn VUWVUWVUWxxU −−−−−−−−−=  

The decimal equivalent to the residues will be given by 

,
1
∑
=

=
n

i
iiWUX  

where ∏ −
=

=
1
1

j
i ij mW  and ,11 =W  ....,4,3,2=j  

This algorithm has been compared earlier with Szabo and Tanaka’s MRC 
algorithm and it was stated that there is a reduction in the number of arithmetic 
operations required during the conversion process in this algorithm compared to the 
traditional MRC. Using the MSG proposed in this paper, we observe that there is no 
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difference in these two techniques with regards to the number of arithmetic 
operations required during the conversion process. 

III. Moduli Selection Guidelines (MSG) 

In this section, we present selection guidelines for moduli sets 

{ },12,2,12 −+ nnn    { }12,2,12 −+ nnn    and   { }.12,12,2 1 −− −nnn  

With these three moduli sets, two things are common apart from the fact that they 
are either power of 2 moduli or factor of 2 moduli sets and these two things are: (i) 

,1321 >>> mmm  (ii) .121 =− mm  If moduli sets are arranged in such a way 

that points (i) and (ii) are always true, then 1
2

1
1 =−

mm  will always be true. This 

implies that when building a converter that requires the computation of ,
2

1
1 mm−  

this computation will be eliminated following the above arrangement. In this paper, 
we divide the guidelines into three similar classes, one for each of the three moduli 
sets under considerations based on some assumptions and experimental results which 
will be explained in Section V. We are aware that there are many other moduli sets 
that exhibit similar properties and obey Conditions (i) and (ii). For the sake of 
brevity, we limit our discussion to the above three moduli and with little adjustment 
similar rules may apply to other moduli sets with similar characteristics. 

Class 1. { } .2,12,2,12 ≥−+ nnnn  

(a) Based on this arrangement, the following assumptions must always hold 
true: (i) ,1321 >>> mmm  (ii) .13221 =−=− mmmm  Assuming this is true 

then: (b) The computation of 1
32

1
2

1
1 == −−

mm mm  will no more be necessary 

if required in building a converter as they will always be unity. More specifically, 
(b) will always be true because Assumption (ii) is always true. (c) The computation 

of 
3

1
1 mm−  and ( )

3
1

21 mmm −  always yields the same result which will be equal to 

12 −n  which is also the same as 22m  meaning that 22m  can simply be used to 

replace these multiplicative inverses if their computation is required. Hence the 
usage of Euclidean algorithm for this purpose is no more necessary as the 
computation of the multiplicative inverses is totally eliminated. (d) The computation 
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of ( )
1

1
32 mmm −  which gives 12 1 +−n  and which is equivalent to ( )122 +m  will 

no more be needed if required during the conversion process. This multiplicative 
inverse whenever required will only be replaced by ( ).122 +m  (e) The computation 

of ( )
2

1
31 mmm −  which is 12 −n  and which is equivalent to 3m  will not be 

needed if required during the conversion process, 3m  will be used in replacing its 

value. 

Class 2. { } .2,12,2,12 ≥−+ nnnn  

Based on this arrangement and the same assumptions as given in Class 1(a), 

then (a) The computation of 1
32

1
2

1
1 == −−

mm mm  will no more be needed since 

they will always be unity. (b) The computation of 
3

1
1 mm−  and ( )

3
1

21 mmm −  

always yields the same result which will be equal to n which is also the same as 

.22m  This implies that whenever 
3

1
1 mm−  or ( )

3
1

21 mmm −  is required, 22m  

will be used. (c) The computation of ( )
1

1
32 mmm −  which gives 1+n  which is 

equivalent to ( )122 +m  will no more be needed if required, instead ( )122 +m  

will be used. (d) The computation of ( )
2

1
31 mmm −  which is 12 −n  which is 

equivalent to 3m  will not be needed if required, 3m  will be used instead. 

Class 3. { } .3,12,12,2 1 ≥−− − nnnn  

(a) Suppose that (i) 1321 >>> mmm  as in Class 1(a)-(i) and (ii) 121 =− mm  

but .132 ≠− mm  Then (b) The computation of 1
32

1
2

1
1 == −−

mm mm  will not 

be needed again as they will always be unity. (c) The computation of 
3

1
1 mm−  and 

( )
3

1
21 mmm −  always yields the same result which will be equal to 22 −n  which is 

also the same as .41m  This means that whenever 
3

1
1 mm−  or ( )

3
1

21 mmm −  is 

required, 41m  will be used instead. (d) The computation of ( )
1

1
32 mmm −  which 

gives 12 1 +−n  and which is equivalent to ( )23 +m  will no more be needed if 

required instead ( )23 +m  will be used. (d) The computation of ( )
2

1
31 mmm −  
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which is 32 −n  which is equivalent to 22 −m or 31 −m  will not be needed if 

required, 22 −m  or 31 −m  will be used instead. 

We place the multiplicative inverses and their corresponding values for the three 
moduli sets in Tables I, II and III as shown below: 

With the results summarized in Tables I, II and III, the moduli sets 

{ }12,2,12 −+ nnn  and { }12,2,12 −+ nnn  have the same representational values 

for the multiplicative inverses and so they will have similar effects on conversion 
methods. In this line of reasoning, their examination will be carried out jointly in the 

next section and the moduli set { }12,12,2 1 −− −nnn  which behaves slightly 

differently will be separately examined. 

Table I. Multiplicative inverse values for { }12,2,12 −+ nnn  

S/N Multiplicative inverses Equivalent values 
  

1 
2

1
1 mm−  1 

2 
3

1
2 mm−  1 

3 ( )
3

1
21 mmm −  22m  

4 
3

1
1 mm−  22m  

5 ( )
1

1
32 mmm −  122 +m  

6 ( )
2

1
31 mmm −  3m  

Table II. Multiplicative inverse values for { }12,2,12 −+ nnn  

S/N Multiplicative inverses Equivalent values 
 

1 
32

1
2

1
1 mm mm −− =  1 

2 ( )
33

1
21

1
1 mm mmm −− =  22m  

3 ( )
1

1
32 mmm −  122 +m  

4 ( )
2

1
31 mmm −  3m  
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IV. The Effects of MSG on Some Conversion Methods 

In this section, we study the effects of the MSG on the three conversion 
methods described in Section II and we follow the same order: 

CRT. The CRT presented in Section II can be described for moduli set of length 
three as follows: 

.3
1

332
1

221
1

11 321 Mmmm xMMxMMxMMX −−− ++=  

With the definition given in Section II, we have 

( ) ( ) ( ) .3
1

2132
1

3121
1

321 321 Mmmm xmmMxmmMxmmMX −−− ++=  

For the moduli sets { }12,2,12 −+ nnn  and { },12,2,12 −+ nnn  substituting 

the values for the multiplicative inverses presented in Table I into the above 
equation, we have 

.
2

1
2 33

2
22311

2

M
xMmxMmxMmX ++⎟

⎠
⎞

⎜
⎝
⎛ +=  

Table III. Multiplicative inverse values for { }12,12,2 1 −− −nnn  

S/N Multiplicative inverses Equivalent values 
 

1 
32

1
2

1
1 mm mm −− =  1 

2 ( )
33

1
21

1
1 mm mmm −− =  41m  

3 ( )
1

1
32 mmm −  23 +m  

4 ( )
2

1
31 mmm −  22 −m  

Similarly, for the moduli set { },12,12,2 1 −− −nnn  we obtain 

( ) ( ) .
4

22 33
1

223113
M

xMmxMmxMmX +−++=  

The above result produces a very efficient converter if used in conjunction with 
[5] where the large modulo M has been reduced and here the multiplicative inverses 
have been eliminated. The cost of computing multiplicative inverses is no more 
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required when transforming residue operands to decimal/binary. For example, 
suppose we are given a residue number ( ) ( ) ,0,3,8 789RNS  the decimal equivalent 

can be obtained as follows: 

Solution. From the definition given in Section II, we have ,321 mmM =  

312 mmM =  and .213 mmM =  Using the newly obtained equation for the moduli 

set { }12,2,12 −+ nnn  with these values, we obtain 

504072436378565 ∗∗+∗∗+∗∗=X  meaning that: 

.353563 504 ==X  

Next, we proceed to MRC: The MRC presented in Section II can be described 
for moduli set of length three as follows: 

Given a 3-digit number ( )321 ,, xxxX =  in an RNS with the set of relatively 

prime integer moduli { } ,3,1=iim  find a set of digits { },,, 321 aaa  which are the 

MRD such that the following equation holds true: 

.213121 mmamaaX ++=  

The MRD can be computed as follows: 

,11 xa =  

( ) ,
22

1
1122 mmmaxa −−=  

(( ) ) .
333

1
22

1
1133 mmm mamaxa −− −−=  

Again, for the moduli sets { }12,2,12 −+ nnn  and { },12,2,12 −+ nnn  

substituting the values for the multiplicative inverses presented in Table I into the 
above equation results into 

,11 xa =  

( ) ,
2122 maxa −=  

( ) .
2

3
213

2
3

m
aaxma ⎟

⎠
⎞

⎜
⎝
⎛ −−=  
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In a similar manner, with the moduli set { },12,12,2 1 −− −nnn  we obtain 

,11 xa =  

( ) ,
2122 maxa −=  

( ) .
4

3
213

1
3

m
aaxma ⎟

⎠
⎞

⎜
⎝
⎛ −−=  

The effects of the MSG on MRC are that: (i) The cost of computing the 
multiplicative inverses is eliminated and (ii) There is a considerable reduction in the 
number of arithmetic multiplications. For example, given a residue number 
( ) ( ) ,0,3,8 789RNS  the decimal equivalent can be obtained as follows: 

Solution. For the moduli set { },12,2,12 −+ nnn  we have 

,81 =a  

( ) ,383 82 =−=a  

( )( ) .03804 73 =−−=a  

Hence the decimal equivalent is .35890938 =∗∗+∗+=X  

Finally, in this section, we describe Yassine and Moore’s MRC for moduli set of 
length three. Suppose that a number system is defined by the set of moduli 
{ },,, 321 mmm  the associated MRD ( )321 ,, aaa  of a given residue number 

( )nxxxx ...,,,, 321  must be computed. The algorithm for computing the MRD for 

moduli set of length three is summarized as follows: ,
imiii VUa =  where iV  are 

constant predetermined factors given by 

,11 ≡V  

( ) ,
2

1
12 mmV −≡  

( )
3

1
213 mmmV −≡  

and iU  are computed by using the formulas: 

,11 xU =  
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,
2122 mxxU −=  

.
32222133 mmVUWxxU −−=  

For the moduli sets { }12,2,12 −+ nnn  and { },12,2,12 −+ nnn  substituting the 

values for the multiplicative inverses presented in Table I into the above equation 
gives 

 ,11 ≡V  

 ,12 ≡V  

2
2

3
mV ≡  

and iU  are computed by using the formulas: 

,11 xU =  

,
2122 mxxU −=  

.
3222133 mmUWxxU −−=  

The moduli set { }12,12,2 1 −− −nnn  gives the same result as given above except 

for 3V  which is computed as 

.
4
1

3
mV ≡  

The effects of the MSG on Yassine and Moore’s MRC and the traditional MRC are 
exactly the same giving equal number of arithmetic operations for the computations 
of MRD. Again, suppose that we have a residue number ( ) ( ) ,0,3,8 789RNS  the 

decimal equivalent can be obtained as follows: 

,11 ≡V  

,12 ≡V  

43 ≡V  

and iU  are computed by using the formulas: 

,81 =U  
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,383 82 =−=U  

.03980 783 =−−=U  

Hence the decimal equivalent is given by 

.357209318 =∗+∗+∗=X  

Experimentally, we obtain that ( )
33

1
21

1
1 mm mmm −− =  for all values of n. 

Hence ( )
3

1
21 mmm −  will not be displayed in the following tables: 

Table IV. Multiplicative inverse values for moduli set { }12,2,12 −+ nnn  

n 
3

1
1 mm−  ( )

1
1

32 mmm −  ( )
2

1
31 mmm −  

 

2 2 3 3 
3 4 5 7 
4 8 9 15 
5 16 17 31 
6 32 33 63 
7 64 65 127 
8 128 129 255 
9 256 257 511 

10 512 513 1023 

Table V. Multiplicative inverse values for moduli set { }12,2,12 −+ nnn  

n 
3

1
1 mm−  ( )

1
1

32 mmm −  ( )
2

1
31 mmm −  

 

2 2 3 3 
3 3 4 5 
4 4 5 7 
5 5 6 9 
6 6 7 11 
7 7 8 13 
8 8 9 15 
9 9 10 17 

10 10 11 19 
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V. Performance Evaluation 

We wrote a C++ program which accepts n as input and generates moduli for the 
three categories of moduli sets under investigation. All possible multiplicative 
inverses that may be required when building a converter are computed using the 

program. First, based on the MSG, it was observed that 1
32

1
2

1
1 == −−

mm mm  

for different values of n. Next, based on the results of our experiments, some of 
which are displayed in Tables IV, V and VI, we deduce that there is a well 
established relationship between the moduli form, the moduli and the multiplicative 
inverses. These deductions are used to come up with the moduli representations of 
the various multiplicative inverses. This is shown in Tables I, II and III. 

Table VI. Multiplicative inverse values for moduli set { }12,12,2 1 −− −nnn  

n  
3

1
1 mm−  ( )

1
1

32 mmm −  ( )
2

1
31 mmm −  

 

3 2 5 5 

4 4 9 13 

5 8 17 29 

6 16 33 61 

7 32 65 125 

8 64 129 253 

9 128 257 509 

10 256 513 1021 

VI. Conclusions 

In this paper, we investigated moduli selection in RNS which is an important 
issue in the design of digital systems. We proposed MSG for the three moduli sets 

{ },12,2,12 −+ nnn  { }12,2,12 −+ nnn  and { }.12,12,2 1 −− −nnn  We wrote a 

C++ program which accepts n as input and generates moduli for these three moduli 
sets. All possible multiplicative inverses that may be required when building a 
converter are computed using the program. Based on this experiment, we deduced 
that there is a well established relationship between the moduli form, the moduli and 
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the multiplicative inverses. These deductions were used to come up with the moduli 
representations of the various multiplicative inverses. Hence, using the MSG, the 
cost of computing the multiplicative inverses is eliminated. It was observed that 
some of these multiplicative inverses will always be unity so their inclusion in the 
computation is no more necessary. Consequently, the usage of these guidelines in 
building an RNS to decimal converter results in a considerable reduction in the 
number of arithmetic operations required during the conversion process. These 
results provide the possibility of a wide range of applications of RNS in DSP. 
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