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Abstract

We obtain the Dirichlet series of the Fourier expansion of the elliptic

eta-product 1 ALY (47) = n(41)® of type AfY.

1. Introduction

In 1985, Saito [3] introduced the notion of an extended affine root system, and
especially classified (marked) 2-extended affine root systems associated to the
elliptic singularities, which are the root systems belonging to a positive semi-definite
quadratic form | whose radical has rank two. Therefore 2-extended affine root
systems are also called elliptic root systems. In the cases of 1-codimensional elliptic
root systems, Saito [4] described elliptic eta-products and their Fourier coefficients
at oo. In the previous articles [5, 6, 7], we examined the elliptic eta-product of type

Al(l'l) (I =1), and more concretely the cases of types Al%'l) and A%)'l). In this

article, we obtain the Dirichlet series of n(4‘c)30 of type A%l) according to the

theory of Hecke operators due to van Lint [8], Rankin [2] and Rangachari [1].
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2. Elliptic Eta-product of Type A%l)

1

Dedekind’s n-function, defined by the infinite productn(t):= qﬂH:ZI(l— q"),
gq= eznit, te H (= the upper half of the complex plane) is a modular form of
weight % The elliptic eta-product of type Aélg’l) is given by [5]; n AL (47)

$

= n(41)*°, which is a cusp form of weight k =15 and level N = 16. Therefore,

n(41)*° e S;5(T(16), €), and the space S;5(I)(16), €) is 3-dimensional (see [1]).

n
From the result of [1], F(t)=E2n® + aE¢n'® + pn = z:zl r(n)g4 is a

normalized eigenfunction of the Hecke operators T, for some values o and 3. Here

E¢ is Eisenstein series given by E¢(t) =1- 5042:;1 lnsznn . We have
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0 n
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k(p-1)
We recall the result [8]. For Hecke operator T,, we set T, = (-1) 2

xp~'T(p), then for f(1)=>"" a(n)q?4, we have f(1)T(p)=Y. {p*a(n/p)

(p-1) n

+(-1) 2 pa(np)}qﬁ, (a(x) = 0 if x is not an integer). From this, we obtain the
following:

Lemma 2.1.

13T (p) = p'> + pa(30p*) - pc(30p)a(6p) 30
a(30p)

+pa(6p)EZn®  (p =1, 5 (mod 12)),
%% T(p) = -pa(18p)Een'®  (p =7, 11 (mod 12)),
Egn'®IT(p) = pb(18p)Esn'®  (p=1,5),

15 2
— pb(18 + pc(18p)b(6
Een'®|T(p) = 2_—P ( F;(I)Sp;)( p)b(6p) 730

- pb(6p)EGN°  (p=7,11),

15 2 2
+ pc(6 - p(c(6
i’ |T(p) = Pt PUB PSRN 0y pe(sp)Edn® (=1,

15 2
— pc(6
e T(p) = P28 P e (p= 1)
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Proof. 1t is easily proved from the formula for T(p) and the expressions of

n30, E6n18 and E62n6. i

From the fact that E62r|6 + (>LE6n18 + an is an eigenfunction for Hecke

operators and Lemma 2.1, for p=1,5 (mod12), we see that P> +43008B
—16533393408 = 0, that is, [ = 108864, —-151872. If [ = 108864, then o =

+48,/-3398, and its eigenvalue is —apb(18p). If B = —151872, then o = 0, and
its eigenvalue is pc(6p) + Bpa(6p). Further, from the action of T(p) (p =7, 11),
we see that if B =108864, o = +./-3398, then its cigenvalue is —apb(6p), if
B =-151872, a =0, then its eigenvalue is 0. We choose o = 48,/-3398,

n
B=108864, B=-151872, and set E¢ +aEsn'® +pn’ =Y a(n)q4, Ef-oaEem'®

n

n
+pn0 = Z ay(n)g4, EZn®+pn*® = Z a3(n)g4. Then we obtain the following.

Proposition 2.2. We have

2B - B)n*(x) = 5214720°°(x) = D (a(n) + ay(n) - 2a3(n)g* = D e(n)g?,
and its Dirichlet series is given as follows:
D em)-n = (a(n) + ay(n) - 2a3(M)n ">,

where

Dam-nc= J] a-basp)p=+ptty
p=L,5 (mod 12)

< I a-abep)p=-p* ),
p=7,11 (mod 12)

Dam = J]  -basp)p=+p )
p=1,5 (mod 12)

< [T a+abep)p®-p ),
p=7,11 (mod 12)
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Z a3(n) .n"S = H (1 _ (C(6p) 4 Ea(6 p)) p—S 4 p14—25 )—1

p=1,5 (mod 12)

% H (1 _ pl4—28)71’
p=7,11 (mod 12)

(where p is prime number).

Proof. It is easily proved from the following result [8]. If f(1)=

n

Z::O a(n)q2* is eigenfunction for T(p) with eigenvalue c, then Dirichlet series

o(s)= >~ a(mn~® is given by

k(p-1) k(p-1)

o)=Y amnT |- 2 () 2 PR o

n=0 (mod p)
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