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Abstract 

The aim of this paper is to give some characterizations of anti fuzzy 
positive implicative ideals in BCK-algebras. Also, we give an example to 
show that an anti fuzzy ideal may not be an anti fuzzy positive implicative 
ideal. 

1. Introduction 

The concept of a fuzzy set, which was introduced in [12], is applied to other 
algebraic structures such as semigroups, groups, rings, modules, vector spaces and 
topologies. In 1991, Xi [11] applied the concept of fuzzy sets to BCK-algebras 
introduced by Imai and Iséki [5]. BCK-algebras generalize, on the one hand, the 
notion of the algebra of sets with the set subtraction as the only fundamental non-
nullary operation and, on the other hand, the notion of the implication algebra (see 
[5]). In [1], Biswas introduced the concept of anti fuzzy subgroups of groups. 
Modifying his idea, in [4], Hong and Jun applied the idea to BCK-algebras. They 
introduced the notion of anti fuzzy ideals of BCK-algebras, lower level cuts of a 
fuzzy set, lower level ideal, they also fuzzified lower level cuts and proved some 
results on these. In this paper, we introduce the notion of anti fuzzy positive 
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implicative ideals of BCK-algebras, and investigate some related properties, we give 
an example to show that an anti fuzzy ideal may not be an anti fuzzy positive 
implicative ideal. We show that in a positive implicative BCK-algebra, a fuzzy 
subset is an anti fuzzy ideal if and only if it is an anti fuzzy positive implicative 
ideal. We prove that a fuzzy subset of a BCK-algebra is a fuzzy positive implicative 
ideal if and only if the complement of this fuzzy subset is an anti fuzzy positive 
implicative ideal. We also prove that if a fuzzy subset is an anti fuzzy positive 
implicative ideal then so is the fuzzifications of its lower level cuts. 

2. Preliminaries 

Definition 2.1 [6]. An algebra ( )0,, ∗X  of type (2, 0) is called a BCK-algebra 

if it satisfies the following axioms for all :,, Xzyx ∈  

  (i) ( ) ( )( ) ( ) ,0=∗∗∗∗∗ yzzxyx  

 (ii) ( )( ) ,0=∗∗∗ yyxx  

(iii) ,0=∗ xx  

(iv) ,00 =∗ x  

 (v) 0=∗ yx  and 0=∗ xy  imply .yx =  

We can define a partial ordering ≤  on X by yx ≤  if and only if .0=∗ yx  

Proposition 2.2 [6]. In any BCK-algebra X, the following hold for all 
:,, Xzyx ∈  

  (i) ( ) ( ) ,yzxzyx ∗∗=∗∗  

 (ii) ,xyx ≤∗  

(iii) ,0 xx =∗  

(iv) ( ) ( ) ,yxzyzx ∗≤∗∗∗  

 (v) ( )( ) ,yxyxxx ∗=∗∗∗  

(vi) yx ≤  implies zyzx ∗≤∗  and .xzyz ∗≤∗  

A BCK-algebra is said to be positive implicative if ( ) ( ) ( ) zyxzyzx ∗∗=∗∗∗  

for all Xzyx ∈,,  (see [6, 10]). 
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Definition 2.3 [9]. A non-empty subset I of a BCK-algebra X is called an ideal 
of X if it satisfies 

( ) ,0I1 I∈  

( ) Iyx ∈∗2I  and Iy ∈  imply .Ix ∈  

Definition 2.4 [9]. A non-empty subset I of a BCK-algebra X is called a positive 
implicative ideal of X if it satisfies ( )1I  and ( )3I  ( ) Izyx ∈∗∗  and Izy ∈∗  

imply Izx ∈∗  for all .,, Xzyx ∈  

Definition 2.5 [12]. Let S be a non-empty set. A fuzzy subset A of S is a 
function [ ].1,0: →SA  

Let A be a fuzzy subset of S. Then for [ ],1,0∈t  the t-level cut of A is the set 

( ){ },txASxAt ≥|∈=  and the complement of A, denoted by ,CA  is the fuzzy 

subset of S given by ( ) ( )xAxAc −= 1  for all Sx ∈  (see [2, 3, 7]). 

Definition 2.6 [11]. A fuzzy subset A of a BCK-algebra is called a fuzzy 
subalgebra of X if 

( ) ( ) ( ){ }yAxAyxA ,min≥∗    for all ., Xyx ∈  

Definition 2.7 [11]. Let X be a BCK-algebra. A fuzzy subset A of X is called a 
fuzzy ideal of X if 

( ) ( ) ( ),0F1 xAA ≥  

( ) ( ) ( ) ( ){ },,minF2 yAyxAxA ∗≥  

for all ., Xyx ∈  

Definition 2.8 [8]. A fuzzy subset A of a BCK-algebra X is called a 
fuzzy  positive implicative ideal of X if it satisfies ( )1F  and ( )3F  ( ) ≥∗ zxA  

( )( ) ( ){ }zyAzyxA ∗∗∗ ,min  for all .,, Xzyx ∈  

Definition 2.9 [4]. A fuzzy subset A of a BCK-algebra X is called an anti fuzzy 
subalgebra of X if 

( ) ( ) ( ){ }yAxAyxA ,max≤∗    for all ., Xyx ∈  
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Definition 2.10 [4]. A fuzzy subset A of a BCK-algebra X is called an anti fuzzy 
ideal of X if 

( ) ( ) ( ),0A1 xAA ≤  

( ) ( ) ( ) ( ){ },,maxA2 yAyxAxA ∗≤  

for all ., Xyx ∈  

Proposition 2.11 [4]. Every anti fuzzy ideal of a BCK-algebra X is an anti fuzzy 
subalgebra of X. 

Definition 2.12 [4]. Let A be a fuzzy subset of a BCK-algebra. Then for 
[ ]1,0∈t  the lower t-level cut of A is the set 

( ){ }.txAXxAt ≤|∈=  

Definition 2.13 [4]. Let A be a fuzzy subset of a BCK-algebra. The fuzzification 

of [ ],1,0, ∈tAt  is the fuzzy subset tA
μ  of X defined by 

( )

⎪⎩

⎪
⎨
⎧ ∈

=μ
otherwise.0

,if t

A

AxxA
t  

3. Anti Fuzzy Positive Implicative Ideal 

Definition 3.1. A fuzzy subset A of a BCK-algebra X is called an anti 
fuzzy  positive implicative ideal of X if it satisfies ( )1A  and ( )3A  ( ) ≤∗ zxA  

( )( ) ( ){ }zyAzyxA ∗∗∗ ,max  for all .,, Xzyx ∈  

Example 3.2. Let { }baX ,,0=  be a BCK-algebra with Cayley table as follows: 

0
00
0000

0

bbb
aa

ba∗

 

Let [ ]1,0, 10 ∈tt  be such that .10 tt <  Define [ ]1,0: →XA  by ( ) ( )aAA =0  

0t=  and ( ) .1tbA =  Routine calculations give that A is an anti fuzzy positive 

implicative ideal. 
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Proposition 3.3. Every anti fuzzy positive implicative ideal of a BCK-algebra X 
is order preserving. 

Proof. Let A be an anti fuzzy positive implicative ideal of a BCK-algebra X and 
Xyx ∈,  be such that .yx ≤  Then for all ,Xz ∈  we have 

( ) ( )( ) ( ){ }zyAzyxAzxA ∗∗∗≤∗ ,max  

( ) ( ){ }zyAzA ∗∗= ,0max  

( ) ( ){ }.,0max zyAA ∗=  

Putting 0=z  

( ) ( ) ( ){ }yAAxA ,0max≤  

( ).yA=  

And so X is order preserving. 

Proposition 3.4. Every anti fuzzy positive implicative ideal of a BCK-algebra X 
is an anti fuzzy ideal. 

Proof. Let A be an anti fuzzy positive implicative ideal of a BCK-algebra X, so 
for all :,, Xzyx ∈  

( ) ( )( ) ( ){ }.,max zyAzyxAzxA ∗∗∗≤∗  

Putting 0=z  

( ) ( ) ( ){ }.,max yAyxAxA ∗≤  

Therefore, X is an anti fuzzy ideal. 

Combining Propositions 2.11 and 3.4 yields the following result. 

Proposition 3.5. Every anti fuzzy positive implicative ideal of a BCK-algebra X 
is an anti fuzzy subalgebra of X. 

Remark. An anti fuzzy ideal (subalgebra) of a BCK-algebra X may not be an 
anti fuzzy positive implicative ideal of X as shown in the following example: 

Example 3.6. Let { }cbaX ,,,0=  be a BCK-algebra with Cayley table as 

follows: 
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0
0
00

00000
0

cccc
babb
aaa

cba∗

 

Let [ ]1,0,, 210 ∈ttt  be such that .210 ttt <<  Define [ ]1,0: →XA  by ( ) ,0 0tA =  

( ) ( ) 1tbAaA ==  and ( ) .2tcA =  Routine calculations give that A is an anti fuzzy 

ideal (subalgebra) of X, but not an anti fuzzy implicative ideal of X because 

( ) ( ) ( )( ) ( ){ }aaAaabAtaAabA ∗∗∗>==∗ ,max1  

( ) ( ){ } ( ) .00,0max 0tAAA ===  

Proposition 3.7. If X is a positive implicative BCK-algebra, then every anti 
fuzzy ideal of X is an anti fuzzy positive implicative ideal of X. 

Proof. Let A be an anti fuzzy ideal of a positive implicative BCK-algebra X, so 
for all :, Xyx ∈  

( ) ( ) ( ){ }.,max yAyxAxA ∗≤  

By replacing x by zx ∗  and y by zy ∗  we get that: 

( ) ( ) ( )( ) ( ){ }.,max zyAzyzxAzxA ∗∗∗∗≤∗  

Since X is a positive implicative BCK-algebra, ( ) ( ) ( ) zyxzyzx ∗∗=∗∗∗  for all 

.,, Xzyx ∈  Hence 

( ) ( )( ) ( ){ }.,max zyAzyxAzxA ∗∗∗≤∗  

This shows that A is an anti fuzzy positive implicative ideal of X. 

By applying Propositions 3.4 and 3.7, we have 

Theorem 3.8. If X is a positive implicative BCK-algebra, then a fuzzy subset A 
of X is an anti fuzzy ideal of X if and only if it is an anti fuzzy positive implicative 
ideal of X. 

Proposition 3.9. A fuzzy subset A of a BCK-algebra X is a fuzzy positive 

implicative ideal of X if and only if its complement cA  is an anti fuzzy positive 
implicative ideal of X. 
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Proof. Let A be a fuzzy positive implicative ideal of a BCK-algebra X, and 
.,, Xzyx ∈  Then 

( ) ( ) ( ) ( )xAxAAA cc =−≤−= 1010  
and  

( ) ( ) ( )( ) ( ){ }zyAzyxAzxAzxAc ∗∗∗−≤∗−=∗ ,min11  

{ ( )( ) ( )}zyAzyxA cc ∗−∗∗−−= 1,1min1  

{ ( )( ) ( )}.,max zyAzyxA cc ∗∗∗=  

So, cA  is an anti fuzzy positive implicative ideal of X. The converse also can be 
proved similarly. 

Theorem 3.10. Let A be an anti fuzzy positive implicative ideal of a BCK-
algebra X. Then the set 

( ) ( ){ }0AxAXxX A =|∈=  

is a positive implicative ideal of X. 

Proof. Clearly .0 AX∈  Let AXzyx ∈,,  be such that ( ) AXzyx ∈∗∗  and 

.AXzy ∈∗  Then ( )( ) ( ) ( ).0AzyAzyxA =∗=∗∗  It follows that 

( ) ( )( ) ( ){ }zyAzyxAzxA ∗∗∗≤∗ ,max  

( ) ( ){ } ( ).00,0max AAA ==  

Since A is an anti fuzzy positive implicative ideal of X, ( ) ( )0AzxA =∗  and hence 

.AXzx ∈∗  

Theorem 3.11. Let A be a fuzzy subset of a BCK-algebra X. Then A is an anti 
fuzzy positive implicative ideal of X if and only if for each [ ] ( ),0,1,0 Att ≥∈  the 

lower t-level cut tA  is a positive implicative ideal of X. 

Proof. Let A be an anti fuzzy positive implicative ideal of X and [ ]1,0∈t  with 

( ).0At ≥  Clearly .0 tA∈  Let Xzyx ∈,,  be such that ( ) tAzyx ∈∗∗  and 

.tAzy ∈∗  Then ( )( ) ( ) ,, tzyAtzyxA ≤∗≤∗∗  hence 

( ) ( )( ) ( ){ } .,max tzyAzyxAzxA ≤∗∗∗≤∗  

And so .tAzx ∈∗  Hence tA  is a positive implicative ideal of X. 
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Conversely, let tA  be a positive implicative ideal of X, we first show ( )0A  
( )xA≤  for all .Xx ∈  If not, then there exists Xx ∈0  such that ( ) ( ).0 0xAA >  

Putting ( ) ( ){ };0
2
1

00 xAAt +=  then ( ) ( ) .100 00 ≤<<≤ AtxA  Hence ,00
tAx ∈  

so that .0 ∅≠tA  But 0tA  is a positive implicative ideal of X. Thus 00 tA∈  or 

( ) 00 tA ≤  a contradiction. Hence ( ) ( )xAA ≤0  for all .Xx ∈  Now we prove that 

( ) ( )( ) ( ){ }zyAzyxAzxA ∗∗∗≤∗ ,max  for all .,, Xzyx ∈  If not, then there 

exist Xzyx ∈000 ,,  such that 

( ) ( )( ) ( ){ }.,max 0000000 zyAzyxAzxA ∗∗∗>∗  

Taking ( ) ( )( ) ( ){ }{ };,max
2
1

00000000 zyAzyxAzxAs ∗∗∗+∗=  then ≤0s  

( )00 zxA ∗  and 

( )( ) ( ){ } .1,max0 000000 ≤<∗∗∗≤ szyAzyxA  

Thus we have ( )( )0000 zyxAs ∗∗>  and ( ).000 zyAs ∗>  Which imply that 

( ) 0000
sAzyx ∈∗∗  and .000

sAzy ∈∗  But 0sA  is a positive implicative ideal 

of  X. Thus 000
sAzx ∈∗  or ( ) .000 SzxA ≤∗  This is a contradiction, ending the 

proof. 

Theorem 3.12. If A is an anti fuzzy positive implicative ideal of a BCK-algebra 
X. Then tA

μ  is also an anti fuzzy positive implicative ideal of X, where [ ],1,0∈t  

( ).0At ≥  

Proof. From Theorem 3.11, it is sufficient to show that ( )s
Atμ  is a positive 

implicative ideal of X, where [ ]1,0∈s  and ( ).0tA
s μ≥  Clearly, ( ) .0 s

Atμ∈  Let 

Xzyx ∈,,  be such that ( ) ( )s
Atzyx μ∈∗∗  and ( ) ,s

Atzy μ∈∗  thus ( )( )zyxtA
∗∗μ  

s≤  and ( ) .szytA
≤∗μ  We claim that ( )s

Atzx μ∈∗  or ( ) .szxtA
≤∗μ  If ( )yx ∗  

tAz ∈∗  and ,tAzy ∈∗  then tAzx ∈∗  because tA  is a positive implicative 

ideal of X. 
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Hence 

( ) ( )zxAzxtA
∗=∗μ  

( )( ) ( ){ }zyAzyxA ∗∗∗≤ ,max  

{ ( )( ) ( )} ,,max szyzyx tt AA
≤∗μ∗∗μ=  

and so ( ) .s
Atzx μ∈∗  If ( ) tAzyx ∉∗∗  or ,tAzy ∉∗  then ( )( ) 0=∗∗μ zyxtA

 

or ( ) ,0=∗μ zytA
 then clearly ( ) ,szxtA

≤∗μ  and so ( ) .s
Atzx μ∈∗  Therefore, 

( )s
Atμ  is a positive implicative ideal of X. 
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