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Abstract

The aim of this paper is to give some characterizations of anti fuzzy
positive implicative ideals in BCK-algebras. Also, we give an example to
show that an anti fuzzy ideal may not be an anti fuzzy positive implicative
ideal.

1. Introduction

The concept of a fuzzy set, which was introduced in [12], is applied to other
algebraic structures such as semigroups, groups, rings, modules, vector spaces and
topologies. In 1991, Xi [11] applied the concept of fuzzy sets to BCK-algebras
introduced by Imai and Iséki [5]. BCK-algebras generalize, on the one hand, the
notion of the algebra of sets with the set subtraction as the only fundamental non-
nullary operation and, on the other hand, the notion of the implication algebra (see
[5D. In [1], Biswas introduced the concept of anti fuzzy subgroups of groups.
Modifying his idea, in [4], Hong and Jun applied the idea to BCK-algebras. They
introduced the notion of anti fuzzy ideals of BCK-algebras, lower level cuts of a
fuzzy set, lower level ideal, they also fuzzified lower level cuts and proved some
results on these. In this paper, we introduce the notion of anti fuzzy positive
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implicative ideals of BCK-algebras, and investigate some related properties, we give
an example to show that an anti fuzzy ideal may not be an anti fuzzy positive
implicative ideal. We show that in a positive implicative BCK-algebra, a fuzzy
subset is an anti fuzzy ideal if and only if it is an anti fuzzy positive implicative
ideal. We prove that a fuzzy subset of a BCK-algebra is a fuzzy positive implicative
ideal if and only if the complement of this fuzzy subset is an anti fuzzy positive
implicative ideal. We also prove that if a fuzzy subset is an anti fuzzy positive
implicative ideal then so is the fuzzifications of its lower level cuts.

2. Preliminaries

Definition 2.1 [6]. An algebra (X, *, 0) of type (2, 0) is called a BCK-algebra
if it satisfies the following axioms for all x, y, z € X:

(i) (x*y)*(x*2))*(z*y) =0,

(i[)) (x*(x*y))*y =0,

(iii) x*x =0,

(iv) 0= x =0,

(V) x*y=0and y*x=0 imply x = .

We can define a partial ordering < on Xby x <y ifand only if x *y = 0.

Proposition 2.2 [6]. In any BCK-algebra X, the following hold for all
X, Y, Z € X:

(i) (x*y)*z=(x*2)*y,

(i) x*y <x,

(iii) x =0 = ¥,

(iv) (x*2)*(y*z) < x*y,

(V) X* (x*(x*y)) = x*y,

(vi) x <y implies x*z<y=*zand z*y<z=*x

A BCK-algebra is said to be positive implicative if (x*z)*(y*z)=(x*y)*z
forall x, y, z e X (see[6, 10]).
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Definition 2.3 [9]. A non-empty subset | of a BCK-algebra X is called an ideal
of X if it satisfies

(Il)Oel,
(I,)x*yel and ye | imply x e I.

Definition 2.4 [9]. A non-empty subset | of a BCK-algebra X is called a positive
implicative ideal of X if it satisfies (I;) and (I3) (x*y)*zel and y*zel

imply x*z el forall x,y, ze X.

Definition 2.5 [12]. Let S be a non-empty set. A fuzzy subset A of S is a
function A:S — [0, 1].

Let A be a fuzzy subset of S. Then for t € [0, 1], the t-level cut of A is the set
A = {x e S|A(x) > t}, and the complement of A, denoted by AC, is the fuzzy
subset of S given by A®(x) =1— A(x) forall x e S (see [2, 3, 7]).

Definition 2.6 [11]. A fuzzy subset A of a BCK-algebra is called a fuzzy
subalgebra of X if

A(x * y) > min{A(x), A(y)} forall x, y e X.

Definition 2.7 [11]. Let X be a BCK-algebra. A fuzzy subset A of X is called a
fuzzy ideal of X if

(R) A(0) = A(x),
(F2) A(x) = min{A(x * y), A(y)},
forall x, y e X.

Definition 2.8 [8]. A fuzzy subset A of a BCK-algebra X is called a
fuzzy positive implicative ideal of X if it satisfies (F) and (F3) A(x*z)>
min{A((x * y)* z), A(y * 2)} forall x, y, z € X.

Definition 2.9 [4]. A fuzzy subset A of a BCK-algebra X is called an anti fuzzy
subalgebra of X if

A(x * y) < max{A(x), A(y)} forall x, y e X.



366 N. O. AL-SHEHRIE

Definition 2.10 [4]. A fuzzy subset A of a BCK-algebra X is called an anti fuzzy
ideal of X if

(A1) A(0) < A(x),
(A2) A(x) < max{A(x * y), A(y)},
forall x, y € X.

Proposition 2.11 [4]. Every anti fuzzy ideal of a BCK-algebra X is an anti fuzzy
subalgebra of X.

Definition 2.12 [4]. Let A be a fuzzy subset of a BCK-algebra. Then for
t € [0, 1] the lower t-level cut of A is the set

Al = {x e X|A(X) < tl.

Definition 2.13 [4]. Let A be a fuzzy subset of a BCK-algebra. The fuzzification
of A, t €0, 1], is the fuzzy subset H ot of X defined by

A(x) if x e A,
Hat =

0 otherwise.

3. Anti Fuzzy Positive Implicative Ideal

Definition 3.1. A fuzzy subset A of a BCK-algebra X is called an anti
fuzzy positive implicative ideal of X if it satisfies (A7) and (A3) A(x*z) <

max{A((x * y) * z), A(y * )} forall x, y, z € X.

Example 3.2. Let X = {0, a, b} be a BCK-algebra with Cayley table as follows:

Tl | O|O

T|lOo|lOo|®
o|jlo|o|T

T| O] %

Let ty, t; € [0, 1] be such that ty < t;. Define A: X — [0, 1] by A(0) = A(a)
=1ty and A(b) =t;. Routine calculations give that A is an anti fuzzy positive
implicative ideal.
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Proposition 3.3. Every anti fuzzy positive implicative ideal of a BCK-algebra X
is order preserving.

Proof. Let A be an anti fuzzy positive implicative ideal of a BCK-algebra X and
X, y € X besuchthat x <y. Thenforall z e X, we have

A(x * z) < max{A((x * y) * z), A(y * )}
= max{A(0 * z), A(y * 2);
= max{A(0), Ay * 2)}.
Putting z =0

A(x) < max{A(0), A(y)}

= AY).
And so X is order preserving.

Proposition 3.4. Every anti fuzzy positive implicative ideal of a BCK-algebra X
is an anti fuzzy ideal.

Proof. Let A be an anti fuzzy positive implicative ideal of a BCK-algebra X, so
forall x,y, z e X:

A(x * z) < max{A((x * y) * z), A(y * 2)}.
Putting z =0
A(x) < max{A(x * y), A(y)}.
Therefore, X is an anti fuzzy ideal.

Combining Propositions 2.11 and 3.4 yields the following result.

Proposition 3.5. Every anti fuzzy positive implicative ideal of a BCK-algebra X
is an anti fuzzy subalgebra of X.

Remark. An anti fuzzy ideal (subalgebra) of a BCK-algebra X may not be an
anti fuzzy positive implicative ideal of X as shown in the following example:

Example 3.6. Let X ={0, a, b, ¢} be a BCK-algebra with Cayley table as

follows:
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*

O || |O

O ||l |O|O
O |91 OO0 |
O | OoOjloo|O|T
OoO|T |2 | O|0O

Let tg, t;, to €[0,1] be such that ty <t; <t,. Define A: X — [0, 1] by A(0) = tg,
A(a) = A(b) =t; and A(c) =t,. Routine calculations give that A is an anti fuzzy
ideal (subalgebra) of X, but not an anti fuzzy implicative ideal of X because

Ab*a)=A(a) =t; > max{A((b xa)*a), A(a*a)}
= max{A(0), A(0)} = A(0) = t.

Proposition 3.7. If X is a positive implicative BCK-algebra, then every anti
fuzzy ideal of X is an anti fuzzy positive implicative ideal of X.

Proof. Let A be an anti fuzzy ideal of a positive implicative BCK-algebra X, so
forall x, y e X:

A(x) < max{A(x * y), A(y)}-

By replacing x by x*z andyby y *z we get that:

A(x * 2) < max{A((x * 2) * (y * z)), A(y * 2)}.
Since X is a positive implicative BCK-algebra, (x * z) * (y * z) = (x * y) * z for all
X, ¥, Z € X. Hence

A(x* ) < max{A((x * y) * z), A(y * 2)}.
This shows that A is an anti fuzzy positive implicative ideal of X.

By applying Propositions 3.4 and 3.7, we have

Theorem 3.8. If X is a positive implicative BCK-algebra, then a fuzzy subset A
of X is an anti fuzzy ideal of X if and only if it is an anti fuzzy positive implicative
ideal of X.

Proposition 3.9. A fuzzy subset A of a BCK-algebra X is a fuzzy positive

implicative ideal of X if and only if its complement A® is an anti fuzzy positive
implicative ideal of X.
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Proof. Let A be a fuzzy positive implicative ideal of a BCK-algebra X, and
X, Y, Z € X. Then

A°(0) =1- A(0) <1- A(x) = A°(x)
and
AS(x*2)=1- A(x*2) <1—min{A((x * y)*z), Ay * z)}

=1-minfl - A°((x * y) * z), 1— A%(y * z)}
= max{A®((x * y) * z), A°(y * 2)}.

So, A® is an anti fuzzy positive implicative ideal of X. The converse also can be
proved similarly.

Theorem 3.10. Let A be an anti fuzzy positive implicative ideal of a BCK-
algebra X. Then the set
X = {x e X AX) = AO)}

is a positive implicative ideal of X.
Proof. Clearly 0 € X 5. Let X, y, Z e X5 besuchthat (x*y)*z e X, and
y*2e Xp. Then A((x * y)*2)= A(y * z) = A(0). It follows that
A(x * 2) < max{A((x * y) * z), A(y * 2)}
= max{A(0), A(0)} = A(0).
Since A is an anti fuzzy positive implicative ideal of X, A(x * z) = A(0) and hence

X*Ze Xp.

Theorem 3.11. Let A be a fuzzy subset of a BCK-algebra X. Then A is an anti
fuzzy positive implicative ideal of X if and only if for each t € [0, 1], t > A(0), the

lower t-level cut Al isa positive implicative ideal of X.
Proof. Let A be an anti fuzzy positive implicative ideal of X and t [0, 1] with
t > A(0). Clearly 0 A'. Let x, y,ze X be such that (x*y)*ze Al and

y*ze Al Then A(x*y)*z)<t, A(y*z)<t, hence
A(x *z) < max{A((x * y) * z), Ay * 2)} < t.

Andso x *z € Al. Hence Al is a positive implicative ideal of X.
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Conversely, let A' be a positive implicative ideal of X, we first show A(0)

< A(x) for all x e X. If not, then there exists X, € X such that A(0) > A(xg).
Putting tg = %{A(O)-ﬁ- A(Xo)}; then 0 < A(xg) <ty < A(0) <1. Hence Xy € A9,

so that A0 = @ But Al is a positive implicative ideal of X. Thus 0 e A0 or
A(0) <ty a contradiction. Hence A(0) < A(x) for all x € X. Now we prove that

A(x * 2) < max{A((x * y)* z), A(y * z)} for all X, y, ze X. If not, then there

exist Xg, Yo, Zg € X such that

Axg * 29) > max{A((Xo * Yo) * Z9), A(Yo * Zo)}-
Taking  sp = %{A(Xo *29) + max{A((xo * Yo) * Zo). A(Yo * Zo)}}; then s <
A(xg * zg) and

0 < max{A((xo * Yo) * Zo), A(Yo * Zg)} < sp <1.

Thus we have sy > A((Xg * Yg) * zg) and sy > A(yg * ). Which imply that
(Xo * Yg)* 29 € A% and yg *zg € A%, But A% is a positive implicative ideal

of X. Thus xg * zg € A% or A(xy * 2y) < Sg. This is a contradiction, ending the

proof.

Theorem 3.12. If A is an anti fuzzy positive implicative ideal of a BCK-algebra
X. Then p ¢ is also an anti fuzzy positive implicative ideal of X, where t [0, 1],

t > A0).

Proof. From Theorem 3.11, it is sufficient to show that (“At )® is a positive
implicative ideal of X, where s €[0,1] and s > Bt (0). Clearly, 0 e (”A‘ )°. Let
X, ¥,z € X be such that (x*y)*z e (u )® and y=*z €(py )°, thus pae (e y)*2)
<s and }J.At(y*Z)SS. We claim that x * z E(uAt)s or uAt(X*Z)SS. If (x*y)

xze Al and y*ze Al then x*z e Al because A! is a positive implicative
ideal of X.
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Hence

bt (X% 2) = Ax*2)

IA

max{A((x * y) * z), A(y * z)}

maxfiu (0¢* ¥)* 2) e (y * 2} <5,

andso x*z € (). If (xxy)xzg Al or y*z ¢ A, then wu((xxy)=2)=0

Or Kyt (y*2z)=0, then clearly Mt (x*z)<s, andso x*z e (pAt )®. Therefore,

(“At )® is a positive implicative ideal of X.
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