OSCILLATION THEOREMS FOR SECOND ORDER FORCED NONLINEAR DIFFERENTIAL EQUATIONS WITH DELAYED ARGUMENT

JING SHAO ${ }^{*, \dagger}$ and FANWEI MENG ${ }^{\dagger}$
*Department of Mathematics
Jining University
Qufu, Shandong 273155, P. R. China
e-mail: shaojing99500@163.com
${ }^{\dagger}$ Department of Mathematics
Qufu Normal University
Qufu, Shandong 273165, P. R. China

Abstract

In this paper, we concern with the oscillation of the forced second order nonlinear differential equations with delayed argument in the form $$
\left(r(t) x^{\prime}(t)\right)^{\prime}+p(t) f(x(\tau(t)))+\sum_{i=1}^{n} q_{i}(t)|x|^{\lambda_{i}} \operatorname{sgn} x=e(t),
$$ where $r(t), p(t), q_{i}(t), e(t)$ are continuous functions defined on $[0, \infty)$, $r(t)$ is positive, $r^{\prime}(t) \geq 0$ and differentiable, $\lambda_{1}>\cdots>\lambda_{m}>1>\lambda_{m+1}$ $>\cdots>\lambda_{n}>0(n>m \geq 1)$. Our methodology is somewhat different

 from that of previous authors.2000 Mathematics Subject Classification: 34C10.
Keywords and phrases: oscillation, second order, forced nonlinear differential equations, delayed argument.

This research was partially supported by the NSF of China (10771118).
Received February 22, 2009

1. Introduction

In this paper, we study the oscillatory behavior of the forced nonlinear functional differential equation

$$
\begin{equation*}
\left(r(t) x^{\prime}(t)\right)^{\prime}+p(t) f(x(\tau(t)))+\sum_{i=1}^{n} q_{i}(t)|x|^{\lambda_{i}} \operatorname{sgn} x=e(t) \tag{1.1}
\end{equation*}
$$

where $r(t), p(t), q_{i}(t), e(t)$ are continuous functions defined on $[0, \infty), r(t)$ is positive, $r^{\prime}(t) \geq 0$ and differentiable, $\lambda_{1}>\cdots>\lambda_{m}>1>\lambda_{m+1}>\cdots>\lambda_{n}>0$ ($n>m \geq 1$). As usual, a solution of equation (1.1) is called oscillatory if it is defined on some ray $[T, \infty)$ with $T \geq 0$ and has unbounded set of zeros. Equation (1.1) is called oscillatory if all its solutions on some ray are oscillatory.

Very recently, Sun et al. [2, 3] obtained some new oscillation criteria for the equations in the form

$$
\begin{equation*}
\left(r(t) x^{\prime}(t)\right)^{\prime}+p(t) x+\sum_{i=1}^{n} q_{i}(t)|x|^{\lambda_{i}} \operatorname{sgn} x=0 \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(r(t) x^{\prime}(t)\right)^{\prime}+p(t) x+\sum_{i=1}^{n} q_{i}(t)|x|^{\lambda_{i}} \operatorname{sgn} x=e(t) \tag{1.3}
\end{equation*}
$$

where $\lambda_{1}>\cdots>\lambda_{m}>1>\lambda_{m+1}>\cdots>\lambda_{n}>0(n>m \geq 1)$. They also established oscillation theorems when $n>1$.

The purpose of our paper is to further their investigation for equation (1.1), including the paper of Sun and Wong [2]. By using the similar method of Wong [4], we obtain some new oscillation criteria for equation (1.1). Our methodology is somewhat different from that of previous authors. We believe that our approach is simpler and more general than a recent result of Sun and Wong [2].

2. Main Results

We will need the following lemmas that have been proved in [2]:
Lemma 2.1 [2]. Let $\lambda_{i}, i=1,2, \ldots$, n, be n-tuple satisfying $\lambda_{1}>\cdots>\lambda_{m}>$ $1>\lambda_{m+1}>\cdots>\lambda_{n}>0$. Then there exists an n-tuple $\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ satisfying

$$
\begin{equation*}
\sum_{i=1}^{n} \lambda_{i} k_{i}=1 \tag{a}
\end{equation*}
$$

which also satisfies either

$$
\begin{equation*}
\sum_{i=1}^{n} k_{i}<1, \quad 0<k_{i}<1 \tag{b}
\end{equation*}
$$

or

$$
\begin{equation*}
\sum_{i=1}^{n} k_{i}=1, \quad 0<k_{i}<1 \tag{c}
\end{equation*}
$$

Theorem 2.1. Let $f(x) \in C(R, R), \frac{f(x)}{x} \geq M>0, \quad x \neq 0$. Suppose that for any $T \geq 0$, there exist constants $a_{1}, b_{1}, a_{2}, b_{2}$ such that $T \leq a_{1}<b_{1} \leq a_{2}<b_{2}$, and

$$
\left\{\begin{array}{l}
q_{i}(t) \geq 0, \quad t \in\left[\tau\left(a_{1}\right), b_{1}\right] \cup\left[\tau\left(a_{2}\right), b_{2}\right], \quad i=1, \ldots, n \tag{2.1}\\
e(t) \leq 0, \quad t \in\left[\tau\left(a_{1}\right), b_{1}\right] \\
e(t) \geq 0, \quad t \in\left[\tau\left(a_{2}\right), b_{2}\right]
\end{array}\right.
$$

Let $D\left(a_{i}, b_{i}\right)=\left\{u \in C^{1}\left[a_{i}, b_{i}\right]: u^{v+1}>0, v>0\right.$ is a constant $t \in\left(a_{i}, b_{i}\right)$, and $\left.u\left(a_{i}\right)=u\left(b_{i}\right)=0\right\}$ for $i=1,2$. Assume that there exists a positive nondecreasing function $\rho \in C^{1}\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ such that, for some $H \in D\left(a_{i}, b_{i}\right)$ and for some $\theta \geq 1$,

$$
\begin{equation*}
\int_{a_{i}}^{b_{i}}\left[H^{v+1}(t) \rho(t) R(t)-\frac{\theta \rho(t) r(t) H^{v-1}(t) A^{2}(t)}{4}\right] d t>0 \tag{2.2}
\end{equation*}
$$

for $i=1,2$, then equation (1.1) is oscillatory, where

$$
\begin{aligned}
& R(t)=M p(t) \frac{\tau(t)-\tau\left(a_{i}\right)}{t-\tau\left(a_{i}\right)}+a_{0}|e(t)|^{k_{0}} \prod_{i=1}^{n} q_{i}^{k_{i}}(t) \\
& A(t)=H(t) \frac{\rho^{\prime}(t)}{\rho(t)}+(v+1) H^{\prime}(t)
\end{aligned}
$$

$a_{0}=\prod_{i=0}^{n} k_{i}^{-k_{i}}$, and $k_{0}, k_{1}, \ldots, k_{n}$ are positive constants satisfying (a) and (b) of Lemma 2.1.

Proof. Assume to the contrary that there exists a solution $x(t)$ of equation (1.1) such that $x(t)>0, x(\tau(t))>0$, when $t \geq t_{0}>0$, for some t_{0} depending on the solution $x(t)$. When $x(t)$ is eventually negative, the proof follows the same argument using the interval $\left[\tau\left(a_{2}\right), b_{2}\right]$ instead of $\left[\tau\left(a_{1}\right), b_{1}\right]$. Define

$$
\begin{equation*}
w(t)=\rho(t) \frac{r(t) x^{\prime}(t)}{x(t)}, \quad t \geq t_{0} \tag{2.3}
\end{equation*}
$$

It follows from equation (1.1) that $w(t)$ satisfies the following differential equality:

$$
\begin{equation*}
w^{\prime}(t)=\frac{\rho^{\prime}(t)}{\rho(t)} w(t)-\rho(t) \frac{p(t) f(x(\tau(t)))}{x(t)}-\frac{w^{2}(t)}{\rho(t) r(t)}+\rho(t) \frac{e(t)}{x(t)}-\rho(t) \sum_{i=1}^{n} q_{i}(t) x^{\lambda_{i}-1}(t) \tag{2.4}
\end{equation*}
$$

and by the condition $f(x) / x \geq M>0$, we have

$$
\begin{equation*}
w^{\prime}(t) \leq \frac{\rho^{\prime}(t)}{\rho(t)} w(t)-M \rho(t) p(t) \frac{x(\tau(t))}{x(t)}-\frac{w^{2}(t)}{\rho(t) r(t)}+\rho(t) \frac{e(t)}{x(t)}-\rho(t) \sum_{i=1}^{n} q_{i}(t) x^{\lambda_{i}-1}(t) \tag{2.5}
\end{equation*}
$$

By assumption, we can choose $a_{1}, b_{1} \geq t_{0}$, such that $b_{1} \geq \tau\left(a_{1}\right), \tau^{2}\left(a_{1}\right)=\tau\left(\tau\left(a_{1}\right)\right)$ $\geq t_{0}, \quad q_{i}(t) \geq 0$, for $t \in\left[\tau\left(a_{1}\right), b_{1}\right]$, and $e(t) \leq 0$, for $t \in\left[\tau\left(a_{1}\right), b_{1}\right]$ and $i=$ $1,2, \ldots, n$. Recall the arithmetic-geometric mean inequality see [1]

$$
\begin{equation*}
\sum_{i=1}^{n} k_{i} u_{i} \geq \prod_{i=1}^{n} u_{i}^{k_{i}}, \quad u_{i} \geq 0 \tag{2.6}
\end{equation*}
$$

where $k_{0}=1-\sum_{i=1}^{n} k_{i}$ and $k_{i}>0, \quad i=1,2, \ldots, n$, are chosen according to given $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}>0$ as in Lemma 2.1 satisfying (a) and (b). Now return to (2.5) and identify $u_{0}=k_{0}^{-1}|e(t)| x^{-1}(t)$ and $u_{i}=k_{i}^{-1} q_{i}(t) x^{\lambda_{i}-1}(t)$ in (2.6) to obtain

$$
\begin{equation*}
w^{\prime}(t) \leq \frac{\rho^{\prime}(t)}{\rho(t)} w(t)-M \rho(t) p(t) \frac{x(\tau(t))}{x(t)}-\frac{w^{2}(t)}{\rho(t) r(t)}-\rho(t) k_{0}^{-k_{0}}|e(t)|^{k_{0}} \prod_{i=1}^{n} k_{i}^{-k_{i}} q_{i}^{k_{i}}(t) \tag{2.7}
\end{equation*}
$$

From equation (1.1), we can easily obtain that $x^{\prime \prime}(t) \leq 0$, for $t \in\left[\tau\left(a_{1}\right), b_{1}\right]$. Therefore, we have that for $t \in\left[\tau\left(a_{1}\right), b_{1}\right]$,

$$
\begin{equation*}
x(t)-x\left(\tau\left(a_{1}\right)\right)=x^{\prime}(s)\left(t-\tau\left(a_{1}\right)\right) \geq x^{\prime}(t)\left(t-\tau\left(a_{1}\right)\right) \tag{2.8}
\end{equation*}
$$

where $s \in\left[\tau\left(a_{1}\right), b_{1}\right]$. Noting that $x(t)>0$ for $t \geq \tau\left(a_{1}\right)$, we get by (2.8) that

$$
x(t) \geq x^{\prime}(t)\left(t-\tau\left(a_{1}\right)\right), \quad t \in\left[\tau\left(a_{1}\right), b_{1}\right]
$$

i.e.,

$$
\begin{equation*}
\frac{x^{\prime}(t)}{x(t)} \leq \frac{1}{t-\tau\left(a_{1}\right)}, \quad t \in\left[\tau\left(a_{1}\right), b_{1}\right] \tag{2.9}
\end{equation*}
$$

Integrating (2.9) from $\tau(t)$ to $t>a_{1}$, we obtain

$$
\begin{equation*}
\frac{x(\tau(t))}{x(t)} \geq \frac{\tau(t)-\tau\left(a_{1}\right)}{t-\tau\left(a_{1}\right)}, \quad t \in\left(a_{1}, b_{1}\right] \tag{2.10}
\end{equation*}
$$

By using (2.10) in (2.7), we have that for $t \in\left(a_{1}, b_{1}\right]$,

$$
\begin{align*}
w^{\prime}(t) \leq & \frac{\rho^{\prime}(t)}{\rho(t)} w(t)-M \rho(t) p(t) \frac{\tau(t)-\tau\left(a_{1}\right)}{t-\tau\left(a_{1}\right)}-\frac{w^{2}(t)}{\rho(t) r(t)} \\
& -\rho(t) k_{0}^{-k_{0}}|e(t)|^{k_{0}} \prod_{i=1}^{n} k_{i}^{-k_{i}} q_{i}^{k_{i}}(t) \\
= & \frac{\rho^{\prime}(t)}{\rho(t)} w(t)-\rho(t) R(t)-\frac{w^{2}(t)}{\rho(t) r(t)} \tag{2.11}
\end{align*}
$$

Multiplying both sides of (2.11) by $H^{v+1}(t)$ as given in the hypothesis of Theorem 2.1 and integrating (2.11) from a_{1} to b_{1}, we obtain

$$
\begin{align*}
& \int_{a_{1}}^{b_{1}} H^{v+1}(t) \rho(t) R(t) d t \\
\leq & \int_{a_{1}}^{b_{1}} H^{v+1}(t) \frac{\rho^{\prime}(t)}{\rho(t)} w(t) d t-\int_{a_{1}}^{b_{1}} H^{v+1}(t) w^{\prime}(t) d t-\int_{a_{1}}^{b_{1}} H^{v+1}(t) \frac{w^{2}(t)}{\rho(t) r(t)} d t \tag{2.12}
\end{align*}
$$

Using the integration by parts formula, we have

$$
\begin{align*}
\int_{a_{1}}^{b_{1}} H^{v+1}(t) w^{\prime}(t) d t & =\left.H^{v+1}(t) w(t)\right|_{a_{1}} ^{b_{1}}-\int_{a_{1}}^{b_{1}}(v+1) H^{v}(t) H^{\prime}(t) w(t) d t \\
& =-\int_{a_{1}}^{b_{1}}(v+1) H^{v}(t) H^{\prime}(t) w(t) d t \tag{2.13}
\end{align*}
$$

where $H\left(a_{1}\right)=H\left(b_{1}\right)=0$. Substituting (2.13) into (2.12), we obtain

$$
\begin{align*}
\int_{a_{1}}^{b_{1}} H^{v+1}(t) \rho(t) R(t) d t \leq & \int_{a_{1}}^{b_{1}} H^{v+1}(t) \frac{\rho^{\prime}(t)}{\rho(t)} w(t) d t+\int_{a_{1}}^{b_{1}}(v+1) H^{v}(t) H^{\prime}(t) w(t) d t \\
& -\int_{a_{1}}^{b_{1}} H^{v+1}(t) \frac{w^{2}(t)}{\rho(t) r(t)} d t \\
= & \int_{a_{1}}^{b_{1}} A(t) H^{v}(t) w(t) d t-\int_{a_{1}}^{b_{1}} H^{v+1}(t) \frac{w^{2}(t)}{\rho(t) r(t)} d t \tag{2.14}
\end{align*}
$$

Then

$$
\begin{align*}
& \int_{a_{1}}^{b_{1}} H^{v+1}(t) \rho(t) R(t) d t \\
\leq & -\int_{a_{1}}^{b_{1}}\left[-A(t) H^{v}(t) w(t)+H^{v+1}(t) \frac{w^{2}(t)}{\rho(t) r(t)}\right] d t \\
= & -\int_{a_{1}}^{b_{1}}\left[\sqrt{\frac{H^{v+1}(t)}{\theta \rho(t) r(t)}} w(t)-\left(\sqrt{\frac{\theta \rho(t) r(t)}{4 H^{v+1}(t)}} H^{v}(t) A(t)\right)\right]^{2} d t \\
& +\int_{a_{1}}^{b_{1}}\left[\sqrt{\frac{\theta \rho(t) r(t)}{4 H^{v+1}(t)}} H^{v}(t) A(t)\right]^{2} d t-\int_{a_{1}}^{b_{1}} \frac{(\theta-1) H^{v+1}(t)}{\theta \rho(t) r(t)} w^{2}(t) d t . \tag{2.15}
\end{align*}
$$

From the hypothesis of Theorem 2.1 and (2.15), we have

$$
\begin{aligned}
& \int_{a_{1}}^{b_{1}}\left[H^{v+1}(t) \rho(t) R(t)-\left(\sqrt{\frac{\theta \rho(t) r(t)}{4 H^{v+1}(t)}} H^{v}(t) A(t)\right)^{2}\right] d t \\
= & \int_{a_{i}}^{b_{i}}\left[H^{v+1}(t) \rho(t) R(t)-\frac{\theta \rho(t) r(t) H^{v-1}(t) A^{2}(t)}{4}\right] d t \leq 0,
\end{aligned}
$$

which contradicts (2.2). This completes the proof of Theorem 2.1.
Remark 1. We note that it suffices to satisfy (2.2) in Theorem 2.1 for some $\theta \geq 1$, which ensures a certain flexibility in applications. Clearly, if (2.2) is satisfied for some $\theta_{0} \geq 1$, it shall also hold for any $\theta_{1}>\theta_{0}$.

References

[1] E. F. Beckenbach and R. Bellman, Inequalities, Springer-Verlag, Berlin, 1961.
[2] Y. G. Sun and J. S. W. Wong, Oscillation criteria for second order forced ordinary differential equations with mixed nonlinearities, J. Math. Anal. Appl. 334(1) (2007), 549-560.
[3] Y. G. Sun and F. W. Meng, Interval criteria for oscillation of second-order differential equations with mixed nonlinearities, Appl. Math. Comput. 198(1) (2008), 375-381.
[4] J. S. W. Wong, On Kamenev-type oscillation theorems for second-order differential equations with damping, J. Math. Anal. Appl. 258(1) (2001), 244-257.

