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Abstract

In this paper, we concern with the oscillation of the forced second order
nonlinear differential equations with delayed argument in the form

(rOX Q) + p) F(x(x(1)) + iqi(m M sgn = e(t),

where r(t), p(t), g;i(t), e(t) are continuous functions defined on [0, ),
r(t) is positive, r'(t) > 0 and differentiable, Ay > - > Ay >1> Ay
>-->kp >0(n>m=>=1). Our methodology is somewhat different

from that of previous authors.
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1. Introduction

In this paper, we study the oscillatory behavior of the forced nonlinear
functional differential equation

(rt)x'®)" + p(t) f (x(x(t))) + ZQi(t)l x| sgnx = e(t), (1.1)
i-1

where r(t), p(t), gj(t), e(t) are continuous functions defined on [0, ), r(t) is
positive, r'(t)>0 and differentiable, Ay >--> Ay >1>Apq > >Ay >0
(n>m=>1). As usual, a solution of equation (1.1) is called oscillatory if it is
defined on some ray [T, ) with T > 0 and has unbounded set of zeros. Equation
(1.1) is called oscillatory if all its solutions on some ray are oscillatory.

Very recently, Sun et al. [2, 3] obtained some new oscillation criteria for the
equations in the form

(rOX®) + pO)x+ D Gi(t)] x[" sgnx = 0, (1.2)
i=1
and
(rOXO) + pO)x+ D Gi()] x " sgnx = e(t), (13)
i=1

where A >+ > Ay >1>Apyq > > Ay >0(n>m2=1). They also established
oscillation theorems when n > 1.

The purpose of our paper is to further their investigation for equation (1.1),
including the paper of Sun and Wong [2]. By using the similar method of Wong [4],
we obtain some new oscillation criteria for equation (1.1). Our methodology is

somewhat different from that of previous authors. We believe that our approach is
simpler and more general than a recent result of Sun and Wong [2].

2. Main Results

We will need the following lemmas that have been proved in [2]:

Lemma 2.1 [2]. Let Aj, i =1, 2, ..., n, be n-tuple satisfying Ay >--- > Ap >

1> Amsr > - > Ap > 0. Then there exists an n-tuple (kq, ks, ..., k) satisfying
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Zn: Aiki =1, (@)
=)

which also satisfies either

n
Zki<1’ 0<kj<1 (b)
i=1

or
n
Dki=1 0<k<L ©)
i=1

Theorem 2.1. Let f(x) e C(R, R), f(x) >M >0, x=0. Suppose that for

any T >0, there exist constants aj;, b, a,, b, such that T <a < b <a, < by,

and
gi(t) 20, te[w(a) b]U[x(az) b] i=1..n
e(t) <0, te[tay) bl (2.1)
e(t)>0, te[t(ay) byl
Let D(a;, b;) = {u e CYa;, bj]:u’*t >0, v>0 isa constant t e (a;, b;), and
u(a;) = u(b;) = 0} for i =1, 2. Assume that there exists a positive nondecreasing

function p € C*([ty, ), R) such that, for some H e D(a;, b;) and for some 6 > 1,

J.b_i{H V) p(t)R(t) — Op(t)r(t)H Vl(t)Az(t)}dt >0, (2.2)

4

for i =1, 2, then equation (1.1) is oscillatory, where
R®) = M) T 4 o) k01‘[o| @

At) = H(D) P((t)) +(v+DH),

ag = H?:o ki_ki, and kg, kq, ..., k,, are positive constants satisfying (a) and (b) of

Lemma 2.1.
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Proof. Assume to the contrary that there exists a solution x(t) of equation (1.1)
such that x(t) > 0, x((t)) > 0, when t >ty > 0, for some t; depending on the
solution x(t). When x(t) is eventually negative, the proof follows the same

argument using the interval [t(a,), b,] instead of [t(a;), b;]. Define

W(t) = p(t) r(tx)(’t")(t) it 23)

It follows from equation (1.1) that w(t) satisfies the following differential equality:

2
W(t) = p((tt))w(t) o) 20 fx(()t(gr(t)))_pz)?(z) () igg p(t)qu(t L),

(2.4)

and by the condition f(x)/x > M > 0, we have

W) < BTG w0 - Mpt0) ) 50 - V(Z)g(i) 05 p(t)Zq.(t)xM—l(t)

(2.5)

By assumption, we can choose aj, by > to, such that by > t(a;), t2(a;) = t(t(a;))
>ty, 0j(t)>0, for te[tw(a) b], and e(t) <0, for te[tw(a) by] and i=
1, 2, ..., n. Recall the arithmetic-geometric mean inequality see [1]

n

Zku.zH,i, uj >0, (2.6)

i=1
where kg =1- Zin=1ki and k; >0, i=1 2,..,n, are chosen according to given
A1, Ao, oy Ay > 0 as in Lemma 2.1 satisfying (a) and (b). Now return to (2.5) and

identify ug = kg e(t)|x~L(t) and u; = ki™g;(t)x"1%(t) in (2.6) to obtain

< PO ) wA() oy o) kg
w(t) < P wit)  Ma(t) p(O) 55 —p{{)r(t)—pa)koﬂe(t)Wl;[kikqik (V)

(2.7

From equation (1.1), we can easily obtain that x"(t)<0, for te [t(a), by]

Therefore, we have that for t € [t(a;), by ],
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X(t) = x(x(ay)) = X'(s)(t = 7(ag)) = X'(V)(t - w(ay)), (2.8)

where s € [t(a;), b]. Noting that x(t) > 0 for t > t(a;), we get by (2.8) that

X(t) 2 X(O)(t - t(a1)), te[r(a) by,

XW 1

X0 <T@y’ t e [t(a) bl (2.9

Integrating (2.9) from =(t) to t > a;, we obtain

() o x(t) - w(a1)
Xx(t) t—r(al)l . te(a, by] (2.10)

By using (2.10) in (2.7), we have that for t e (a;, by ],

0 < 20 0 -fe) ()
W= o MO - MPOPO S G S

- p(Okg e [ ] [ afi )
=1

2
_P ((tt)) W(t) - p(t)R(t) - ‘g)% 2.11)

Multiplying both sides of (2.11) by H V+1(t) as given in the hypothesis of Theorem
2.1 and integrating (2.11) from a; to by, we obtain

j % )R de

v+1 P(t) v+l v+l Wz(t)
J' HY ) BT W) j HY*L(t)w(t)dt — j HYO) @ @12

Using the integration by parts formula, we have

J‘blH V+1(t)W’(t)dt -H V+l(t)W(t)‘gll _ I & (v+DHY @) H'(t)w(t)dt

- g (v+DHY()H'(t)w(t)dt, (2.13)

a
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where H(a;) = H(by) = 0. Substituting (2.13) into (2.12), we obtain

jblHVH(t)p(t)R(t)dt SJ' HV+1(t)p((tt)) W(t)dt +Ibl(v +l)HV(t)H'(t)W(t)dt

_ by v+l W(t)
Ial“ O oo™

= I:lA(t) HY(t)w(t)dt — j:lH V() \é\t,)(t(Z) dt.  (2.14)

Then

jbl HY*L(t) p(t)R(t) dt
&

< —j:l —A(t) H V(t)W(t) +H V+1(t) \E\;)St(z)}

i 2
I B () Op(O)r(t) v
- Ll_ op(t)r(t) w(t) - ( () (t)A(t)H dt

o [0 v | - [PO-DH 0,
Ji 4Hv+1(t)H (t)A(t)} dt W OO w2 (t)dt. (2.15)

From the hypothesis of Theorem 2.1 and (2.15), we have

2
[ " HV+1(t)p(t)R(t)—[ /%HV@)A@)} ]dt
al_ 4H (t)

[ apre) - POHOH _l(t)AZ(t)}dt -

which contradicts (2.2). This completes the proof of Theorem 2.1.

Remark 1. We note that it suffices to satisfy (2.2) in Theorem 2.1 for some
6 > 1, which ensures a certain flexibility in applications. Clearly, if (2.2) is satisfied

for some 0 > 1, it shall also hold for any 6; > 6.
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