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Abstract 

In this paper, we concern with the oscillation of the forced second order 
nonlinear differential equations with delayed argument in the form 

( ) ( )( ) ( ) ( )( )( ) ( ) ( )∑
=

λ =+τ+′′
n

i

i
i tesgnxxtqtxftptxtr

1
,  

where ( ),tr  ( ),tp  ( ),tqi  ( )te  are continuous functions defined on [ ),,0 ∞  

( )tr  is positive, ( ) 0≥′ tr  and differentiable, 11 1 +λ>>λ>>λ mm  

( ).10 ≥>>λ>> mnn  Our methodology is somewhat different 

from that of previous authors. 
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1. Introduction 

In this paper, we study the oscillatory behavior of the forced nonlinear 
functional differential equation 

 ( ) ( )( ) ( ) ( )( )( ) ( ) ( )∑
=

λ =+τ+′′
n

i
i tesgnxxtqtxftptxtr i

1
,  (1.1) 

where ( ),tr  ( ),tp  ( ),tqi  ( )te  are continuous functions defined on [ ),,0 ∞  ( )tr  is 

positive, ( ) 0≥′ tr  and differentiable, 01 11 >λ>>λ>>λ>>λ + nmm ""  

( ).1≥> mn  As usual, a solution of equation (1.1) is called oscillatory if it is 

defined on some ray [ )∞,T  with 0≥T  and has unbounded set of zeros. Equation 

(1.1) is called oscillatory if all its solutions on some ray are oscillatory. 

Very recently, Sun et al. [2, 3] obtained some new oscillation criteria for the 
equations in the form 

 ( ) ( )( ) ( ) ( )∑
=

λ =++′′
n

i
i sgnxxtqxtptxtr i

1
,0  (1.2) 

and 

 ( ) ( )( ) ( ) ( ) ( )∑
=

λ =++′′
n

i
i tesgnxxtqxtptxtr i

1
,  (1.3) 

where ( ).101 11 ≥>>λ>>λ>>λ>>λ + mnnmm ""  They also established 

oscillation theorems when .1>n  

The purpose of our paper is to further their investigation for equation (1.1), 
including the paper of Sun and Wong [2]. By using the similar method of Wong [4], 
we obtain some new oscillation criteria for equation (1.1). Our methodology is 
somewhat different from that of previous authors. We believe that our approach is 
simpler and more general than a recent result of Sun and Wong [2]. 

2. Main Results 

We will need the following lemmas that have been proved in [2]: 

Lemma 2.1 [2]. Let ,...,,2,1, nii =λ  be n-tuple satisfying >λ>>λ m"1  

.01 1 >λ>>λ> + nm "  Then there exists an n-tuple ( )nkkk ...,,, 21  satisfying 
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 ∑
=

=λ
n

i
iik

1
,1  (a) 

which also satisfies either 

 ∑
=

<<<
n

i
ii kk

1
10,1  (b) 

or 

 ∑
=

<<=
n

i
ii kk

1
.10,1  (c) 

Theorem 2.1. Let ( ) ( ),, RRCxf ∈  ( ) ,0>≥ Mx
xf  .0≠x  Suppose that for 

any ,0≥T  there exist constants 2211 ,,, baba  such that ,2211 babaT <≤<≤  

and 

 

( ) ( )[ ] ( )[ ]

( ) ( )[ ]

( ) ( )[ ]⎪
⎪
⎩

⎪⎪
⎨

⎧

τ∈≥

τ∈≤

=ττ∈≥

.,,0

,,,0

,...,,1,,,,0

22

11

2211

batte

batte

nibabattqi ∪

 (2.1) 

Let ( ) { [ ] ,0:,, 11 >∈= +νubaCubaD iiii  0>ν  is a constant ( ),, ii bat ∈  and 

( ) ( ) }0== ii buau  for .2,1=i  Assume that there exists a positive nondecreasing 

function [ )( )R,,0
1 ∞∈ρ tC  such that, for some ( )ii baDH ,∈  and for some ,1≥θ  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ >⎥
⎦

⎤
⎢
⎣

⎡ θρ
−ρ

−ν
+νi

i

b

a
dttAtHtrttRttH ,04

21
1  (2.2) 

for ,2,1=i  then equation (1.1) is oscillatory, where 

( ) ( ) ( ) ( )
( ) ( ) ( )∏

=

+
τ−
τ−τ

=
n

i

k
i

k

i
i tqteaat

attMptR i

1
0 ,0  

( ) ( ) ( )
( ) ( ) ( ),1 tHt
ttHtA ′+ν+

ρ
ρ′=  

∏ =
−=

n
i

k
i

ika 00 ,  and nkkk ...,,, 10  are positive constants satisfying (a) and (b) of 

Lemma 2.1. 
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Proof. Assume to the contrary that there exists a solution ( )tx  of equation (1.1) 

such that ( ) ( )( ) ,0,0 >τ> txtx  when ,00 >≥ tt  for some 0t  depending on the 

solution ( ).tx  When ( )tx  is eventually negative, the proof follows the same 

argument using the interval ( )[ ]22 , baτ  instead of ( )[ ]., 11 baτ  Define 

 ( ) ( ) ( ) ( )
( ) ., 0tt
tx

txtrttw ≥
′

ρ=  (2.3) 

It follows from equation (1.1) that ( )tw  satisfies the following differential equality: 

( ) ( )
( ) ( ) ( ) ( ) ( )( )( )

( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )∑

=

−λρ−ρ+
ρ

−
τ

ρ−
ρ
ρ′=′

n

i
i txtqt

tx
tet

trt
tw

tx
txftpttw

t
ttw i

1

1
2

,  

 (2.4) 

and by the condition ( ) ,0>≥ Mxxf  we have 

( ) ( )
( ) ( ) ( ) ( ) ( )( )

( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )∑

=

−λρ−ρ+
ρ

−τρ−
ρ
ρ′≤′

n

i
i txtqt

tx
tet

trt
tw

tx
txtptMtw

t
ttw i

1

1
2

.  

 (2.5) 

By assumption, we can choose ,, 011 tba ≥  such that ( ),11 ab τ≥  ( ) ( )( )11
2 aa ττ=τ  

,0t≥  ( ) ,0≥tqi  for ( )[ ],, 11 bat τ∈  and ( ) ,0≤te  for ( )[ ]11 , bat τ∈  and =i  

....,,2,1 n  Recall the arithmetic-geometric mean inequality see [1] 

 ∑ ∏
= =

≥≥
n

i

n

i
i

k
iii uuuk i

1 1
,0,  (2.6) 

where ∑ =
−= n

i ikk 10 1  and ,0>ik  ,...,,2,1 ni =  are chosen according to given 

0...,,, 21 >λλλ n  as in Lemma 2.1 satisfying (a) and (b). Now return to (2.5) and 

identify ( ) ( )txteku 11
00

−−=  and ( ) ( )txtqku iiii
11 −λ−=  in (2.6) to obtain 

( ) ( )
( ) ( ) ( ) ( ) ( )( )

( )
( )

( ) ( ) ( ) ( ) ( )∏
=

−−ρ−
ρ

−τρ−
ρ
ρ′≤′

n

i

k
i

k
i

kk tqktekt
trt

tw
tx
txtptMtw

t
ttw ii

1
0

2
.00  

 (2.7) 

From equation (1.1), we can easily obtain that ( ) ,0≤′′ tx  for ( )[ ]., 11 bat τ∈  

Therefore, we have that for ( )[ ],, 11 bat τ∈  
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 ( ) ( )( ) ( ) ( )( ) ( ) ( )( ),111 attxatsxaxtx τ−′≥τ−′=τ−  (2.8) 

where ( )[ ]., 11 bas τ∈  Noting that ( ) 0>tx  for ( ),1at τ≥  we get by (2.8) that 

( ) ( ) ( )( ) ( )[ ],,, 111 batattxtx τ∈τ−′≥  

i.e., 

 ( )
( ) ( ) ( )[ ].,,1

11
1

bat
attx

tx τ∈
τ−

≤
′  (2.9) 

Integrating (2.9) from ( )tτ  to ,1at >  we obtain 

 ( )( )
( )

( ) ( )
( ) ( ].,, 11

1
1 batat

at
tx
tx ∈

τ−
τ−τ

≥τ  (2.10) 

By using (2.10) in (2.7), we have that for ( ],, 11 bat ∈  

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( )
( )

( ) ( )trt
tw

at
attptMtwt

ttw
ρ

−
τ−
τ−τ

ρ−
ρ
ρ′≤′

2

1
1  

( ) ( ) ( )∏
=

−−ρ−
n

i

k
i

k
i

kk tqktekt ii

1
0

00  

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) .
2

trt
twtRttwt

t
ρ

−ρ−
ρ
ρ′=  (2.11) 

Multiplying both sides of (2.11) by ( )tH 1+ν  as given in the hypothesis of Theorem 

2.1 and integrating (2.11) from 1a  to ,1b  we obtain 

( ) ( ) ( )∫ ρ+ν1

1

1b

a
dttRttH  

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )∫∫∫ ρ
−′−

ρ
ρ′≤ +ν+ν+ν 1

1

1

1

1

1
.

2
111 b

a

b

a

b

a
dttrt

twtHdttwtHdttwt
ttH  (2.12) 

Using the integration by parts formula, we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ′+ν−|=′ ν+ν+ν1

1

1

1

1
1

111b

a

b

a

b
a dttwtHtHtwtHdttwtH  

( ) ( ) ( ) ( )∫ ′+ν−= ν1

1
,1

b

a
dttwtHtH  (2.13) 



JING SHAO and FANWEI MENG 352 

where ( ) ( ) .011 == bHaH  Substituting (2.13) into (2.12), we obtain 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ′+ν+
ρ
ρ′≤ρ ν+ν+ν1

1

1

1

1

1
111b

a

b

a

b

a
dttwtHtHdttwt

ttHdttRttH  

( ) ( )
( ) ( )∫ ρ

− +ν1

1

2
1b

a
dttrt

twtH  

( ) ( ) ( ) ( ) ( )
( ) ( )∫ ∫ ρ

−= +νν1

1

1

1
.

2
1b

a

b

a
dttrt

twtHdttwtHtA  (2.14) 

Then 

( ) ( ) ( )∫ ρ+ν1

1

1b

a
dttRttH  
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⎦

⎤
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⎣
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dttrt

twtHtwtHtA  
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( ) ( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( )∫ ∫ θρ
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−⎥
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⎤
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1

1

1
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1
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tHdttAtH
tH
trt  (2.15) 

From the hypothesis of Theorem 2.1 and (2.15), we have 

 ( ) ( ) ( ) ( ) ( )
( )

( ) ( )∫ ⎥
⎥
⎦

⎤

⎢
⎢
⎣
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( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ≤⎥
⎦

⎤
⎢
⎣

⎡ θρ
−ρ=

−ν
+νi

i

b

a
dttAtHtrttRttH ,04
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1  

which contradicts (2.2). This completes the proof of Theorem 2.1. 

Remark 1. We note that it suffices to satisfy (2.2) in Theorem 2.1 for some 
,1≥θ  which ensures a certain flexibility in applications. Clearly, if (2.2) is satisfied 

for some ,10 ≥θ  it shall also hold for any .01 θ>θ  
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