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Abstract 

We consider the Emden-Fowler type differential equation of the form 
denoted in the title. This is carried out under initial conditions ( ) ,ATx =  

( ) BTx =′  ( )∞<<∞−∞<<∞<< BAT ,0,0  and ( ) ,0 ax =  ( ) bx =′ 0  

( ).,0 ∞≤≤∞−∞<< ba  Asymptotic behavior of the positive solution 

is shown for arbitrarily fixed T, A and every B in the first initial condition, 
and for arbitrarily fixed a and every b in the second initial condition. 
Actually this is achieved from getting analytical expressions of the 
solution valid in the neighborhoods of both ends of its domain. 

1. Introduction 

In our previous papers [14], [20], [21], we treated a second order nonlinear 
differential equation 

( )dtdxtx =′−=′′ α+−αλ 12  (1.1) 

in a domain 
.0,0 ∞<<∞<< xt  
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Here ,α  λ  are parameters which were supposed ,0>α  0>λ  in [14], ,0<α  
1−<λ  or 0>λ  in [20], and ,0<α  1,0 −=λ  in [21]. Concretely speaking, given 

an initial condition 
( ) ( ) BTxATx =′= ,  (1.2) 

where 

,,0,0 ∞<<∞−∞<<∞<< BAT  

we discussed asymptotic behavior of the solution of the initial value problem (1.1) 
and (1.2). The main aim of this paper is to continue this work in a remaining case 

.01,0 <λ<−<α  

Therefore we suppose this throughout this paper. 

Now (1.1) is worth considering, because this is related to various fields: 
mathematical physics, variational problems, partial differential equations and so 
forth (cf. [1], [15]). Furthermore differential equations containing (1.1) have been 
treated in many papers (cf. [5], [7], [8]) which chiefly discussed the solution 
continuable to ∞. However these papers did not consider such an initial value 
problem as above. 

Our discussion will be carried out as follows: In Section 2, we shall state our 
theorems. For proving these, we shall transform (1.1) into a first order rational 
differential equation, denote this as a two dimensional autonomous system and 
consider these in Sections 3, 4. The proofs of our theorems will be completed in 
Section 5. Finally in Section 6 we shall obtain theorems of the case 0=T  from the 
theorems of Section 2. 

Finally, notice that if ,1−=α  then we get a general solution 

( ) DCttx ++λ+λ−= λ11  

of (1.1), C and D being arbitrary constants. However our conclusions will contain 
this. 

2. Statement of Our Main Theorems 

First, fix T such that .0 ∞<< T  Next, fix A with 

( )TA ψ<<0  (2.1) 
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where 
( ) ( ){ } λ−α+λλ−=ψ tt 11  

is a particular solution of (1.1). Then if ( )tx  denotes the solution of the initial value 

problem (1.1) and (1.2), we conclude the following: 

Theorem 1. There exists a real number 1B  such that if ,1BB =  then ( )tx  is 

defined for ∞<< t0  and has the following representations: In the neighborhood 
of ,0=t  we get 

( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
+= ∑

∞

=

αλ

1

log1
m

m
m tptatx  (2.2) 

in the case ,1 N∈αλ  and 

( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+= ∑

>+

+αλ

0

1
nm

nm
mn txatx  (2.3) 

in the case .1 N∉αλ  Here a is a positive constant, mp  are polynomials with 

[ ]mpm αλ≤deg  ([ ] denotes Gaussian symbol) and mnx  are constants with 

.00 =nx  In the neighborhood of ,∞=t  we have 

( ) ( ){ } ( )

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
++λλ−= ∑

∞

=

αμλ−α

1

1 111
n

n
ntxttx  (2.4) 

where nx  are constants and 

{ ( ) ( )} .2141212 2
1 +λαλ++λ−+λα=μ  

Moreover we obtain the following: 

Theorem 2. There exists a real number 2B  greater than 1B  such that if 

,2BB =  then ( )tx  is defined for ∞<< t0  and has the following representations: 

In the neighborhood of ,0=t  we obtain 

( ) ( ){ } ( )

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
++λλ−= ∑

∞

=

αμλ−α

1

1 211
n

n
ntxttx  (2.5) 

where nx  are constants and 

{ ( ) ( )} .2141212 2
2 +λαλ++λ++λα=μ  
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In the neighborhood of ,∞=t  we get 

( ) ( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
+= ∑

∞

=

+λα

1

1 log1
m

m
m tptKttx  (2.6) 

in the case ( ) ,11 N∈+λα−  and 

( ) ( )

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
+= ∑

>+

−+λα

0

11
nm

nm
mntxKttx  (2.7) 

in the case ( ) .11 N∉+λα−  Here K is a positive constant, mp  are polynomials 

with ( )[ ]mpm 1deg +λα−≤  and mnx  are constants with .00 =nx  

Now, suppose that +ω  and −ω  denote positive finite numbers in theorems 

below. Then if ,, 21 BBB ≠  we have the following three theorems: 

Theorem 3. If ,1BB <  then ( )tx  is defined for +ω<< t0  and has the 

following representations: 

In the neighborhood of ,0=t  we get (2.2) and (2.3), and in the neighborhood 

of ,+ω=t  we have the following: If ,02 <α<−  then we obtain 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ,1
0

222

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−ω−ω−ω+−ω= ∑
>++

+α
+

α−
+++

lkj

lkj
jkl tttxtKtx  (2.8) 

( )0>K  and jklx  being constants, if ,2−=α  

( ) ( ){ } ( ) ( )CUCGCUG eUttx ,,1211 −λ−−+λλ−=  (2.9) 

where 

( )
+ω

+λλ−− tU log12~  as ,+ω→t  

( ) ( ) ( )UCUCCUG logloglog
2
1, 1 −−= −  

{ ( ) } ( )∑
≥++

−−−+
2

22 loglog
nml

ml
lmn UCUCUg  

{( ) ( )}nUCUC logloglog 1 −− −  
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C and lmng  being constants, if ,24,4 −<α<−−<α  

( ) ( ) ( ) α−
+

α

−αλ
+

−ω
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

ωα

+α−= 2
1

22
22 ttx  

( ) ( )( ) ,1
0

42

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−ω−ω+ ∑
>+

α+
++

nm

nm
mn ttx  (2.10) 

mnx  being constants, and if ,4−=α  

( ) ( ) 21
12

2 ttx −ω
ω

= ++λ
+

 

( ) ( )( ) ,log1
0 ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−ω−ω+ ∑
>

++
m

m
m tpt  (2.11) 

mp  being polynomials with .deg mpm ≤  

Notice that we denote ( ) ( )tgtf ~  as τ→t  for some τ, if 

( ) ( ) .1lim =
τ→

tgtf
t

 

Theorem 4. If ,21 BBB <<  then ( )tx  is defined for .0 ∞<< t  Moreover 

( )tx  is represented as (2.2) and (2.3) in the neighborhood of ,0=t  and as (2.6) 

and (2.7) in the neighborhood of .∞=t  

Theorem 5. If ,2BB >  then ( )tx  is defined for ∞<<ω− t  and has the 

following representations: 

In the neighborhood of ,−ω=t  we get the following: If ,02 <α<−  then we 

have 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ,1
0

222

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

ω−ω−ω−+ω−= ∑
>++

+α
−

α−
−−−

lkj

lkj
jkl tttxtKtx  (2.12) 

( )0>K  and jklx  being constants, if ,2−=α  then 

( ) ( ){ } ( ) ( )CUCGCUG eUttx ,,1211 −λ−−+λλ−=  (2.13) 
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where 

( )
−ω

+λλ− tU log12~  as −ω→t  

and ( )CUG ,  has the same form as in (2.9), if ,24,4 −<α<−−<α  then 

( ) ( ) ( ) α−
−

α

−αλ
−

ω−
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

ωα

+α−= 2
1

22
22 ttx  

( ) ( )( ) ,1
0

42

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

ω−ω−+ ∑
>+

α+
−−

nm

nm
mn ttx  (2.14) 

mnx  being constants, and if ,4−=α  then 

( ) ( ) 21
12

2
−+λ

−
ω−

ω
= ttx  

( ) ( )( ) ,log1
0 ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

ω−ω−+ ∑
>

−−
m

m
m tpt  (2.15) 

mp  being polynomials with .deg mpm ≤  

In the neighborhood of ,∞=t  we obtain (2.6) and (2.7). 

Now, fix A with 
( )TA ψ=  (2.16) 

instead of (2.1). Then we get the following: 

Theorem 6. If ,, TABTAB λ−=λ−<  and ,TAB λ−>  then the conclusion 

of Theorem 3, ( ) ( ),ttx ψ=  and the conclusion of Theorem 5 follow respectively. 

Finally, fix A with 
( )TA ψ>  

instead of (2.16). Then we have the following two theorems: 

Theorem 7. There exist real numbers 3B  and 4B  with 43 BB <  such that the 

following statements are valid: 
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If ,3BB =  then ( )tx  is defined for +ω<< t0  and we get (2.5) in the 

neighborhood of 0=t  and (2.8) through (2.11) in the neighborhood of .+ω=t  If 

,4BB =  then ( )tx  is defined for ∞<<ω− t  and we have (2.12) through (2.15) in 

the neighborhood of −ω=t  and (2.4) in the neighborhood of .∞=t  

Theorem 8. If 3BB <  and ,4BB >  then the conclusions of Theorems 3 and 5 

follow respectively. Moreover if ,43 BBB <<  then ( )tx  is defined for t<ω−  

+ω<  and we get (2.12) through (2.15) in the neighborhood of −ω=t  and (2.8) 

through (2.11) in the neighborhood of .+ω=t  

3. The Reduction of (1.1) and Consideration of the Reduced Equation 

In this section, we use a transformation 

( ) ( ( ) ) ytzytxxty ′=ψ=ψ= ααα− ,namely 1  (3.1) 

and reduce (1.1) into the first order rational differential equation 

{( ) ( ) yzzdydz 121 2 +λα+−α=  

( ) ( ) } .11 2232 yzyy α+λλα−+λλα+  (3.2) 

The transformation (3.1) has been already used in [14] and the transformation of 
this  kind appeared originally in [9]. Using a parameter s, we write (3.2) a two 
dimensional autonomous system 

,yz
ds
dy

α=   

(3.3) 

( ) ( ) ( ) ( ) .11121 22322 yyyzz
ds
dz +λλα−+λλα++λα+−α=   

(3.2) and (3.3) have been got also in [9], [10], and [14]. Notice that we always get 
0>y  from (3.1), the critical points of (3.3) are points (0, 0) and (1, 0) in the yz 

plane, and orbits of (3.3) are solutions of (3.2). (1, 0) is a saddle point and therefore 
from the discussion of Section 4 in [9], (3.3) has orbits represented as 

( ) +−
α
μ

= 11 yz  (3.4) 

( ) +−
α
μ

= 12 yz  (3.5) 
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in the neighborhood of .1=y  Here .0 12 μ<<μ  Moreover due to the same 

discussion we obtain solutions of (1.1) represented as (2.4) and (2.5) from (3.4) and 
(3.5) respectively. 

Here, let ( )yzz 1=  and ( )yzz 2=  be orbits of (3.3) represented as (3.4) and 

(3.5) lying in a region 10 << y  respectively. Then we shall examine asymptotic 

behavior of ( )yzz 1=  and ( )yzz 2=  as these leave (1, 0). For this, we conclude 

the following: 

Lemma 3.1. If ( )yzz =  is an orbit of (3.3), then ( )yz  is bounded as y tends to 

a nonnegative number. 

Proof. Suppose the contrary. Then there exist a nonnegative number c and a 
sequence { }ny  such that 

( ) ∞±→nyz  as .cyn →  (3.6) 

Therefore if we put ( ) ( ),1 yzy =ζ  then we get 

( ) 0→ζ ny  as cyn →  

and from (3.2), ( )yζ=ζ  satisfies 

{( ) ( ) 2121 ζ+λα+ζ−α−=ζ ydyd  

( ) ( ) } .11 322332 yyy αζ+λλα−ζ+λλα+  (3.7) 

If ,0≠c  then we conclude a contradiction ( ) ,0≡ζ y  for the righthand side is 

holomorphic at ( ) ( ).0,, cy =ζ  Furthermore if ,0=c  then from (3.7) we have a 

Briot-Bouquet differential equation 

( ) ( ) ( ) .11121 32332 ζ+λαλ+ζ+λαλ−ζ+λ−ζ
α
−α−=ζ yyy

dy
dy  

Here we obtain ( ) ,01 <α−α−  for .0<α  Therefore from Lemma 2.5 of [15] we 

get a contradiction ( ) 0≡ζ y  again. Thus the proof is complete. 

Now we conclude the following: 

Lemma 3.2. For ,10 << y  we get 

( ) ( ) .0,0 21 <> yzyz  
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Moreover in the yz plane ( )( )yzy 1,  tends to the origin as ∞→s  and ( )( ),, 2 yzy  

as .∞−→s  

Proof. On a segment ,0,10 =<< zy  we get from (3.3) 

( ) ( ) .011 22 >−+λλα= yy
ds
dz  (3.8) 

Moreover from (3.3) we have 

0<
ds
dy  if 0,0 >>

ds
dyz  if .0<z  

Therefore an orbit ( )yzz 1=  leaves (1, 0) as s increases and from (3.8) cannot pass 

the y axis. Hence we obtain ( ) .01 >yz  Similarly we get ( ) .02 <yz  

Furthermore 

( ) Cs
zy

+−α
−=≡

1
1,0  (C is a constant) 

is a solution of (3.3) and thus the z axis consists of orbits of (3.3) and the origin. 
Therefore orbits of (3.3) lying in a region 0>y  cannot pass the z axis. Hence from 

Lemma 3.1 and Poincaré-Bendixon’s theorem we conclude 

( )( ) ( )0,0, 1 →yzy  as ,∞→s  

( )( ) ( )0,0, 2 →yzy  as .∞−→s  

The orbits have the following property as :0→y  

Lemma 3.3. If ( )yzz =  is an orbit of (3.3) continuable to ,0=y  then we 

obtain 
( ) ,0lim

0
=

→
yz

y
 (3.9) 

and 
( ) ( ).1,lim

0
+λααλ=

→ y
yz

y
 

Proof. From the reason why ( )( )yzy 1,  tends to (0, 0), we conclude (3.9). 

Hence owing to the same reasoning as of Lemma 1 of [16], we get 

( ) ( ) .,1,lim
0

∞±+λααλ=
→ y

yz
y
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However if we have 
( ) ,lim

0
∞±=

→ y
yz

y
 

then we put 1−= yzw  in (3.2) and obtain 

( ) ( ) ( ) .11121 332 ywwww
dy
dwy +λαλ−+λαλ++λ−

α
=  (3.10) 

Therefore ( ) 1−= yyzw  is a solution of (3.10) such that ,0lim 0 =→ wy  and since 

,01 <α  we get a contradiction 0≡w  from Lemma 2.5 of [15]. This completes the 

proof. 

From the orbits tending to the origin we have the following: 

Lemma 3.4. If ( )yzz =  is the orbit such that 

( ) ,lim
0

αλ=
→ y

yz
y

 (3.11) 

then this is represented as 

( ) { ( )}
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++αλ= ∑

>+

αλ

0

1 log1
nm

nm
mn Cyhyyzyyz  (3.12) 

where hzmn ,  and C are constants and 0=h  unless αλ1  is an integer. Moreover 

from (3.12) we obtain a solution of (1.1) represented as (2.2) and (2.3) in the 
neighborhood of .0=t  

Proof. We follow the line of obtaining (3.20) of [14]. Put αλ−= − zyv 1  in 

(3.2). Then we get 

( ) +
αλ

++λ= vydy
dvy 11  

where  denotes terms whose degrees are greater than the degree of the previous 

term. Therefore since ,01 >αλ  we have 

{ ( )}∑
>+

αλ +=
0

1 log
nm

nm
mn Cyhyyvv  

where mnv  are constants. From this we obtain (3.12) where .αλ= mnmn vz  
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Moreover applying (3.1) to (3.12) we get a differential equation 

{ ( )} .log1
0

1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++αλ=′ ∑

>+

αλ

nm

nm
mn Cyhyyzyyt  (3.13) 

Solving this we have 

{ ( )}
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++Γ= ∑

>+

αλαλ

0

ˆlogˆ1
nm

nm
mn Cthttyty  

where ,ˆ,, hymnΓ  and Ĉ  are constants and .logˆ,ˆ ChChh +Γ=αλ=  Therefore 

we obtain 
0→t  as .0→y  (3.14) 

Furthermore using (3.1) again we obtain a solution of (1.1) represented as 

( ) { ( )}
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++= ∑

>+

αλ

0

ˆlogˆ~1
nm

nm
mn Cthttyatx  

where 

( ){ } ααΓ+λλ−= 111a  

and mny~  are constants. 

If ,1 N∈αλ  then we get 

( ) ( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
+= ∑

>+

αλ+αλ

0

log1
nm

mn
nm tPtatx  

where mnP  are polynomials with .deg nPmn ≤  Hence if we put 

,, mnk Ppnmk =
αλ

+=  

and denote k as m, then we have (2.2). Moreover if ,1 N∉αλ  then since 0=h  we 

obtain (2.3). Here it is necessary to show .00 =nx  Substitute (2.3) into (1.1). Then 

we get 

( ) ( )∑
>+

+αλ−+αλ+αλ
0

1
nm

nm
mntxnmnm  

( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
+−= ∑

>+

+αλαλα

0

1
nm

nm
MNmn txQta  (3.15) 
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where ( )MNmn xQ  are polynomials of MNx  with ., nNmM ≤≤  Hence from the 

righthand side of (3.15), every term of the lefthand side contains αλt  and we obtain 
.00 =nx  

Owing to (3.14), representations (2.2) and (2.3) are valid in the neighborhood of 
.0=t  This completes the proof. 

Similarly we conclude the following: 

Lemma 3.5. If ( )yzz =  is the orbit such that 

( ) ( ) ,1lim
0

+λα=
→ y

yz
y

 (3.16) 

then this is represented as 

( ) ( ) { ( )( )}
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+++λα= ∑

>+

+λα−

0

11 log11
nm

nm
mn Cyhyyzyyz  (3.17) 

where ,mnz  h and C are the same as in Lemma 3.4. Furthermore from (3.17) we get 

a solution of (1.1) represented as (2.6) and (2.7) in the neighborhood of .0=t  

Since it suffices to follow the proof of Lemma 3.4, we omit the proof. 

4. Solutions of (3.2) Continuable to =y  ∞ 

Let us consider (3.2) in the neighborhood of .∞=y  For this we put η= 1y  in 

(3.2) and get 
( )

z
zF

d
dz

4
,

αη

η−=
η

 (4.1) 

where 

( ) ( ) ( ) ( ) ( ) .11121, 22223 η+λλα−+λλα+η+λα+η−α=η zzzF  

Now, suppose that a solution ( )η= zz  of (4.1) is bounded as ∞→y  namely 

.0→η  Then from 

( )zF
z

dz
d

,

4

η
αη−=η  (4.2) 
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we have a contradiction ,0≡η  for the righthand side of (4.2) is holomorphic at 

( ) ( )cz ,0, =η  where c is an arbitrary finite number. Therefore we obtain 

∞±→z  as .0→η  (4.3) 

So we put ζ= 1z  in (4.1) and get 

{ ( ) ( ) 2232 121 ζη+λα+ηζ+λλα−=ηζ dd  

( ) ( ) } .11 4323 αηζ+λλα+ζηα−−  

Moreover if we put 

,, 2123 η=ξζη= −w  (4.4) 

then we have 

( )wGd
dw ,ξ=
ξ

ξ  (4.5) 

where 

( ) ( ) 21222, wwwG ξ+λ+
α
+α−=ξ  

( ) ( ) .1212 323 ww ξ+λαλ−+λαλ+  

For considering (3.2) in the neighborhood of ,∞=y  it suffices to treat (4.5) in 

the neighborhood of .0=ξ  If 0=ξ  and the righthand side of (4.5) vanishes, then 

we obtain 

0=w  if ρ±=<α≤− ,0,02 w  if 2−<α  

where 

( ) .
1
21
+λλ
+α

α
=ρ  

Now, let γ be a cluster point of a solution of (4.5) as .0→ξ  Then we get the 

following: 

Lemma 4.1. γ is the limit point and 

.,0 ρ±=γ  
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Proof. Suppose .,,0 ∞±ρ±≠γ  Then from (4.5) we have 

( )wGdw
d

,ξ
ξ=ξ  

whose righthand side is holomorphic at ( ) ( ).,0, γ=ξ w  Therefore we conclude a 

contradiction ,0≡ξ  which implies 

.,,0 ∞±ρ±=γ  

However if ,∞±=γ  then we put w1=θ  in (4.5) and obtain 

( ) ( ) ( ) ( )
.

12121222 2222 ξ+λλα++λλα−ξθ+λα−θ+α

αξθ=
θ
ξ

d
d  

This implies a contradiction ,0≡ξ  for the righthand side of this is holomorphic at 

( ) ( ).0,0, =θξ  Now the proof is complete. 

In cases where ,,0 ρ±=γ  we obtain the representations of the solutions of 

(1.1) denoted in the above theorems as follows: 

Lemma 4.2. If ,0=γ  then we get 

.02 <α≤−  

Moreover if ,02 <α<−  then we have (2.8) and (2.12). If ,2−=α  then we obtain 

(2.9) and (2.13). 

Proof. If ,02 <α<−  then from (4.5) we get 

( ( ) )∑
>+

α+α−ξξ=
0

2

nm

nm
mn Cww  

where mnw  are constants with 101 =w  and ,00 =mw  and C is a constant, since 

( ) 02 >α+α−  and w divides the righthand side of (4.5). Therefore from (4.4) and 

(3.1) we have 

( )( )∑
>+

α+α− =′ξξ
0

23 .1
nm

nmn
mn ytCw  
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On the other hand, we obtain 

.2 32 ξ′ξ−=η′η−=′ −−y  

Hence we get 

( )( )∑
>+

α+α− −=ξ′ξ
0

2
2
1

nm

nmn
mn tCw  

and integrating both sides, 

( )( )∑
>+

+α+α− +−=ξ
0

12 log2
1~

nm

nmn
mn DtCw  (4.6) 

where D is a constant and mnw~  are constants with 

.0~,2
~

001 =α−= mww  

Putting ( ) 2log τ=D  here, we have τ→t  as .0→ξ  Moreover from (4.6) we 

derive 

( )( ) .log11
2

0

2
α−

>+

α+α− ⎟
⎠
⎞⎜

⎝
⎛

τα
=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

ξ+ξ ∑ t
Ca

nm

nm
mn  

Hence using Smith’s lemma – cf. Lemma 1 of [10], we obtain 

( ) ( )( )

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞⎜

⎝
⎛

τα⎟
⎠
⎞⎜

⎝
⎛

τα
+⎟

⎠
⎞⎜

⎝
⎛

τα
=ξ ∑

>+

+αα−α−

0

2222
log1log11log1

nm

nm
mn

t
C

t
C

bt
C

 

and from ,2121 −=η=ξ y  

( ) ( )( )
.loglog1log1

0

222
2

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞⎜

⎝
⎛

τ⎟
⎠
⎞⎜

⎝
⎛

τ
+⎟

⎠
⎞⎜

⎝
⎛

τα
=ξ= ∑

>+

+αα−α
−

nm

nm
mn

ttct
C

y  (4.7) 

Here, notice (4.3). Then if ∞→z  as 0→η  (namely 0→ξ  and ),∞→y  

we get 0>′y  for sufficiently large y. Therefore τ is the right end of the domain of 

y, for τ→t  as .0→ξ  So we denote .+ω=τ  From the same reason we denote 

,−ω=τ  if ∞−→z  as .0→η  
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Moreover we expand τtlog  as 

,
3
1

2
1log

32
−⎟

⎠
⎞

⎜
⎝
⎛

ω
−ω

−⎟
⎠
⎞

⎜
⎝
⎛

ω
−ω

−
ω
−ω

−=
ω +

+

+

+

+

+

+

tttt  

−⎟
⎠
⎞

⎜
⎝
⎛

ω
ω−

+⎟
⎠
⎞

⎜
⎝
⎛

ω
ω−

−
ω
ω−

=
ω −

−

−

−

−

−

−

32

3
1

2
1log tttt  

and using (3.1) for (4.7) we have (2.8) and (2.12). 

If ,2−=α  then from (4.5) we obtain 

( ) ( ) ( ) 3232 1414122 www
d
dw ξ+λλ++λλ−ξ+λ=
ξ

ξ  

and from the theory of [3] – cf. formulas (16) and (24) of this paper, 

( ) ( ){ }
( )⎢

⎢
⎣

⎡
ξ+ξ−+λλ−±= ∑

+<+<

−

1220

21 1log18
Nkj

j
jkwCw  

( ) ( ){ }
⎥
⎥
⎦

⎤
Ω+ξ−+λλ− −

N
kC 2log18  

N
NN K −ξ≤Ω log  

where NK  is a constant. Since this has the form similar to the solution of (2.8) of 

[17], we adopt the discussion done in the proof of Corollary 2.6 of this paper and get 
(2.8) and (2.12) of the same paper. This was carried out also in [20]. 

Finally if 2−<α  then applying Lemma 2.5 of [15] to (4.5), we have a 
contradiction ,0≡w  for ( ) .02 <α+α−  Hence we obtain ,02 <α≤−  which 

completes the proof. 

Lemma 4.3. Suppose that 2−<α  and .ρ±=γ  Then if ,24,4 −<α<−−<α  

we get representations (2.10) and (2.14), and if ,4−=α  representations (2.11) and 

(2.15). 

Proof. Put γ−=θ w  in (4.5). Then this is the same transformation as in 

Section 3 of [10] and it suffices to follow the discussion done there. From the same 
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reason as in the proof of Lemma 4.2 we have the representations in the 
neighborhood of ,+ω=t  if ∞→z  as 0→η  and those in the neighborhood of 

,−ω=t  if ∞−→z  as .0→η  Now the proof is complete. 

5. Proof of the Theorems of Section 2 

First, let us review some conclusions stated in Sections 3 and 4. The critical 
point (1, 0) of (3.3) is a saddle point and (3.3) has four orbits reaching (1, 0). From 
(3.8) the orbit of (3.3) passes the y axis at most once. Owing to Lemmas 3.1 and 3.3, 
the orbits tend to the origin as y decreases, unless these tend to (1, 0). Moreover as y 
increases, from Lemma 3.1 and (4.3) the orbits not tending to (1, 0) is continuable to 
∞ and tend to .∞±  Therefore the phase portrait of (3.3) is as in Figure. Here 

( )yzz 3=  and ( )yzz 4=  respectively denote the orbits represented as (3.5) and 

(3.4) in .1>y  

 

Figure. The phase portrait of (3.3). 

Now, let us consider (1.1) under the initial condition (1.2). From (3.1) we get 

.⎟
⎠
⎞⎜

⎝
⎛ ′

+λα=
x
xtyz  
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Let ( )00 , zy  be ( )zy,  at .Tt =  Then we have 

( ) ., 000 ⎟
⎠
⎞⎜

⎝
⎛ +λα=ψ= αα−

A
TByzATy  

Throughout this section, fix T and A. Then 0y  is fixed and 0z  is a decreasing 

function of B. Hence ( )00 , zy  descends a line 0yy =  as B increases. Moreover 

from a solution of (1.1) satisfying (1.2) we obtain a solution of (3.2) satisfying an 
initial condition 

( ) 00 zyz =  (5.1) 

and an orbit of (3.3) passing ( )., 00 zy  Conversely from the solution of (3.2) with 

(5.1) or the orbits of (3.3) passing ( )00, zy  we get the solution of (1.1) with (1.2). 

Furthermore, notice that if ,00 =z  then we have ,TAB λ−=  and if 00 y<  
,0,1,1 00 >=< yy  then we respectively obtain ( ),TA ψ<  ( ),TA ψ=  ( ).TA ψ>  

Here the following lemma is required: 

Lemma 5.1. If ( )txx =  is a solution of (1.1) whose domain is an interval 

( )+− ωω ,  and an orbit ( )zy,  of (3.3) is defined from (3.1) and ( ),txx =  then we 

get 

( ) ( ) ( ) ( ).,,0,1,0,0,lim ∞±∞=
±ω→

zy
t

 

Proof. The discussion of the proof of Lemma 2 of [16] implies that ( )zy,  does 

not accumulate to a regular point in .0>y  Moreover from Lemma 3.1, z is bounded 

as y tends to a nonnegative number, and from (4.3) we have ∞±→z  as .∞→y  

This completes the proof. 

Let us consider the case ( )TA ψ<  now. Then we obtain .10 0 << y  So as 

( ) ,, 00 zy  take an intersection of the line 0yy =  and the orbit ( ),1 yzz =  and 

suppose 1BB =  then. Moreover, define ( )zy,  from applying (3.1) to the solution 

( )txx =  of (1.1) and (1.2). Then ( )zy,  is situated on ( )yzz 1=  and from Lemma 

5.1 and ( ) 01 >′= ytyz  we get 

0→y  as 1, →ω→ − yt  as +ω→t  
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where ( )+− ωω ,  denotes the domain of ( )tx  again. Therefore from (3.4) we have 

(2.4), and from Lemmas 3.3 and 3.4, (2.2) and (2.3). This completes the proof of 
Theorem 1. 

Next as ( ) ,, 00 zy  take an intersection of the line 0yy =  and the orbit 

( ) ,2 yzz =  and assume .2BB =  Since 0z  is decreasing in B, we obtain .21 BB <  

Now if we define ( )zy,  as above, then the same discussion implies (2.5), (2.6), and 
(2.7), which completes the proof of Theorem 2. 

Here, let ( )Byz ,  be a solution of (3.2) and (5.1). Then if ,1BB <  we get 

( ) ( )., 1 yzByz >  Hence from Lemma 5.1 and Figure, we have 

0→y  as ∞→ω→ − yt ,  as .+ω→t  

Therefore the same discussion as in the case 1BB =  implies (2.2) and (2.3), and 

from Lemmas 4.2 and 4.3 we obtain (2.8), (2.9), (2.10), and (2.11). Now the proof of 
Theorem 3 is complete. 

In the same way, if 21 BBB <<  then we get 

( )
αλ→→

y
Byzy ,,0  as −ω→t  

( ) ( )1,,0 +λα→→
y

Byzy  as +ω→t  

and conclude Theorem 4 from Lemmas 3.4 and 3.5. Here, notice that ( )Byz ,  is not 

a single-valued function of y. Furthermore in the same way, if 2BB >  then we have 

∞→y  as ,−ω→t  

( ) ( )1,,0 +λα→→
y

Byzy  as +ω→t  

which imply Theorem 5. 

For proving Theorem 6, fix T and A so that ( ).TA ψ=  Then we obtain .10 =y  

If ,00 =z  namely ,TAB λ−=  then ( )zy,  defined as above satisfies ,0,1 ≡≡ zy  

for ( ) ( )0,1, 00 =zy  is the critical point of (3.3). That is, we get ( ) ( ).ttx ψ=  If 

,TAB λ−<  then we have ( ) ,0, >Byz  for 0z  is decreasing in B. Therefore from 

Figure ( )Byzz ,=  is the orbit lying above ( ),1 yzz =  if .10 << y  Hence the 

discussion of the case 1BB <  follows. Similarly if ,TAB λ−>  then the discussion 

of the case 2BB >  follows. This concludes Theorem 6. 
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Finally for the proof of Theorems 7 and 8, fix T and A such that ( ).TA ψ>  

Then we obtain .10 >y  As ( ) ,, 00 zy  take the intersection of the line 0yy =  and 

the orbit ( ),3 yzz =  and put .3BB =  Then if ,3BB =  ( )zy,  satisfies 

1→y  as ∞→ω→ − yt ,  as .+ω→t  

Similarly as ( ) ,, 00 zy  take the intersection of the line 0yy =  and the orbit 

( ),4 yzz =  and put .4BB =  Then if ( )zyBB ,,4=  satisfies 

∞→y  as 1, →ω→ − yt  as .+ω→t  

Therefore from the above discussion we conclude Theorem 7. 

Furthermore if 3BB <  and ,4BB >  then in ( )Byzy ,,10 <<  is the orbit 

lying above ( )yzz 1=  and below ( )yzz 2=  respectively. Hence the cases 3BB <  

and 4BB >  are the same as the cases 1BB <  and 2BB >  respectively. Moreover 

if ,43 BBB <<  then we get 

( ) 0,, <∞→ Byzy  as −ω→t  

( ) 0,, >∞→ Byzy  as .+ω→t  

Here, notice that ( )Byz ,  is not a single-valued function of y. Therefore as above we 

conclude Theorem 8. 

6. The Initial Value Problem of the Case 0=T  

In this section we consider (1.1) under the initial condition 

( ) ( ) ( ) ( )∞≤≤∞−=′>= bbxax 0,00  (6.1) 

instead of (1.2). The solution of the initial value problem (1.1) and (6.1) is as 
follows: 

Corollary 1. Suppose .1 N∈αλ  Then if 1=αλ  and ,∞=b  there exist 

infinitely many solutions, if 1≠αλ  and ,∞=b  there exists the unique solution, 
and if ,∞≠b  there exists no solution. 

Proof. From theorems of Section 2, only (2.2) and (2.3) are solutions of (1.1) 
continuable to 0=t  and satisfying ( ) .00 >x  Since N∈αλ1  now, only (2.2) is 
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required. Substitute (2.2) into (1.1). Then we get 

( ) ( ) ( ) ( ) ( )tmpmtpmtp mmm log1log12log αλ−αλ+−αλ+  

( ) ( )...,2,11 =−= −
α mpPa km  (6.2) 

where ( )km pPtdd ,log=⋅  are polynomials of kp  with ,mk ≤  and we adopt a 

convention ( ) .10 =kpP  

If ,1=m  then from (6.2) we obtain 

( ) ( ) ( ) ( ) ( ) .log1log12log 111
α−=αλ−αλ+−αλ+ atptptp  (6.3) 

Therefore if ,1=αλ  then since [ ] ,1deg 1 =αλ≤p  we get 

( ) Ctatp +−= α loglog1  

where C is an arbitrary constant. If 1≠αλ  then since ( )tp log1  is a polynomial of 

log t, we have from (6.3) 

( ) ( ) .
1

log1 αλ−αλ
−=

αatp  

Next if ,2≥m  then from (6.2) we obtain 

( ) ( )
⎪⎩

⎪
⎨
⎧

= ∫ αλ
−

αλ−α sdepPeatp sm
km

tm
m loglog log

1
log  

( ) ( ) ( ) ,loglog1
1

log1

⎪⎭

⎪
⎬
⎫

− ∫ −αλ
−

−αλ− sdepPe sm
km

tm  

for ( )tpm log  are polynomials of log t. Namely ( )tpm log  are uniquely determined 

from ( ).log1 tp  

From the above discussion, if 1=αλ  then we get infinitely many solutions of 
(1.1) and (6.1) represented as 

( ) ( ) ( ) ,loglog1
2 ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+−+= ∑
∞

=

α

m
m

m tpttaCtatx  (6.4) 
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for (6.4) contains an arbitrary constant C. Moreover we have 

( ) ( ) ( ){ } ∞→
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++−−=′ ∑

∞

=

−αα

2

1 logloglog
m

mm
m tptmptataCatx  as .0+→t  

Therefore the first conclusion of this corollary follows. If ,1,1 ≠αλ∈αλ N  then 

we obtain 10 <αλ<  and the unique solution of (1.1) and (6.1) represented as 

( ) ( ) ( ) .log
1

1
2 ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
αλ−αλ

−= ∑
∞

=

αλαλ
α

m
m

m tpttaatx  (6.5) 

From (6.5) we get 

( ) ( ) ( ){ } ∞→
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+αλ+

−αλ
−=′ ∑

∞

=

−αλ−αλ
α

2

11 loglog1
m

mm
m tptmpttaatx  as .0+→t  

Hence the second conclusion follows. Since only (6.4) and (6.5) can become the 
solutions of (1.1) and (6.1), we get the third conclusion. Now the proof is complete. 

The following corollary also states existence and nonexistence of the solution of 
(1.1) and (6.1): 

Corollary 2. Suppose .1 N∉αλ  If ,10 <αλ<  then there exists a unique 

solution for ∞=b  and no solution for .∞≠b  Moreover if ,1>αλ  then there 

exists a unique solution for 0=b  and no solution for .0≠b  

Proof. Here since ,1 N∉αλ  we need only (2.3). Substituting (2.3) into (1.1), 

we have (3.15) again. Thus comparing the coefficients of ,nmt +αλ  we obtain 

( ) ,110 −αλαλ
−=

αax  

( )
( ) ( ) ( ).1,11

1 ≥≥
−+αλ+αλ

−= −
α

nmnmnm
xQax MNnm

mn  

This implies that mnx  are uniquely determined and the solution of (1.1) and (6.1) 

exists uniquely, if this exists. Moreover we get 

( ) ( ) 1
10

1

11
10 ~ −αλ

>+

−+αλ−αλ αλ
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+αλ+αλ=′ ∑ txatxnmtxatx
nm

nm
mn   as .0+→t  
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Namely as 0+→t  we have 

( ) ∞→′ tx  if ( ) 0,10 →′<αλ< tx  if .1>αλ  

Therefore in the case ∞=b  and ,10 <αλ<  and in the case 0=b  and ,1>αλ  
the solution exists, and in the other cases the solution does not exist. Now the proof 
is complete. 

In the case ,0 ∞<< T  we did not obtain a solution of (1.1) and (1.2) with 
∞±=B  from every orbit of (3.3). Therefore it is not necessary to consider the case 

.∞±=B  
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