f ™. Far East Journal of Mathematical Sciences (FIMS)
Volume 33, Issue 3, 2009, Pages 323-346
4 q'p \ Published Online: June 17, 2009

—a This paper is available online at http://www.pphmj.com
[AHABAD =
© 2009 Pushpa Publishing House

ON ASYMPTOTIC BEHAVIOR OF POSITIVE SOLUTIONS
OF X" =—t%-2x1+¢ WITH a<0 AND -1<A <0

ICHIRO TSUKAMOTO

3-10-38 Higashi-kamagaya
Kamagaya-shi, Chiba 273-0104, Japan
e-mail: itkmt@k9.dion.ne.jp

Abstract

We consider the Emden-Fowler type differential equation of the form
denoted in the title. This is carried out under initial conditions x(T) = A,

X(T)=B (0<T <o, 0<A<w,—0<B<w)and x(0)=a, x(0)=b
(0 <a <, —0 <b < w). Asymptotic behavior of the positive solution

is shown for arbitrarily fixed T, A and every B in the first initial condition,
and for arbitrarily fixed a and every b in the second initial condition.
Actually this is achieved from getting analytical expressions of the
solution valid in the neighborhoods of both ends of its domain.

1. Introduction

In our previous papers [14], [20], [21], we treated a second order nonlinear
differential equation
X' = —t@ 2 (= d/dt) (1.2)
in a domain
O<t<oo, 0<X<on
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Here o, A are parameters which were supposed o >0, A >0 in [14], a <0,
A<-lorA>0in[20],and o <0, A =0, -1 in [21]. Concretely speaking, given
an initial condition

x(T)=A, x(T)=8B 1.2)
where

0<T <o, 0<A<ow, =-w<B<on,

we discussed asymptotic behavior of the solution of the initial value problem (1.1)
and (1.2). The main aim of this paper is to continue this work in a remaining case

a<0 -1<A<0O.

Therefore we suppose this throughout this paper.

Now (1.1) is worth considering, because this is related to various fields:
mathematical physics, variational problems, partial differential equations and so
forth (cf. [1], [15]). Furthermore differential equations containing (1.1) have been
treated in many papers (cf. [5], [7], [8]) which chiefly discussed the solution
continuable to o. However these papers did not consider such an initial value
problem as above.

Our discussion will be carried out as follows: In Section 2, we shall state our
theorems. For proving these, we shall transform (1.1) into a first order rational
differential equation, denote this as a two dimensional autonomous system and
consider these in Sections 3, 4. The proofs of our theorems will be completed in
Section 5. Finally in Section 6 we shall obtain theorems of the case T = 0 from the
theorems of Section 2.

Finally, notice that if . = —1, then we get a general solution

X = -1/, +1)At* +Ct+ D

of (1.1), C and D being arbitrary constants. However our conclusions will contain
this.

2. Statement of Our Main Theorems

First, fix T such that 0 < T < co. Next, fix A with

0<A<y(T) (2.1)
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where
wit) = {10+ DY

is a particular solution of (1.1). Then if x(t) denotes the solution of the initial value

problem (1.1) and (1.2), we conclude the following:

Theorem 1. There exists a real number B; such that if B = By, then x(t) is

defined for 0 <t < oo and has the following representations: In the neighborhood
of t =0, we get

X(t) = a{l + it‘”m P (log t)} (2.2

m=1

in the case /oA € N, and

X(t) = a{1+ Z xmnt“m”j (2.3)

m+n>0

in the case /oA ¢ N. Here a is a positive constant, p, are polynomials with
deg pyy < [aam] ([] denotes Gaussian symbol) and xq, are constants with

Xon = 0. In the neighborhood of t = «, we have

X(t) = {-A(n + 1)} “t—%{l + i x,t (/%) “} (2.4)

n=1

where X, are constants and

b = af2h + 1 (2% + 12 + dod(h +1)Y2.

Moreover we obtain the following:

Theorem 2. There exists a real number B, greater than B; such that if
B = B,, then x(t) is defined for 0 < t < o0 and has the following representations:

In the neighborhood of t = 0, we obtain

x(t) = {-A(h + 1)}1/“M{1 £y xnt(“Z/“)“} (2.5)

n=1

where x, are constants and

ty = 2% + 14+ /(20 +1)2 + dod(h +1)Y/2.
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In the neighborhood of t = oo, we get

X(t) = Kt{1+ Zta(k*l)m pm(logt)} (2.6)
m=1
in the case -1/a(A +1) € N, and
X(t) = Kt{l+ >, xmnt“(“l)m_”} @.7)
m-+n>0

in the case -1/a(A +1) ¢ N. Here K is a positive constant, p,, are polynomials

with deg p, < [-a(A +1)m] and Xx,,, are constants with xg, = 0.

Now, suppose that o, and w_ denote positive finite numbers in theorems
below. Then if B = By, B,, we have the following three theorems:

Theorem 3. If B < By, then x(t) is defined for 0 <t < ®, and has the
following representations:

In the neighborhood of t = 0, we get (2.2) and (2.3), and in the neighborhood
of t = o, we have the following: If -2 < o < 0, then we obtain

X() =Ko, =01+ > xjale, -0 (o, ~t) 7K@, - @22 (28)
j+k+I1>0

K(>0) and xq being constants, if o = -2,
X(t) = {=A(n + 1)y Y2ty -6, C)eCCWU. C) (2.9)

where

U~—J-20A+1) IogmL ast— o,,
+
GU,C)= %(C —1logU)log(C - logU)

+ Z Jimn{U(C — logU )?}'(C - logu ) ™2

l+m+n>2

{(C = logU) ™ log(C - logU )"
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Cand g|n, being constants, if o < -4, -4 < o < -2,

o
() - {——2(“ 2 } (0, -t 7%

OLZ(DTM_Z

m+n>0

{1+ D (o, )"0, —t)(2+4/°‘)”}, (2.10)

Xmn being constants, and if o = —4,

{1+ 2 (@, =) py(log(o, —t»}, (211)
m>0

P being polynomials with deg p,, < m.

Notice that we denote f(t) ~ g(t) as t — t for some t, if
lim f(t)/g(t) =1
t—o1

Theorem 4. If B) < B < B,, then x(t) is defined for 0 <t < o0. Moreover
x(t) is represented as (2.2) and (2.3) in the neighborhood of t = 0, and as (2.6)
and (2.7) in the neighborhood of t = .

Theorem 5. If B > By, then x(t) is defined for o_ <t <o and has the

following representations:

In the neighborhood of t = w_, we get the following: If -2 < o < 0, then we

have

X(t)=Kt-o){l+ > Xj (t— o ) (t—o_ ) (DKt - o)/ (212)
j+k+I1>0

K(>0) and x being constants, if o = 2, then

X(t) = {=A(n + 1)} 2t My, C)gCe(U. C) (2.13)
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where

U~ J-2Ar+1) IogmL ast— o_

and G(U, C) has the same form as in (2.9), if o < -4, -4 < o < -2, then

X(t) _ {_ 2((1 + 2) }]/“(t _ cl)_)—2/0c

a2 2

%+ z:xma—mea—thywﬂ, (2.14)

m+n>0

Xmn being constants, and if o = —4, then

0 = | (t-o.)?
%+§:a—memmwa—@J%, (2.15)
m>0

Pm being polynomials with deg p,, < m.
In the neighborhood of t = oo, we obtain (2.6) and (2.7).

Now, fix A with
A=y(T) (2.16)

instead of (2.1). Then we get the following:

Theorem 6. If B < —AA/T, B = —AA/T, and B > —AA/T, then the conclusion

of Theorem 3, x(t) = y(t), and the conclusion of Theorem 5 follow respectively.

Finally, fix A with
A>y(T)

instead of (2.16). Then we have the following two theorems:

Theorem 7. There exist real numbers B; and B, with B3 < B4 such that the

following statements are valid:
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If B=Bs, then x(t) is defined for 0 <t < w, and we get (2.5) in the
neighborhood of t = 0 and (2.8) through (2.11) in the neighborhood of t = @,. If
B = By, then x(t) is defined for o_ <t < oo and we have (2.12) through (2.15) in
the neighborhood of t = w_ and (2.4) in the neighborhood of t = oo.

Theorem 8. If B < B3 and B > B, then the conclusions of Theorems 3 and 5
follow respectively. Moreover if B; < B < B4, then x(t) is defined for o_ <t
< o, and we get (2.12) through (2.15) in the neighborhood of t = ©_ and (2.8)
through (2.11) in the neighborhood of t = w, .

3. The Reduction of (1.1) and Consideration of the Reduced Equation

In this section, we use a transformation
y = w(t) *x* (namely x = y(t)y¥*), z=ty (3.1)
and reduce (1.1) into the first order rational differential equation
dz/dy = {(a —1)z% + a(2% +1)yz
+ a2 +1)y2 - oa®A(h +1)y?)/ayz. (3.2)

The transformation (3.1) has been already used in [14] and the transformation of
this kind appeared originally in [9]. Using a parameter s, we write (3.2) a two
dimensional autonomous system

dy _
E = ayz,

(3.3)
% =(a-1)2% + w21 + D) yz + a?A(h +1)y3 — a?A(h + 1)y2.

(3.2) and (3.3) have been got also in [9], [10], and [14]. Notice that we always get
y > 0 from (3.1), the critical points of (3.3) are points (0, 0) and (1, 0) in the yz

plane, and orbits of (3.3) are solutions of (3.2). (1, 0) is a saddle point and therefore
from the discussion of Section 4 in [9], (3.3) has orbits represented as

z=%(y—1)+--- (3.4)

z:%(y—1)+--- (3.5)
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in the neighborhood of y =1. Here p, <0 < p;. Moreover due to the same

discussion we obtain solutions of (1.1) represented as (2.4) and (2.5) from (3.4) and
(3.5) respectively.

Here, let z = z;(y) and z = z,(y) be orbits of (3.3) represented as (3.4) and
(3.5) lying in a region 0 < y <1 respectively. Then we shall examine asymptotic
behavior of z = z;(y) and z = z,(y) as these leave (1, 0). For this, we conclude

the following:

Lemma 3.1. If z = z(y) is an orbit of (3.3), then z(y) is bounded as y tends to

a nonnegative number.

Proof. Suppose the contrary. Then there exist a nonnegative number ¢ and a
sequence {y,} such that

2(y,) > o as y, —>C. (3.6)
Therefore if we put &(y) = 1/z(y), then we get
&(yn) > 0as yy >c
and from (3.2), ¢ = ¢(y) satisfies
dg/dy = ~{(@ - )¢ + a(2n +1)y¢?
+a?A(h +1) Y3 - afa(n +1)y2c3 Y ay. 3.7)

If ¢ =0, then we conclude a contradiction {(y) =0, for the righthand side is
holomorphic at (y, ¢) = (c, 0). Furthermore if ¢ =0, then from (3.7) we have a

Briot-Bouquet differential equation

yﬂ-ﬁ - ‘—a;1C —(2r +1)ye? —ar(h + ) y33 + on(n + 1)y2cE.

Here we obtain —(o —1)/a < 0, for a < 0. Therefore from Lemma 2.5 of [15] we

get a contradiction £(y) = 0 again. Thus the proof is complete.
Now we conclude the following:

Lemma 3.2. For 0 < y <1, we get

z1(y) >0, zp(y)<0O.
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Moreover in the yz plane (y, z;(y)) tends to the origin as s — o and (y, z,(y)),

as S — —oo.

Proof. Onasegment 0 < y <1, z = 0, we get from (3.3)

% — 0?0 +1)y2(y —1) > 0, (3.8)

Moreover from (3.3) we have

ﬂ<0ifz>0, d—y>0ifz<0.
ds ds

Therefore an orbit z = z;(y) leaves (1, 0) as s increases and from (3.8) cannot pass

the y axis. Hence we obtain z;(y) > 0. Similarly we get z,(y) < 0.

Furthermore

1

y=0 2=-"T"9s+c

(C is a constant)

is a solution of (3.3) and thus the z axis consists of orbits of (3.3) and the origin.
Therefore orbits of (3.3) lying in a region y > 0 cannot pass the z axis. Hence from

Lemma 3.1 and Poincaré-Bendixon’s theorem we conclude
(v, z1(y)) —> (0, 0) as s — oo,
(y, 25(y)) = (0, 0) as s — —oo.
The orbits have the following property as y — 0:

Lemma 3.3. If z = z(y) is an orbit of (3.3) continuable to y =0, then we
obtain
lim z(y) =0, (3.9
y—0
and

lim 2y) _ ok, a(r +1).
y—0 Y

Proof. From the reason why (y, z;(y)) tends to (O, 0), we conclude (3.9).

Hence owing to the same reasoning as of Lemma 1 of [16], we get

lim @ = ok, a(r +1), too.

y—0
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However if we have

lim M =+
y—0 Y

then we put w = yz‘l in (3.2) and obtain

yz—\;v :éw—(2k+l)wz + o + D)W — on(h + 1)ywd, (3.10)
Therefore w = yz(y)‘1 is a solution of (3.10) such that limy_,q w = 0, and since

/o < 0, we get a contradiction w = 0 from Lemma 2.5 of [15]. This completes the

proof.
From the orbits tending to the origin we have the following:

Lemma 3.4. If z = z(y) is the orbit such that

lim 2y) = oA, (3.11)
y—0 Y
then this is represented as
2(y) = any|1+ D zmay"{yYH(hlogy + C)}" (312)
m+n>0

where z,,,, h and C are constants and h = 0 unless /o is an integer. Moreover

from (3.12) we obtain a solution of (1.1) represented as (2.2) and (2.3) in the
neighborhood of t = 0.

Proof. We follow the line of obtaining (3.20) of [14]. Put v = y‘lz —oA in

(3.2). Then we get

dv

1
yd—y—(k+1)y+—v+---

oA

where --- denotes terms whose degrees are greater than the degree of the previous
term. Therefore since I/aA > 0, we have
V= V™Y (hlog y + C))"
m+n>0

where vy, are constants. From this we obtain (3.12) where z, = Vyn /0.
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Moreover applying (3.1) to (3.12) we get a differential equation

ty' = axy[1+ Z Zon Y™ (yY**(hlog y + C)}”}. (3.13)

m+n>0

Solving this we have

y = Ft‘“[1+ Z Yt M {t(h logt + é)}”}
m+n>0

where T, ypn, h, and C are constants and h = ah, C = h logT" + C. Therefore
we obtain
t—>0ay—0. (3.14)

Furthermore using (3.1) again we obtain a solution of (1.1) represented as

x(t)=a{l+ Z ymntam{t(ﬁlogué)}“]

m+n>0

where
a = {1 + Yorye

and Y, are constants.

If I/ak € N, then we get

x(t):a{l+ Z t“x(m”/“x)Pmn(logt)}

m-+n>0
where P,,, are polynomials with deg P,,, < n. Hence if we put

n
k:m+ﬁ, Pk = Pmn.

and denote k as m, then we have (2.2). Moreover if 1/ai ¢ N, thensince h =0 we
obtain (2.3). Here it is necessary to show Xg, = 0. Substitute (2.3) into (1.1). Then
we get

Z (oAm + n)(aAm + n — 1) Xt @m0

m+n>0

= —aata)\'{l-i- Z an(XMN )takm*—n} (315)

m+n>0
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where Qun(Xpmn ) are polynomials of xpy with M < m, N < n. Hence from the

righthand side of (3.15), every term of the lefthand side contains t** and we obtain
Xon = 0.

Owing to (3.14), representations (2.2) and (2.3) are valid in the neighborhood of
t = 0. This completes the proof.

Similarly we conclude the following:

Lemma 3.5. If z = z(y) is the orbit such that

tim 29 _ o +1), (3.16)
y—0
then this is represented as
2y) = a(+ 1)y 1+ Y zpey™{y MO Dinlogy + C)}" (317)
m+n>0

where z,,, h and C are the same as in Lemma 3.4. Furthermore from (3.17) we get

a solution of (1.1) represented as (2.6) and (2.7) in the neighborhood of t = 0.

Since it suffices to follow the proof of Lemma 3.4, we omit the proof.

4. Solutions of (3.2) Continuable to y = o

Let us consider (3.2) in the neighborhood of y = co. For this we put y =1/n in
(3.2) and get
dz _ F(m, 2)

dn oan’z

(4.1)

where
_ 3,2 2 2 2
F(n, 2) = (a -1)M°z° + a(@r + )Nz + a“MA +1) — a“M(A + 7.
Now, suppose that a solution z = z(n) of (4.1) is bounded as y — o namely
n — 0. Then from

dn _ on’z

dz F(n, 2)

4.2)



ON ASYMPTOTIC BEHAVIOR OF POSITIVE SOLUTIONS ... 335

we have a contradiction n =0, for the righthand side of (4.2) is holomorphic at

(n, z) = (0, c) where c is an arbitrary finite number. Therefore we obtain
Z > tw asn—0. (4.3)
Sowe put z =1/ in (4.1) and get
dg/dn = {~a®A(r + Y + a(2n + )12
~ - )¢+ a0 + 1) 3 fan®.

Moreover if we put

w=n¥2%, &=n¥2 (4.4)
then we have
EgE - GE W) 45)
where
o+ 2

G(E, w) = — W+ 2(2) + 1) Ew?

o
3 2,3
+ 2a(A + D)W — 20 (A +1)E“W>,

For considering (3.2) in the neighborhood of y = o, it suffices to treat (4.5) in
the neighborhood of & = 0. If £ =0 and the righthand side of (4.5) vanishes, then

we obtain

w=0if-2<a<0, w=0+pifa<-2

1 [a+2
PV + 1)

Now, let y be a cluster point of a solution of (4.5) as § — 0. Then we get the

where

following:
Lemma 4.1. y is the limit point and

Yy =0, £p.
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Proof. Suppose y = 0, £p, +oo. Then from (4.5) we have

@ &
dw  G(§, w)

whose righthand side is holomorphic at (&, w) = (0, v). Therefore we conclude a

contradiction & = 0, which implies
vy =0, £p, £oo.
However if y = +oo, then we put 6 = 1/w in (4.5) and obtain

% _ &b
40 (o +2)0% — 2024 +1)£0 — 202h(A +1) + 20 2h(h + 1)E2

This implies a contradiction & = 0, for the righthand side of this is holomorphic at

(&, 8) = (0, 0). Now the proof is complete.

In cases where y =0, £p, we obtain the representations of the solutions of
(1.1) denoted in the above theorems as follows:

Lemma 4.2. If y = 0, then we get

-2<a<0.

Moreover if -2 < o < 0, then we have (2.8) and (2.12). If o = -2, then we obtain
(2.9) and (2.13).

Proof. If -2 < o < 0, then from (4.5) we get

W = Z Wmném(cé—((x+2)/(1)n
m+n>0

where w,,, are constants with wy; =1 and wpg =0, and C is a constant, since
—(a + 2)/oe > 0 and w divides the righthand side of (4.5). Therefore from (4.4) and
(3.1) we have

E,B Z Wmncnam*((lyﬂ’z)/(l)ntyl =1

m+n>0
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On the other hand, we obtain
y! — _n—an — _Zé—aal
Hence we get
Z W, CMem—(@+2)/angr _ _21
t
m+n>0
and integrating both sides,
> fgnChgm (e Dfen —%Iogt +D (4.6)
m+n>0

where D is a constant and Wy,, are constants with

-~ o -~
Wpp = —E, Wmo = 0.

Putting D = (logt)/2 here, we have t — 1t as & — 0. Moreover from (4.6) we

derive
-a/2
é{1+ > amn&m‘((“+2)/°‘)”}:(aiclog%) .
m-+n>0

Hence using Smith’s lemma — cf. Lemma 1 of [10], we obtain

L ol 1 p@2ms 1 (@22
6= ( g toa ) {“ Zobmn(m")gzj (s toot)
m+n>

and from & = n¥2 = y /2,

B 1 a —(a/2)m ((@+2)/2)n
y=g2- (Elog%) {1+ Z cmn(log%j (Iog%) . (4.7

m+n>0

Here, notice (4.3). Then if z > as n — 0 (namely £ - 0 and y — ),
we get y' > 0 for sufficiently large y. Therefore t is the right end of the domain of
y, for t > t as & —» 0. So we denote t = ®,. From the same reason we denote

t=0o0_, if z—> -0 asn — 0.
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Moreover we expand logt/t as

and using (3.1) for (4.7) we have (2.8) and (2.12).

If o = -2, then from (4.5) we obtain

ég_vgv = 2(21 +1)ew” - 4A( + D + 400 + 17w

and from the theory of [3] — cf. formulas (16) and (24) of this paper,

w = +{-81(A +1)(C - log g)}-1/2[1+ Z Wi
0<2j+k<2(N+1)

(-8M(% +1)(C — log &)y /2 + QN]

|Qy | < Ky|logg[™

where K\ is a constant. Since this has the form similar to the solution of (2.8) of
[17], we adopt the discussion done in the proof of Corollary 2.6 of this paper and get
(2.8) and (2.12) of the same paper. This was carried out also in [20].

Finally if o < -2 then applying Lemma 2.5 of [15] to (4.5), we have a
contradiction w =0, for —(a +2)/a < 0. Hence we obtain —2 < a < 0, which

completes the proof.

Lemma 4.3. Suppose that o < -2 and y = +p. Thenif a < -4, -4 < o < -2,
we get representations (2.10) and (2.14), and if o = —4, representations (2.11) and
(2.15).

Proof. Put 6 =w -1y in (4.5). Then this is the same transformation as in

Section 3 of [10] and it suffices to follow the discussion done there. From the same
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reason as in the proof of Lemma 4.2 we have the representations in the
neighborhood of t = w,, if z—> o as n — 0 and those in the neighborhood of

t=ow_, if z—> —wo as n — 0. Now the proof is complete.

5. Proof of the Theorems of Section 2

First, let us review some conclusions stated in Sections 3 and 4. The critical
point (1, 0) of (3.3) is a saddle point and (3.3) has four orbits reaching (1, 0). From
(3.8) the orbit of (3.3) passes the y axis at most once. Owing to Lemmas 3.1 and 3.3,
the orbits tend to the origin as y decreases, unless these tend to (1, 0). Moreover as y
increases, from Lemma 3.1 and (4.3) the orbits not tending to (1, 0) is continuable to
o and tend to +oo. Therefore the phase portrait of (3.3) is as in Figure. Here

2 =125(y) and z = z4(y) respectively denote the orbits represented as (3.5) and
(34)iny>1.

z = z4(y)

Figure. The phase portrait of (3.3).

Now, let us consider (1.1) under the initial condition (1.2). From (3.1) we get

Z= ay(k +tx?).
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Let (yg, zg) be (y, z) at t = T. Then we have

Yo = wT) A%, 20 = ayo[n+ 12 ).
Throughout this section, fix T and A. Then vy is fixed and z, is a decreasing
function of B. Hence (yq, zg) descends a line y =y, as B increases. Moreover
from a solution of (1.1) satisfying (1.2) we obtain a solution of (3.2) satisfying an
initial condition

2(yo) = 2o (5.1)

and an orbit of (3.3) passing (yg, zg). Conversely from the solution of (3.2) with
(5.1) or the orbits of (3.3) passing (Yg, zg) we get the solution of (1.1) with (1.2).

Furthermore, notice that if zy = 0, then we have B = —AA/T, and if 0 < yq
<1y =1 yp >0, then we respectively obtain A < y(T), A= wy(T), A> y(T).

Here the following lemma is required:

Lemma 5.1. If x = x(t) is a solution of (1.1) whose domain is an interval
(o_, o, ) and an orbit (y, z) of (3.3) is defined from (3.1) and x = x(t), then we
get

t|im (y, z) = (0, 0), (1, 0), (o0, o).

Proof. The discussion of the proof of Lemma 2 of [16] implies that (y, z) does
not accumulate to a regular point in y > 0. Moreover from Lemma 3.1, z is bounded
as y tends to a nonnegative number, and from (4.3) we have z — fo as y — o.

This completes the proof.

Let us consider the case A < y(T) now. Then we obtain 0 < yy; <1. So as
(Yo, zg), take an intersection of the line y =y, and the orbit z = z;(y), and
suppose B = B; then. Moreover, define (y, z) from applying (3.1) to the solution
x = x(t) of (1.1) and (1.2). Then (y, z) is situated on z = z;(y) and from Lemma
5.1and z(y)=ty' > 0 we get

y—>0at—->o_, y—-last—- o,
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where (o_, o, ) denotes the domain of x(t) again. Therefore from (3.4) we have

(2.4), and from Lemmas 3.3 and 3.4, (2.2) and (2.3). This completes the proof of
Theorem 1.

Next as (yg, Zg), take an intersection of the line y =y, and the orbit
z =125(y), and assume B = B,. Since z is decreasing in B, we obtain B; < B,.
Now if we define (y, z) as above, then the same discussion implies (2.5), (2.6), and
(2.7), which completes the proof of Theorem 2.

Here, let z(y, B) be a solution of (3.2) and (5.1). Then if B < By, we get
z(y, B) > z;(y). Hence from Lemma 5.1 and Figure, we have

y—>0at-oo., yooast-o o,.

Therefore the same discussion as in the case B = B; implies (2.2) and (2.3), and
from Lemmas 4.2 and 4.3 we obtain (2.8), (2.9), (2.10), and (2.11). Now the proof of
Theorem 3 is complete.

In the same way, if B; < B < B, then we get

2(y, B)
y

y = 0, —> ol ast > o

y =0,

@—mc(?wl) ast— o,

and conclude Theorem 4 from Lemmas 3.4 and 3.5. Here, notice that z(y, B) is not

a single-valued function of y. Furthermore in the same way, if B > B, then we have

y—>woast—- o_,

y — 0, @aa(k+l)ast—>m+

which imply Theorem 5.

For proving Theorem 6, fix T and A so that A = y(T). Then we obtain y, = 1.
If zo =0, namely B = —AA/T, then (y, z) defined as above satisfies y =1, z =0,
for (yg, zg) = (1, 0) is the critical point of (3.3). That is, we get x(t) = y(t). If
B < —AA/T, then we have z(y, B) > 0, for zq is decreasing in B. Therefore from
Figure z = z(y, B) is the orbit lying above z = z;(y), if 0 <y <1. Hence the
discussion of the case B < B follows. Similarly if B > —AA/T, then the discussion
of the case B > B, follows. This concludes Theorem 6.
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Finally for the proof of Theorems 7 and 8, fix T and A such that A > y(T).
Then we obtain yo >1. As (yp, Zg), take the intersection of the line y = yq and
the orbit z = z3(y), and put B = B3. Thenif B = Bs, (Y, z) satisfies

y—>lasts>owo., y—>wast—- o,.

Similarly as (yg, zg), take the intersection of the line y =y, and the orbit

z =174(y), and put B = B4. Thenif B = By, (Y, z) satisfies
y—s>wast—-o_, y->last—- o,.

Therefore from the above discussion we conclude Theorem 7.

Furthermore if B < By and B > By, then in 0 <y <1, z(y, B) is the orbit
lying above z = z;(y) and below z = z,(y) respectively. Hence the cases B < Bj
and B > B, are the same as the cases B < B; and B > B, respectively. Moreover

if B3 < B < By, then we get

y > oo, z(y,B)<0ast— o_

y >, z(y,B)>0ast— o,.
Here, notice that z(y, B) is not a single-valued function of y. Therefore as above we
conclude Theorem 8.

6. The Initial Value Problem of the Case T = 0

In this section we consider (1.1) under the initial condition
x(0)=a(>0), x(0)=b (-0<b<wn) (6.1)

instead of (1.2). The solution of the initial value problem (1.1) and (6.1) is as
follows:

Corollary 1. Suppose 1/ar € N. Then if ol =1 and b =0, there exist
infinitely many solutions, if oA #1 and b = o, there exists the unique solution,
and if b = oo, there exists no solution.

Proof. From theorems of Section 2, only (2.2) and (2.3) are solutions of (1.1)
continuable to t = 0 and satisfying x(0) > 0. Since /oA € N now, only (2.2) is
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required. Substitute (2.2) into (1.1). Then we get

Pm(log t) + (2aam —1) ppy(log t) + (alm —1)arimp,, (log t)

=-a®Pya(p) (M=12.) (6.2)

where - =d/d logt, P,(py) are polynomials of p, with k < m, and we adopt a

convention Py(py) = 1.
If m =1, then from (6.2) we obtain
py(logt) + (2ax —1) py(logt) + (ar —1)arpy(logt) = —a®. (6.3)

Therefore if ad =1, then since deg p; < [ar] =1, we get

pi(logt) = —a*logt + C

where C is an arbitrary constant. If aX =1 then since p;(logt) is a polynomial of

log t, we have from (6.3)

a(X

pi(logt) = - (oh —1)ar

Next if m > 2, then from (6.2) we obtain

pm(log t) _ aa{eakm IogtJ' mel( pk)eakm log Sd log s

_ e—(akm—l) IogtJ‘ P_1(Px )e((lkm—l)l()g 5d log 5},

for pp(logt) are polynomials of log t. Namely pp,(logt) are uniquely determined

from p;(logt).

From the above discussion, if al =1 then we get infinitely many solutions of
(1.1) and (6.1) represented as

x(t) = a{1+ t(C —a%logt) + itm pm(logt)}, (6.4)

m=2
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for (6.4) contains an arbitrary constant C. Moreover we have

X'(t) = a{c —a%logt —a* + Ztm‘l{mpm(logt) + pm(logt)}] — o as t — +0.
m=2
Therefore the first conclusion of this corollary follows. If I/ad € N, aA =1, then

we obtain 0 < al <1 and the unique solution of (1.1) and (6.1) represented as

o

X(t) = a{l - mtak + Zt“xm P (log t)} (6.5)

m=2

From (6.5) we get

o o0
X'(t) = a[—%t‘“‘l + th‘m_l{amem(logtH pm(logt)}] —w ast — +0.
m=2

Hence the second conclusion follows. Since only (6.4) and (6.5) can become the
solutions of (1.1) and (6.1), we get the third conclusion. Now the proof is complete.

The following corollary also states existence and nonexistence of the solution of
(1.1) and (6.1):
Corollary 2. Suppose L/ar ¢ N. If 0 < ad <1, then there exists a unique

solution for b =« and no solution for b # c. Moreover if ol >1, then there
exists a unique solution for b = 0 and no solution for b = 0.

Proof. Here since 1/al ¢ N, we need only (2.3). Substituting (2.3) into (1.1),

we have (3.15) again. Thus comparing the coefficients of 94+ e obtain
aa
X0 = “oa(on — 1)’

a"Qm_1n (Xwn )
- >1,n>
Xmn (oAm + n)(aAm +n —1) (m=1n=>1).

This implies that x,,, are uniquely determined and the solution of (1.1) and (6.1)

exists uniquely, if this exists. Moreover we get

X'(t) = a{akxlot“k_l + Z (aAm + n)xmnt(‘}”m”‘l} ~ aakxot* 1 as t — +0.
m+n>1
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Namely as t — +0 we have

X(t) >0 if 0<ak <l X(t)—> 0 if ar >1.

Therefore in the case b = and 0 < aA <1, and in the case b =0 and ai > 1,

the solution exists, and in the other cases the solution does not exist. Now the proof
is complete.

In the case 0 <T < oo, we did not obtain a solution of (1.1) and (1.2) with

B = +o0 from every orbit of (3.3). Therefore it is not necessary to consider the case

B = +co.
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