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Abstract

In this paper, we establish sufficient conditions for the almost oscillation
of all solutions of second order neutral difference equations with damping
term via comparison technique. Examples are provided to illustrate the
results.

1. Introduction

Consider the second order nonlinear neutral delay difference equations with
damping term of the form

A@n AXy + CXn_)) + Ppd(AXn, AXp_ )+ 0n f(Xp121) =0, n>ny, (1)
and

AZ(Xn + Xk ) + An F (Xn—1) 9(AXq—m) = 0, n>ng, (2

where A is the forward difference operator defined by AX,, = Xn41 — Xn, Azxn =
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A(Axy), {a,} is a positive sequence, {p,} and {q,} are nonnegative real

sequences, k, | and m are nonnegative integers, c is a real number, ¢ : R? 5 R, f
and g:R — R are continuous with f is nondecreasing and uf(u)>0 and

g(u) > 0 for u = 0.

Let 6 = max{k, I}. By a solution of equation (1), we mean a real sequence
{X,} defined for all n>ny—6 and satisfies equation (1) for all n>ny. The
solution of equation (2) can be defined similarly. A nontrivial solution {x,} of
equation (1) or (2) is said to be oscillatory if it is neither eventually positive nor

eventually negative and nonoscillatory otherwise. It is said to be almost oscillatory if
{x,} is oscillatory or {Ax,} is oscillatory for all n > n;.

The oscillation, nonoscillation and asymptotic behaviors of solutions of
equation (1) or (2) when either c =0 and m =0 or p, = 0 have been considered
by many authors, see for example [1-8, 10-13, 15], and the references cited therein.
Following this trend, in this paper, we establish sufficient conditions for the almost
oscillation of all solutions of equations (1) and (2).

The plan of the paper is as follows. In Section 2, we present sufficient
conditions for the almost oscillation of equation (1) and in Section 3, we establish
similar results for equation (2). Examples are provided in Section 4 to illustrate the
results.

2. Almost Oscillation of Equation (1)

In this section, we establish sufficient conditions for the almost oscillation of
equation (1) when the function ¢ satisfies anyone of the following conditions:

O(AXn, AXp_k) = DXy, N =ng, (3)

or
A%y, DXn_k) = DXg_k, N =ng, 4)

or
O(AX,, AXn_k) = AXy + CAXq_k, N = ng. (5)

We begin with the following theorem.
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Theorem 1. With respect to difference equation (1) assume condition (3) holds.
Further assume that

0<c<], (6)
—f(xy) > f(xy)> f(x)f(y) for xy >0, )
ii ﬁ 1-Ps)_ o, )
an a'S
n:no S=Np
If the delay difference equation
NapAzg)+apf(@—c)f(zp) =0, n=ng 9)
is oscillatory, then all solutions of equation (1) are almost oscillatory.

Proof. Let {x,} be an eventually positive solution of equation (1), say x, > 0,
Xn_k > 0 and x,_; > 0 for all n > ny > ny. There are two possibilities to consider:

() Ax, > 0 eventually, and (1) Ax, < 0 eventually.
Case (I). Assume that Ax, > 0 eventually. Then equation (1) leads to
A@aA(Xp + Xk ) + dn f (Xpa1-1) < 0. (10)
Set
Zy = Xp + CXp_k- (12)
Then inequality (10) takes the form
A@nAzy)+ 0y F(Xq41) <0 (12)
eventually, and clearly Az, > 0 eventually. From (11), we have
Xy = (1-c)z,. (13)
Using (13) in (12) and then applying condition (7), we obtain
ANapnAzy)+ 0, f@-c¢)f(zh1-¢) <0

eventually. But in view of a result in [14], it follows from the last inequality that
equation (9) has an eventually positive solution, which is a contradiction.



290 E. THANDAPANI, K. THANGAVELU and E. CHANDRASEKARAN
Case (II). Assume that Ax, < 0 eventually. Then from equation (1), we have
AanAzp) + ppdxy = —0n F(Xni1-1)
or
AN@,Azy)+ pplx, <0, n=ng=ng +1. (14)
Since Az, = AX, + CAX,_k, We have Az, < Ax, < 0 and from (14), we obtain
AN@nAzg)+ phldzy <0, n>ng.
Let u, = —a,Az,. Then we have

Aup +%un 20, nxng.

n

Summing the last inequality from n; to n —1, we have

wzwf]1-2)

S=M

or

-2 10-2)

Again summing the last inequality from n; to n -1, we have

Az < Az - unlz H(l—&).

S=m t=n

However condition (8) leads to z, — —o as n — o, a contradiction. The proof
for the case {x,} eventually negative is similar. This completes the proof of the

theorem.

Theorem 2. Let ¢ > 1, k be a negative integer and conditions (7) and (8) hold.
If the delay difference equation

NapAzy) + f( jqnf(zn+1+k 1)=0 (15)
C

is oscillatory, then equation (1) is almost oscillatory.
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Proof. Let {x,} be an eventually positive solution of equation (1). We consider
two Cases (I) and (1) as in Theorem 2.

Case (I). Assume that Ax, > 0 eventually. Then as in the proof of Theorem 1,

we obtain the inequality (12). Since k is negative and ¢ >1, we have from (11)

obtained that x, > (C—_Zl) Zn4k- The rest of the proof is similar to that of Case (1)
c

of Theorem 1. The proof of Case (ll) is similar to that of Theorem 1. The proof is
now complete.

Next, we establish an easily verifiable condition for the almost oscillation of
equation (1).

Theorem 3. Let 0 <c <1, a,—-p, >0 for all n>ny, and condition (8)

holds. If
D tn =, (16)

n=ng
then every solution of equation (1) is almost oscillatory.

Proof. Let {x,} be a positive solution of equation (1). We consider two Cases
(1) and (I1) as in Theorem 1.

Case (I). Assume that Ax, > 0 eventually. Then as in the proof of Theorem 1,
we obtain the inequality
A@pAzg) + 0y F(L-¢)2p49-1) <0
forall n>ng. Since z, >0 and Az, > 0, there exists a constant d > 0 such that

Zn41-) = d forall n>n, > ng + 1. Hence
Na,Azy)+q,f(d2l-c)) <0, n=>n,.
Summing the last inequality from n, to n, we obtain
n
a1 AZy < 8y, AZp, - f(d@- C))qu-
S=Ny

Now, from (16), it follows that a,Az, — —c as n — oo, a contradiction. The

proof of Case (Il) is similar to that of Case (Il) of Theorem 1. The proof is now
complete.
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Remark 1. In a similar way, we find that Theorems 1-3 are applicable to neutral
difference equation (1) when condition (4) is satisfied. In fact, if {x,} is an

eventually positive solution of equation (1), we see that there are no changes in the
proof when Ax, > 0 eventually, while for the case when Ax,, < 0 eventually, we

observe that Az, < Ax,_x eventually, and the rest of the proof in this case is the

same.

Next, we establish oscillation criteria for the neutral difference equation (1)
when condition (5) is satisfied.

Theorem 4. Let conditions of Theorem 1 or 2 or 3 be satisfied. Then every
solution of equation (1) is almost oscillatory.

Proof. Let {x,} be an eventually positive solution of equation (1). Define z,

as in (11), and obtain
NapnAzy) + ppizy + Gn f(Xpe1-) = 0.
Since Az, > 0 eventually, we have
A@nAzy) + 0y F(Xq41) <0

eventually. The rest of the proof is similar to that of Theorem 1 or 3when 0 < ¢c <1
and Theorem 2 when ¢ > 1. The proof is now complete.

3. Almost Oscillation of Equation (2)

In this section, we consider the neutral difference equation (2) subject to the
following conditions:

(i) g(u) is nonincreasing on R* and nondecreasing on R™;

(ii) for any constant M > 0, there exists a nonnegative sequence a(n) such
that — f (—Mnu) > f(Mnu) > o(Mn) f(u), for u > 0 and n > ng;

(iii) f(u)g(u)>u?, where y is aratio of odd positive integers.

Theorem 5. If 0 < ¢ <1, 1 > m >0, and there exists a constant 6, 0 < 6 <1
such that the delay difference equation
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Azy +o(0n)g,zh_, =0 a7
is oscillatory, then every solution of equation (2) is almost oscillatory.

Proof. Let {x,} be an eventually positive solution of equation (2). We consider

two cases as in Theorem 1.
Case (I). Suppose Axp, > 0 eventually. Define z,, asin (11). Then we have
Azzn +0n F (Xn_1) 9(AXp_m) = 0 (18)

and Az, > 0 eventually. As in the proof of Theorem 3, we obtain x, > (1-c¢)z,

eventually and Az, > Ax, eventually. From (18), we obtain
A2y + Gy F(L-0)201)9(A2g ) < 0 (19)

eventually. Since Azzn <0, Az, >0 and z, >0 eventually, there exists a
constant B, 0 <P <1 and a sufficiently large n; > ng such that z,_; > BnAz,_

for n>ny or z,_; 2 PnAz,_p for n = ng since | = m. Thus
AWy, + g, f(BAL—c)nwWy_m) 9(Wn_m) < 0,
where w, = Az,, and hence we find
AWy + gpo(0n) f(Wy_m)9(Wy_m) <0
or
AW, + gquo(On)Wi_m <0, n>ny,

where 0 = B(L-c). But, in view of Lemma 1 of [9], we see that from the last

inequality that the equation
AW, + guo(On)wi_, =0,
has an eventually positive solution, which is a contradiction.

Case (II). Suppose Ax, <0 eventually. Then Az, <0, which contradicts

Az, > 0 eventually. This completes the proof of the theorem.
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Next, we assume ¢ >1 and k is a negative integer in equation (2). Then we
have the following result.

Theorem 6. If ¢ >1, k is a negative integer with | —k > m, and for every
constant © > 0, equation (18) is oscillatory, then every solution of equation (2) is
almost oscillatory.

Proof. Let {x,} be an eventually positive solution of equation (2). Proceeding
as in Theorem 5, we obtain (18) and Az, > 0 eventually, and conclude that Case
(1), that is, Az, <0 eventually is impossible. Next, from (11), we find x, >

(_C _Zl)Aerk and Az, > Ax, eventually. The rest of the proof is similar to that
c

of Theorem 5 and hence the details are omitted.

Remark 2. For the oscillatory behavior of equation (17) one can refer [1, 9],
and the references cited therein.

4. Examples

In this section, we present some examples to illustrate the results
Example 1. Consider the neutral difference equation

2

+—————Xp1 =0, Nn>2. (20)
(n+12(n+3) "

2 1 1
A (xn +§xn_1) + X

It is easy to check that all the hypotheses of Theorem 1 (Theorem 3) are satisfied
except (condition (16)) that on the oscillatory behavior of the equation

2

NPz +—= 7.1
T 1P +3)

=0, nx2 (21)

Equation (21) has a nonoscillatory solution {x,} = {ﬁ}

Example 2. The neutral difference equation

A2(Xy + 2Xp41) + HLAX 0, n=1 (22

4
22N AT 2)n+3) L T

has a nonoscillatory solution {x,} = {%} All conditions of Theorem 2 are satisfied
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except that the oscillatory behavior of the equation

A%z, + =0, n>1. (23)

1
n(n+2)(n+3) "

Example 3. Consider the neutral difference equation

1
Az(xn + Exn,k) + QpXn_| exp(xﬁ,, — (X% )2) =0, n=2ng, (24)

where k and | are nonnegative integers and {q,} is a nonnegative real sequence for

2 2
all n>ny Here we take f(u)=ue" and g(u)=e™" . Now, for every 6,
0<06<1andall large n > % we have
2.2 .2 2
f(n6u) = onue® " > onue!”,  (6n) = 6On (25)

and f(u)g(u) = u. Thus all the conditions of Theorem 4 are satisfied if the equation

Az, +6nqnz,_ =0 (26)
is oscillatory, that is, if
n-1 1+1
L 1/ 1
A inf Szn. s > E(m) @7)

(see [1]), and hence we conclude that all solutions of equation (22) are almost
oscillatory.

Example 4. Consider the neutral difference equation

2 ¥ 1+ X2y
A" (Xn + CXn k) + UnXg | ———— 5 | =0, (28)
1+ (AXn_|)

where 0 < ¢ <1, k, | are nonnegative integers, y is a ratio of odd positive integers,

and {q,} is a nonnegative real sequence. Here we take f(u)=u(1+ u?) and

1
1+u

g(u) = Now for every constant M > 0 and all large n > ﬁ we observe
that

f(Mnu) = (Mn)"u’(L+u?), a(Mn) = (Mn) (29)
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and hence f(u)g(u) =u”. It is easy to check that all conditions of Theorem 4 are

satisfied provided the equation

Az, +(Mn)g,z/_, =0 (30)

n-1 =

is oscillatory, then we can conclude that all solutions of equation (28) are almost
oscillatory. Clearly, equation (30) is oscillatory if

0

ZHYQn =, O0<y<l
n=ng
or
n-1 1+1
I
nIi'noomf s;| SQs > M (m] Y =1

or there existsa A > Tllog v such that
lim inf nYq, exp(-e*") >0, v>1.
n—o0

Remark 3. (1) If we let ¢ = 0 in Theorem 3, one can easily prove that all
solutions of equation (1) are oscillatory (see [10]). Therefore, we conclude that the
disruption in the oscillatory property is due to the presence of neutral term.

(2) 1t would be interesting to obtain results similar to those presented here for
the complete oscillation of equations (1) and (2).
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