OSCILLATION OF SECOND ORDER NEUTRAL DIFFERENCE EQUATIONS WITH DAMPING TERM

E. THANDAPANI*, K. THANGAVELU and E. CHANDRASEKARAN

*Ramanujan Institute for Advanced Study in Mathematics
University of Madras
Chennai 600 005, India
Department of Mathematics
Presidency College
Chennai 600 005, India

Abstract

In this paper, we establish sufficient conditions for the almost oscillation of all solutions of second order neutral difference equations with damping term via comparison technique. Examples are provided to illustrate the results.

1. Introduction

Consider the second order nonlinear neutral delay difference equations with damping term of the form

$$
\begin{equation*}
\triangle\left(a_{n} \triangle\left(x_{n}+c x_{n-k}\right)\right)+p_{n} \phi\left(\triangle x_{n}, \Delta x_{n-k}\right)+q_{n} f\left(x_{n+1-l}\right)=0, \quad n \geq n_{0} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta^{2}\left(x_{n}+c x_{n-k}\right)+q_{n} f\left(x_{n-l}\right) g\left(\triangle x_{n-m}\right)=0, \quad n \geq n_{0} \tag{2}
\end{equation*}
$$

where \triangle is the forward difference operator defined by $\triangle x_{n}=x_{n+1}-x_{n}, \triangle^{2} x_{n}=$ 2000 Mathematics Subject Classification: 39A10.

Keywords and phrases: neutral difference equation, oscillation, damping term.
$\triangle\left(\Delta x_{n}\right),\left\{a_{n}\right\}$ is a positive sequence, $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ are nonnegative real sequences, k, l and m are nonnegative integers, c is a real number, $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}, f$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are continuous with f is nondecreasing and $u f(u)>0$ and $g(u)>0$ for $u \neq 0$.

Let $\theta=\max \{k, l\}$. By a solution of equation (1), we mean a real sequence $\left\{x_{n}\right\}$ defined for all $n \geq n_{0}-\theta$ and satisfies equation (1) for all $n \geq n_{0}$. The solution of equation (2) can be defined similarly. A nontrivial solution $\left\{x_{n}\right\}$ of equation (1) or (2) is said to be oscillatory if it is neither eventually positive nor eventually negative and nonoscillatory otherwise. It is said to be almost oscillatory if $\left\{x_{n}\right\}$ is oscillatory or $\left\{\triangle x_{n}\right\}$ is oscillatory for all $n \geq n_{0}$.

The oscillation, nonoscillation and asymptotic behaviors of solutions of equation (1) or (2) when either $c=0$ and $m=0$ or $p_{n}=0$ have been considered by many authors, see for example [1-8, 10-13, 15], and the references cited therein. Following this trend, in this paper, we establish sufficient conditions for the almost oscillation of all solutions of equations (1) and (2).

The plan of the paper is as follows. In Section 2, we present sufficient conditions for the almost oscillation of equation (1) and in Section 3, we establish similar results for equation (2). Examples are provided in Section 4 to illustrate the results.

2. Almost Oscillation of Equation (1)

In this section, we establish sufficient conditions for the almost oscillation of equation (1) when the function ϕ satisfies anyone of the following conditions:

$$
\begin{equation*}
\phi\left(\triangle x_{n}, \Delta x_{n-k}\right)=\triangle x_{n}, \quad n \geq n_{0} \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
\phi\left(\triangle x_{n}, \triangle x_{n-k}\right)=\triangle x_{n-k}, \quad n \geq n_{0} \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
\phi\left(\triangle x_{n}, \triangle x_{n-k}\right)=\triangle x_{n}+c \Delta x_{n-k}, \quad n \geq n_{0} \tag{5}
\end{equation*}
$$

We begin with the following theorem.

Theorem 1. With respect to difference equation (1) assume condition (3) holds. Further assume that

$$
\begin{align*}
& 0<c<1 \tag{6}\\
& -f(x y) \geq f(x y) \geq f(x) f(y) \text { for } x y>0 \tag{7}\\
& \sum_{n=n_{0}}^{\infty} \frac{1}{a_{n}} \prod_{s=n_{0}}^{n-1}\left(1-\frac{p_{s}}{a_{s}}\right)=\infty \tag{8}
\end{align*}
$$

If the delay difference equation

$$
\begin{equation*}
\triangle\left(a_{n} \triangle z_{n}\right)+q_{n} f(1-c) f\left(z_{n+1-l}\right)=0, \quad n \geq n_{0} \tag{9}
\end{equation*}
$$

is oscillatory, then all solutions of equation (1) are almost oscillatory.
Proof. Let $\left\{x_{n}\right\}$ be an eventually positive solution of equation (1), say $x_{n}>0$, $x_{n-k}>0$ and $x_{n-l}>0$ for all $n \geq n_{1} \geq n_{0}$. There are two possibilities to consider: (I) $\Delta x_{n}>0$ eventually, and (II) $\triangle x_{n}<0$ eventually.

Case (I). Assume that $\triangle x_{n}>0$ eventually. Then equation (1) leads to

$$
\begin{equation*}
\triangle\left(a_{n} \triangle\left(x_{n}+c x_{n-k}\right)\right)+q_{n} f\left(x_{n+1-l}\right) \leq 0 \tag{10}
\end{equation*}
$$

Set

$$
\begin{equation*}
z_{n}=x_{n}+c x_{n-k} \tag{11}
\end{equation*}
$$

Then inequality (10) takes the form

$$
\begin{equation*}
\triangle\left(a_{n} \triangle z_{n}\right)+q_{n} f\left(x_{n+1-l}\right) \leq 0 \tag{12}
\end{equation*}
$$

eventually, and clearly $\triangle z_{n}>0$ eventually. From (11), we have

$$
\begin{equation*}
x_{n} \geq(1-c) z_{n} \tag{13}
\end{equation*}
$$

Using (13) in (12) and then applying condition (7), we obtain

$$
\triangle\left(a_{n} \triangle z_{n}\right)+q_{n} f(1-c) f\left(z_{n+1-c}\right) \leq 0
$$

eventually. But in view of a result in [14], it follows from the last inequality that equation (9) has an eventually positive solution, which is a contradiction.

Case (II). Assume that $\triangle x_{n}<0$ eventually. Then from equation (1), we have

$$
\triangle\left(a_{n} \triangle z_{n}\right)+p_{n} \triangle x_{n}=-q_{n} f\left(x_{n+1-l}\right)
$$

or

$$
\begin{equation*}
\triangle\left(a_{n} \triangle z_{n}\right)+p_{n} \triangle x_{n}<0, \quad n \geq n_{1} \geq n_{0}+l . \tag{14}
\end{equation*}
$$

Since $\triangle z_{n}=\triangle x_{n}+c \triangle x_{n-k}$, we have $\triangle z_{n}<\triangle x_{n}<0$ and from (14), we obtain

$$
\triangle\left(a_{n} \triangle z_{n}\right)+p_{n} \triangle z_{n}<0, \quad n \geq n_{1} .
$$

Let $u_{n}=-a_{n} \triangle z_{n}$. Then we have

$$
\triangle u_{n}+\frac{p_{n}}{a_{n}} u_{n} \geq 0, \quad n \geq n_{1} .
$$

Summing the last inequality from n_{1} to $n-1$, we have

$$
u_{n} \geq u_{n_{1}} \prod_{s=n_{1}}^{n-1}\left(1-\frac{p_{s}}{a_{s}}\right)
$$

or

$$
\triangle z_{n} \leq-\frac{u_{n_{1}}}{a_{n}} \prod_{s=n_{1}}^{n-1}\left(1-\frac{p_{s}}{a_{s}}\right)
$$

Again summing the last inequality from n_{1} to $n-1$, we have

$$
\triangle z_{n} \leq \Delta z_{n_{1}}-u_{n_{1}} \sum_{s=n_{1}}^{n-1} \frac{1}{a_{s}} \prod_{t=n_{1}}^{s-1}\left(1-\frac{p_{t}}{a_{t}}\right)
$$

However condition (8) leads to $z_{n} \rightarrow-\infty$ as $n \rightarrow \infty$, a contradiction. The proof for the case $\left\{x_{n}\right\}$ eventually negative is similar. This completes the proof of the theorem.

Theorem 2. Let $c>1$, k be a negative integer and conditions (7) and (8) hold. If the delay difference equation

$$
\begin{equation*}
\triangle\left(a_{n} \triangle z_{n}\right)+f\left(\frac{c-1}{c^{2}}\right) q_{n} f\left(z_{n+1+k-l}\right)=0 \tag{15}
\end{equation*}
$$

is oscillatory, then equation (1) is almost oscillatory.

Proof. Let $\left\{x_{n}\right\}$ be an eventually positive solution of equation (1). We consider two Cases (I) and (II) as in Theorem 2.

Case (I). Assume that $\Delta x_{n}>0$ eventually. Then as in the proof of Theorem 1, we obtain the inequality (12). Since k is negative and $c>1$, we have from (11) obtained that $x_{n} \geq\left(\frac{c-1}{c^{2}}\right) z_{n+k}$. The rest of the proof is similar to that of Case (I) of Theorem 1. The proof of Case (II) is similar to that of Theorem 1. The proof is now complete.

Next, we establish an easily verifiable condition for the almost oscillation of equation (1).

Theorem 3. Let $0<c<1, a_{n}-p_{n}>0$ for all $n \geq n_{0}$, and condition (8) holds. If

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} q_{n}=\infty \tag{16}
\end{equation*}
$$

then every solution of equation (1) is almost oscillatory.
Proof. Let $\left\{x_{n}\right\}$ be a positive solution of equation (1). We consider two Cases (I) and (II) as in Theorem 1.

Case (I). Assume that $\Delta x_{n}>0$ eventually. Then as in the proof of Theorem 1, we obtain the inequality

$$
\triangle\left(a_{n} \triangle z_{n}\right)+q_{n} f\left((1-c) z_{n+1-l}\right) \leq 0
$$

for all $n \geq n_{1}$. Since $z_{n}>0$ and $\triangle z_{n}>0$, there exists a constant $d>0$ such that $z_{n+1-l} \geq d$ for all $n \geq n_{2} \geq n_{1}+l$. Hence

$$
\triangle\left(a_{n} \triangle z_{n}\right)+q_{n} f(d(1-c)) \leq 0, \quad n \geq n_{2}
$$

Summing the last inequality from n_{2} to n, we obtain

$$
a_{n+1} \triangle z_{n+1} \leq a_{n_{2}} \triangle z_{n_{2}}-f(d(1-c)) \sum_{s=n_{2}}^{n} q_{s}
$$

Now, from (16), it follows that $a_{n} \triangle z_{n} \rightarrow-\infty$ as $n \rightarrow \infty$, a contradiction. The proof of Case (II) is similar to that of Case (II) of Theorem 1. The proof is now complete.

Remark 1. In a similar way, we find that Theorems 1-3 are applicable to neutral difference equation (1) when condition (4) is satisfied. In fact, if $\left\{x_{n}\right\}$ is an eventually positive solution of equation (1), we see that there are no changes in the proof when $\Delta x_{n}>0$ eventually, while for the case when $\triangle x_{n}<0$ eventually, we observe that $\triangle z_{n} \leq \triangle x_{n-k}$ eventually, and the rest of the proof in this case is the same.

Next, we establish oscillation criteria for the neutral difference equation (1) when condition (5) is satisfied.

Theorem 4. Let conditions of Theorem 1 or 2 or 3 be satisfied. Then every solution of equation (1) is almost oscillatory.

Proof. Let $\left\{x_{n}\right\}$ be an eventually positive solution of equation (1). Define z_{n} as in (11), and obtain

$$
\triangle\left(a_{n} \triangle z_{n}\right)+p_{n} \triangle z_{n}+q_{n} f\left(x_{n+1-l}\right)=0 .
$$

Since $\triangle z_{n}>0$ eventually, we have

$$
\triangle\left(a_{n} \triangle z_{n}\right)+q_{n} f\left(x_{n+1-l}\right) \leq 0
$$

eventually. The rest of the proof is similar to that of Theorem 1 or 3 when $0<c<1$ and Theorem 2 when $c>1$. The proof is now complete.

3. Almost Oscillation of Equation (2)

In this section, we consider the neutral difference equation (2) subject to the following conditions:
(i) $g(u)$ is nonincreasing on \mathbb{R}^{+}and nondecreasing on \mathbb{R}^{-};
(ii) for any constant $M>0$, there exists a nonnegative sequence $\alpha(n)$ such that $-f(-M n u) \geq f(M n u) \geq \alpha(M n) f(u)$, for $u>0$ and $n \geq n_{0}$;
(iii) $f(u) g(u) \geq u^{\gamma}$, where γ is a ratio of odd positive integers.

Theorem 5. If $0<c<1, \quad l \geq m>0$, and there exists a constant $\theta, 0<\theta<1$ such that the delay difference equation

$$
\begin{equation*}
\triangle z_{n}+\alpha(\theta n) q_{n} z_{n-m}^{\gamma}=0 \tag{17}
\end{equation*}
$$

is oscillatory, then every solution of equation (2) is almost oscillatory.
Proof. Let $\left\{x_{n}\right\}$ be an eventually positive solution of equation (2). We consider two cases as in Theorem 1.

Case (I). Suppose $\Delta x_{n}>0$ eventually. Define z_{n} as in (11). Then we have

$$
\begin{equation*}
\triangle^{2} z_{n}+q_{n} f\left(x_{n-l}\right) g\left(\triangle x_{n-m}\right)=0 \tag{18}
\end{equation*}
$$

and $\triangle z_{n}>0$ eventually. As in the proof of Theorem 3, we obtain $x_{n} \geq(1-c) z_{n}$ eventually and $\triangle z_{n} \geq \triangle x_{n}$ eventually. From (18), we obtain

$$
\begin{equation*}
\triangle^{2} z_{n}+q_{n} f\left((1-c) z_{n-l}\right) g\left(\triangle z_{n-m}\right) \leq 0 \tag{19}
\end{equation*}
$$

eventually. Since $\triangle^{2} z_{n} \leq 0, \triangle z_{n}>0$ and $z_{n}>0$ eventually, there exists a constant $\beta, 0<\beta<1$ and a sufficiently large $n_{1} \geq n_{0}$ such that $z_{n-l} \geq \beta n \triangle z_{n-l}$ for $n \geq n_{1}$ or $z_{n-l} \geq \beta n \triangle z_{n-m}$ for $n \geq n_{1}$ since $l \geq m$. Thus

$$
\Delta w_{n}+q_{n} f\left(\beta(1-c) n w_{n-m}\right) g\left(w_{n-m}\right) \leq 0
$$

where $w_{n}=\triangle z_{n}$, and hence we find

$$
\triangle w_{n}+q_{n} \alpha(\theta n) f\left(w_{n-m}\right) g\left(w_{n-m}\right) \leq 0
$$

or

$$
\triangle w_{n}+q_{n} \alpha(\theta n) w_{n-m}^{\gamma} \leq 0, \quad n \geq n_{1}
$$

where $\theta=\beta(1-c)$. But, in view of Lemma 1 of [9], we see that from the last inequality that the equation

$$
\triangle w_{n}+q_{n} \alpha(\theta n) w_{n-m}^{\gamma}=0
$$

has an eventually positive solution, which is a contradiction.
Case (II). Suppose $\triangle x_{n}<0$ eventually. Then $\triangle z_{n}<0$, which contradicts $\triangle z_{n}>0$ eventually. This completes the proof of the theorem.

Next, we assume $c>1$ and k is a negative integer in equation (2). Then we have the following result.

Theorem 6. If $c>1, k$ is a negative integer with $l-k \geq m$, and for every constant $\theta>0$, equation (18) is oscillatory, then every solution of equation (2) is almost oscillatory.

Proof. Let $\left\{x_{n}\right\}$ be an eventually positive solution of equation (2). Proceeding as in Theorem 5, we obtain (18) and $\triangle z_{n}>0$ eventually, and conclude that Case (II), that is, $\triangle z_{n}<0$ eventually is impossible. Next, from (11), we find $x_{n} \geq$ $\left(\frac{c-1}{c^{2}}\right) \triangle z_{n+k}$ and $\triangle z_{n} \geq \triangle x_{n}$ eventually. The rest of the proof is similar to that of Theorem 5 and hence the details are omitted.

Remark 2. For the oscillatory behavior of equation (17) one can refer [1, 9], and the references cited therein.

4. Examples

In this section, we present some examples to illustrate the results
Example 1. Consider the neutral difference equation

$$
\begin{equation*}
\triangle^{2}\left(x_{n}+\frac{1}{2} x_{n-1}\right)+\frac{1}{n} x_{n}+\frac{2}{(n+1)^{2}(n+3)} x_{n+1}=0, \quad n \geq 2 . \tag{20}
\end{equation*}
$$

It is easy to check that all the hypotheses of Theorem 1 (Theorem 3) are satisfied except (condition (16)) that on the oscillatory behavior of the equation

$$
\begin{equation*}
\triangle^{2} z_{n}+\frac{2}{(n+1)^{2}(n+3)} z_{n+1}=0, \quad n \geq 2 \tag{21}
\end{equation*}
$$

Equation (21) has a nonoscillatory solution $\left\{x_{n}\right\}=\left\{\frac{n}{n+1}\right\}$.
Example 2. The neutral difference equation

$$
\begin{equation*}
\triangle^{2}\left(x_{n}+2 x_{n+1}\right)+\frac{2}{n+2} \triangle x_{n}+\frac{4}{n(n+2)(n+3)} x_{n+1}=0, \quad n \geq 1 \tag{22}
\end{equation*}
$$

has a nonoscillatory solution $\left\{x_{n}\right\}=\left\{\frac{1}{n}\right\}$. All conditions of Theorem 2 are satisfied
except that the oscillatory behavior of the equation

$$
\begin{equation*}
\triangle^{2} z_{n}+\frac{1}{n(n+2)(n+3)} z_{n}=0, \quad n \geq 1 \tag{23}
\end{equation*}
$$

Example 3. Consider the neutral difference equation

$$
\begin{equation*}
\triangle^{2}\left(x_{n}+\frac{1}{2} x_{n-k}\right)+q_{n} x_{n-l} \exp \left(x_{n-l}^{2}-\left(\triangle x_{n-l}\right)^{2}\right)=0, \quad n \geq n_{0} \tag{24}
\end{equation*}
$$

where k and l are nonnegative integers and $\left\{q_{n}\right\}$ is a nonnegative real sequence for all $n \geq n_{0}$. Here we take $f(u)=u e^{u^{2}}$ and $g(u)=e^{-u^{2}}$. Now, for every θ, $0<\theta<1$ and all large $n>\frac{1}{\theta}$, we have

$$
\begin{equation*}
f(n \theta u)=\theta n u e^{\theta^{2} n^{2} u^{2}} \geq \theta n u e^{u^{2}}, \quad \alpha(\theta n)=\theta n \tag{25}
\end{equation*}
$$

and $f(u) g(u)=u$. Thus all the conditions of Theorem 4 are satisfied if the equation

$$
\begin{equation*}
\Delta z_{n}+\theta n q_{n} z_{n-l}=0 \tag{26}
\end{equation*}
$$

is oscillatory, that is, if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \inf \sum_{s=n-l}^{n-1} s q_{s}>\frac{1}{\theta}\left(\frac{l}{l+1}\right)^{l+1} \tag{27}
\end{equation*}
$$

(see [1]), and hence we conclude that all solutions of equation (22) are almost oscillatory.

Example 4. Consider the neutral difference equation

$$
\begin{equation*}
\triangle^{2}\left(x_{n}+c x_{n-k}\right)+q_{n} x_{n-l-k}^{\gamma}\left(\frac{1+x_{n-l-k}^{2}}{1+\left(\triangle x_{n-l}\right)^{2}}\right)=0 \tag{28}
\end{equation*}
$$

where $0<c<1, k, l$ are nonnegative integers, γ is a ratio of odd positive integers, and $\left\{q_{n}\right\}$ is a nonnegative real sequence. Here we take $f(u)=u^{\gamma}\left(1+u^{2}\right)$ and $g(u)=\frac{1}{1+u^{2}}$. Now for every constant $M>0$ and all large $n>\frac{1}{M}$, we observe that

$$
\begin{equation*}
f(M n u) \geq(M n)^{\gamma} u^{\gamma}\left(1+u^{2}\right), \quad \alpha(M n)=(M n)^{\gamma} \tag{29}
\end{equation*}
$$

and hence $f(u) g(u)=u^{\gamma}$. It is easy to check that all conditions of Theorem 4 are satisfied provided the equation

$$
\begin{equation*}
\triangle z_{n}+(M n)^{\gamma} q_{n} z_{n-l}^{\gamma}=0 \tag{30}
\end{equation*}
$$

is oscillatory, then we can conclude that all solutions of equation (28) are almost oscillatory. Clearly, equation (30) is oscillatory if

$$
\sum_{n=n_{0}}^{\infty} n^{\gamma} q_{n}=\infty, \quad 0<\gamma<1
$$

or

$$
\lim _{n \rightarrow \infty} \inf \sum_{s=n-l}^{n-1} s q_{s}>\frac{1}{M}\left(\frac{l}{l+1}\right)^{l+1}, \quad \gamma=1
$$

or there exists a $\lambda>\frac{1}{l} \log \gamma$ such that

$$
\lim _{n \rightarrow \infty} \inf n^{\gamma} q_{n} \exp \left(-e^{\lambda n}\right)>0, \quad \gamma>1
$$

Remark 3. (1) If we let $c=0$ in Theorem 3, one can easily prove that all solutions of equation (1) are oscillatory (see [10]). Therefore, we conclude that the disruption in the oscillatory property is due to the presence of neutral term.
(2) It would be interesting to obtain results similar to those presented here for the complete oscillation of equations (1) and (2).

References

[1] R. P. Agarwal, M. Bohner, S. R. Grace and D. O. Regan, Discrete Oscillation Theory, Hindawi Publ. Company, New York, 2005.
[2] R. P. Agarwal, M. Bohner, W. S. Cheung and S. R. Grace, Oscillation criteria for first and second order forced difference equations with mixed nonlinearities, Math. Comput. Modelling 45 (2007), 965-973.
[3] R. P. Agarwal and S. R. Grace, Oscillation of higher order difference equations, Appl. Math. Lett. 13 (2000), 81-88.
[4] Cheng Jinfa, Kamanev-type oscillation criteria for delay difference equations, Acta Math. Sci. 27 B (2007), 574-580.
[5] M. Migda and J. Migda, Asymptotic properties of solutions of second order neutral difference equations, Nonlinear Anal. 63 (2005), 789-799.
[6] R. N. Rath, J. G. Dix, B. L. S. Bark and B. Dihudi, Necessary conditions for the solution of second order nonlinear neutral delay difference equations to be oscillatory or tend to zero, Int. J. Math. Sci. 54 (2007), 1-16.
[7] S. H. Saker, New oscillation criteria for second order nonlinear neutral delay difference equations, Appl. Math. Comput. 142 (2003), 99-111.
[8] Sh. Salem and K. R. Raslam, Oscillation of some second order damped difference equations, Int. J. Nonlinear Sci. 5 (2008), 246-254.
[9] X. H. Tang and Yuji Liu, Oscillation for nonlinear delay difference equations, Tamkang J. Math. 32(4) (2001), 275-280.
[10] E. Thandapani, Oscillation theorems for second order damped nonlinear difference equations, Czechoslovak Math. J. 45 (1995), 327-335.
[11] E. Thandapani, K. Mahalingam and J. R. Graef, Oscillatory and asymptotic behavior of second order neutral type difference equations, Int. J. Pure Appl. Math. 6 (2003), 217-230.
[12] E. Thandapani and P. Mohan Kumar, Oscillation and nonoscillation of nonlinear neutral delay difference equations, Tamkang J. Math. 38(4) (2007), 323-333.
[13] P. Wang and M. Wu, Oscillation of certain second order nonlinear damped difference equations with continuous variable, Appl. Math. Lett. 20(6) (2007), 637-644.
[14] G. Zhang and Y. Gao, Positive solutions of higher-order nonlinear difference equations, J. Systems Sci. Math. Sci. 19(2) (1999), 157-161.
[15] G. Zhang, Oscillation for nonlinear neutral difference equations, Appl. Math. E-Notes 2 (2002), 22-24.

