
 

Far East Journal of Mathematical Sciences (FJMS)
Volume 33, Issue 3, 2009, Pages 287-297 
Published Online: June 17, 2009
This paper is available online at http://www.pphmj.com
© 2009 Pushpa Publishing House 

 

 :tionClassificajectSubsMathematic2000 39A10.
 Keywords and phrases: neutral difference equation, oscillation, damping term. 

Received March 17, 2009 

 

OSCILLATION OF SECOND ORDER NEUTRAL 
DIFFERENCE EQUATIONS WITH DAMPING TERM 

E. THANDAPANI∗, K. THANGAVELU and E. CHANDRASEKARAN 

∗Ramanujan Institute for Advanced Study in Mathematics 
University of Madras 
Chennai 600 005, India 

Department of Mathematics 
Presidency College 
Chennai 600 005, India 

Abstract 

In this paper, we establish sufficient conditions for the almost oscillation 
of all solutions of second order neutral difference equations with damping 
term via comparison technique. Examples are provided to illustrate the 
results. 

1. Introduction 

Consider the second order nonlinear neutral delay difference equations with 
damping term of the form 

( )( ) ( ) ( ) ,,0, 01 nnxfqxxpcxxa lnnknnnknnn ≥=+φ++ −+−−   (1) 

and 

( ) ( ) ( ) ,,0 0
2 nnxgxfqcxx mnlnnknn ≥=++ −−−   (2) 

where  is the forward difference operator defined by ,1 nnn xxx −= +  =nx2  
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( ),nx  { }na  is a positive sequence, { }np  and { }nq  are nonnegative real 

sequences, k, l and m are nonnegative integers, c is a real number, ,: 2 RR →φ  f 

and RR →:g  are continuous with f is nondecreasing and ( ) 0>uuf  and 

( ) 0>ug  for .0≠u  

Let { }.,max lk=θ  By a solution of equation (1), we mean a real sequence 

{ }nx  defined for all θ−≥ 0nn  and satisfies equation (1) for all .0nn ≥  The 

solution of equation (2) can be defined similarly. A nontrivial solution { }nx  of 

equation (1) or (2) is said to be oscillatory if it is neither eventually positive nor 
eventually negative and nonoscillatory otherwise. It is said to be almost oscillatory if 
{ }nx  is oscillatory or { }nx  is oscillatory for all .0nn ≥  

The oscillation, nonoscillation and asymptotic behaviors of solutions of 
equation (1) or (2) when either 0=c  and 0=m  or 0=np  have been considered 

by many authors, see for example [1-8, 10-13, 15], and the references cited therein. 
Following this trend, in this paper, we establish sufficient conditions for the almost 
oscillation of all solutions of equations (1) and (2). 

The plan of the paper is as follows. In Section 2, we present sufficient 
conditions for the almost oscillation of equation (1) and in Section 3, we establish 
similar results for equation (2). Examples are provided in Section 4 to illustrate the 
results. 

2. Almost Oscillation of Equation (1) 

In this section, we establish sufficient conditions for the almost oscillation of 
equation (1) when the function φ satisfies anyone of the following conditions: 

 ( ) ,,, 0nnxxx nknn ≥=φ −   (3) 

or 

 ( ) ,,, 0nnxxx knknn ≥=φ −−   (4) 

or 

 ( ) .,, 0nnxcxxx knnknn ≥+=φ −−   (5) 

We begin with the following theorem. 
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Theorem 1. With respect to difference equation (1) assume condition (3) holds. 
Further assume that 

,10 << c  (6) 

( ) ( ) ( ) ( )yfxfxyfxyf ≥≥−  for ,0>xy  (7) 

∑ ∏
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=
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=

∞=⎟
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⎛ −

0 0
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.11

nn

n

ns s
s

n a
p

a  (8) 

If the delay difference equation 

 ( ) ( ) ( ) 01 ,01 nnzfcfqza lnnnn ≥=−+ −+  (9) 

is oscillatory, then all solutions of equation (1) are almost oscillatory. 

Proof. Let { }nx  be an eventually positive solution of equation (1), say ,0>nx  

0>−knx  and 0>−lnx  for all .01 nnn ≥≥  There are two possibilities to consider: 

(I) 0>nx  eventually, and (II) 0<nx  eventually. 

Case (I). Assume that 0>nx  eventually. Then equation (1) leads to 

 ( )( ) ( ) .01 ≤++ −+− lnnknnn xfqcxxa   (10) 

Set 

 .knnn cxxz −+=  (11) 

Then inequality (10) takes the form 

 ( ) ( ) 01 ≤+ −+ lnnnn xfqza   (12) 

eventually, and clearly 0>nz  eventually. From (11), we have 

 ( ) .1 nn zcx −≥  (13) 

Using (13) in (12) and then applying condition (7), we obtain 

( ) ( ) ( ) 01 1 ≤−+ −+ cnnnn zfcfqza   

eventually. But in view of a result in [14], it follows from the last inequality that 
equation (9) has an eventually positive solution, which is a contradiction. 
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Case (II). Assume that 0<nx  eventually. Then from equation (1), we have 

( ) ( )lnnnnnn xfqxpza −+−=+ 1  

or 

 ( ) .,0 01 lnnnxpza nnnn +≥≥<+   (14) 

Since ,knnn xcxz −+=   we have 0<< nn xz   and from (14), we obtain 

( ) .,0 1nnzpza nnnn ≥<+   

Let .nnn zau −=  Then we have 

.,0 1nnua
pu n

n
n

n ≥≥+  

Summing the last inequality from 1n  to ,1−n  we have 
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Again summing the last inequality from 1n  to ,1−n  we have 
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However condition (8) leads to ∞−→nz  as ,∞→n  a contradiction. The proof 

for the case { }nx  eventually negative is similar. This completes the proof of the 

theorem. 

Theorem 2. Let ,1>c  k be a negative integer and conditions (7) and (8) hold. 
If the delay difference equation 

 ( ) ( ) 01
12 =⎟

⎠
⎞

⎜
⎝
⎛ −+ −++ lknnnn zfq

c
cfza   (15) 

is oscillatory, then equation (1) is almost oscillatory. 
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Proof. Let { }nx  be an eventually positive solution of equation (1). We consider 

two Cases (I) and (II) as in Theorem 2. 

Case (I). Assume that 0>nx  eventually. Then as in the proof of Theorem 1, 

we obtain the inequality (12). Since k is negative and ,1>c  we have from (11) 

obtained that .1
2 knn z

c
cx +⎟

⎠
⎞

⎜
⎝
⎛ −≥  The rest of the proof is similar to that of Case (I) 

of Theorem 1. The proof of Case (II) is similar to that of Theorem 1. The proof is 
now complete. 

Next, we establish an easily verifiable condition for the almost oscillation of 
equation (1). 

Theorem 3. Let ,10 << c  0>− nn pa  for all ,0nn ≥  and condition (8) 
holds. If 

 ,
0

∑
∞

=

∞=
nn

nq  (16) 

then every solution of equation (1) is almost oscillatory. 

Proof. Let { }nx  be a positive solution of equation (1). We consider two Cases 

(I) and (II) as in Theorem 1. 

Case (I). Assume that 0>nx  eventually. Then as in the proof of Theorem 1, 

we obtain the inequality 

( ) ( )( ) 01 1 ≤−+ −+ lnnnn zcfqza   

for all .1nn ≥  Since 0>nz  and ,0>nz  there exists a constant 0>d  such that 

dz ln ≥−+1  for all .12 lnnn +≥≥  Hence 

( ) ( )( ) .,01 2nncdfqza nnn ≥≤−+  

Summing the last inequality from 2n  to n, we obtain 

( )( )∑
=

++ −−≤
n

ns
snnnn qcdfzaza

2
22 .111   

Now, from (16), it follows that ∞−→nn za   as ,∞→n  a contradiction. The 

proof of Case (II) is similar to that of Case (II) of Theorem 1. The proof is now 
complete. 
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Remark 1. In a similar way, we find that Theorems 1-3 are applicable to neutral 
difference equation (1) when condition (4) is satisfied. In fact, if { }nx  is an 

eventually positive solution of equation (1), we see that there are no changes in the 
proof when 0>nx  eventually, while for the case when 0<nx  eventually, we 

observe that knn xz −≤   eventually, and the rest of the proof in this case is the 

same. 

Next, we establish oscillation criteria for the neutral difference equation (1) 
when condition (5) is satisfied. 

Theorem 4. Let conditions of Theorem 1 or 2 or 3 be satisfied. Then every 
solution of equation (1) is almost oscillatory. 

Proof. Let { }nx  be an eventually positive solution of equation (1). Define nz  

as in (11), and obtain 

( ) ( ) .01 =++ −+ lnnnnnn xfqzpza   

Since 0>nz  eventually, we have 

( ) ( ) 01 ≤+ −+ lnnnn xfqza   

eventually. The rest of the proof is similar to that of Theorem 1 or 3 when 10 << c  
and Theorem 2 when .1>c  The proof is now complete. 

3. Almost Oscillation of Equation (2) 

In this section, we consider the neutral difference equation (2) subject to the 
following conditions: 

  (i) ( )ug  is nonincreasing on +R  and nondecreasing on ;−R  

 (ii) for any constant ,0>M  there exists a nonnegative sequence ( )nα  such 

that ( ) ( ) ( ) ( ),ufMnMnufMnuf α≥≥−−  for 0>u  and ;0nn ≥  

(iii) ( ) ( ) ,γ≥ uuguf  where γ is a ratio of odd positive integers. 

Theorem 5. If ,10 << c  ,0>≥ ml  and there exists a constant θ, 10 <θ<  

such that the delay difference equation 
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 ( ) 0=θα+ γ
−mnnn zqnz  (17) 

is oscillatory, then every solution of equation (2) is almost oscillatory. 

Proof. Let { }nx  be an eventually positive solution of equation (2). We consider 

two cases as in Theorem 1. 

Case (I). Suppose 0>nx  eventually. Define nz  as in (11). Then we have 

 ( ) ( ) 02 =+ −− mnlnnn xgxfqz   (18) 

and 0>nz  eventually. As in the proof of Theorem 3, we obtain ( ) nn zcx −≥ 1  

eventually and nn xz  ≥  eventually. From (18), we obtain 

 ( )( ) ( ) 012 ≤−+ −− mnlnnn zgzcfqz   (19) 

eventually. Since ,02 ≤nz  0>nz  and 0>nz  eventually, there exists a 

constant β, 10 <β<  and a sufficiently large 01 nn ≥  such that lnln znz −− β≥   

for 1nn ≥  or mnln znz −− β≥   for 1nn ≥  since .ml ≥  Thus 

( )( ) ( ) ,01 ≤−β+ −− mnmnnn wgnwcfqw  

where ,nn zw =  and hence we find 

( ) ( ) ( ) 0≤θα+ −− mnmnnn wgwfnqw  

or 

( ) ,,0 1nnwnqw mnnn ≥≤θα+ γ
−  

where ( ).1 c−β=θ  But, in view of Lemma 1 of [9], we see that from the last 

inequality that the equation 

( ) ,0=θα+ γ
−mnnn wnqw  

has an eventually positive solution, which is a contradiction. 

Case (II). Suppose 0<nx  eventually. Then ,0<nz  which contradicts 

0>nz  eventually. This completes the proof of the theorem. 
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Next, we assume 1>c  and k is a negative integer in equation (2). Then we 
have the following result. 

Theorem 6. If ,1>c  k is a negative integer with ,mkl ≥−  and for every 
constant ,0>θ  equation (18) is oscillatory, then every solution of equation (2) is 
almost oscillatory. 

Proof. Let { }nx  be an eventually positive solution of equation (2). Proceeding 

as in Theorem 5, we obtain (18) and 0>nz  eventually, and conclude that Case 

(II), that is, 0<nz  eventually is impossible. Next, from (11), we find ≥nx  

knz
c

c
+⎟

⎠
⎞

⎜
⎝
⎛ −

2
1  and nn xz  ≥  eventually. The rest of the proof is similar to that 

of Theorem 5 and hence the details are omitted. 

Remark 2. For the oscillatory behavior of equation (17) one can refer [1, 9], 
and the references cited therein. 

4. Examples 

In this section, we present some examples to illustrate the results 

Example 1. Consider the neutral difference equation 

 
( ) ( )

.2,0
31

21
2
1

121
2 ≥=

++
++⎟

⎠
⎞⎜

⎝
⎛ + +− nx

nn
xnxx nnnn  (20) 

It is easy to check that all the hypotheses of Theorem 1 (Theorem 3) are satisfied 
except (condition (16)) that on the oscillatory behavior of the equation 

 
( ) ( )

.2,0
31

2
12

2 ≥=
++

+ + nz
nn

z nn  (21) 

Equation (21) has a nonoscillatory solution { } .1⎭⎬
⎫

⎩⎨
⎧

+
= n

nxn  

Example 2. The neutral difference equation 

 ( ) ( ) ( ) 1,032
4

2
22 11

2 ≥=
++

+
+

++ ++ nxnnnxnxx nnnn   (22) 

has a nonoscillatory solution { } .1
⎭⎬
⎫

⎩⎨
⎧= nxn  All conditions of Theorem 2 are satisfied 
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except that the oscillatory behavior of the equation 

 ( ) ( ) .1,032
12 ≥=

++
+ nznnnz nn  (23) 

Example 3. Consider the neutral difference equation 

 ( ( ) ) ,,0exp2
1

0
222 nnxxxqxx lnlnlnnknn ≥=−+⎟

⎠
⎞⎜

⎝
⎛ + −−−−   (24) 

where k and l are nonnegative integers and { }nq  is a nonnegative real sequence for 

all .0nn ≥  Here we take ( )
2uueuf =  and ( ) .

2ueug −=  Now, for every θ, 

10 <θ<  and all large ,1
θ

>n  we have 

 ( ) ( ) nnnuenueunf uun θ=θαθ≥θ=θ θ ,
2222

 (25) 

and ( ) ( ) .uuguf =  Thus all the conditions of Theorem 4 are satisfied if the equation 

 0=θ+ −lnnn znqz  (26) 

is oscillatory, that is, if 

 ∑
−

−=

+

∞→
⎟
⎠
⎞⎜

⎝
⎛

+θ
>

1 1

1
1inflim

n

lns

l
sn l

lsq  (27) 

(see [1]), and hence we conclude that all solutions of equation (22) are almost 
oscillatory. 

Example 4. Consider the neutral difference equation 

 ( )
( )

,0
1

1
2

2
2 =⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

+
++

−

−−γ
−−−

ln

kln
klnnknn

x
xxqcxx


  (28) 

where ,10 << c  k, l are nonnegative integers, γ is a ratio of odd positive integers, 

and { }nq  is a nonnegative real sequence. Here we take ( ) ( )21 uuuf += γ  and 

( ) .
1

1
2u

ug
+

=  Now for every constant 0>M  and all large ,1
M

n >  we observe 

that 

 ( ) ( ) ( ) ( ) ( )γγγ =α+≥ MnMnuuMnMnuf ,1 2  (29) 
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and hence ( ) ( ) .γ= uuguf  It is easy to check that all conditions of Theorem 4 are 

satisfied provided the equation 

 ( ) 0=+ γ
−

γ
lnnn zqMnz  (30) 

is oscillatory, then we can conclude that all solutions of equation (28) are almost 
oscillatory. Clearly, equation (30) is oscillatory if 

∑
∞

=

γ <γ<∞=
0

10,
nn

nqn  

or 

∑
−

−=

+

∞→
=γ⎟

⎠
⎞⎜

⎝
⎛

+
>

1 1
,1,1

1inflim
n

lns

l
sn l

l
Msq  

or there exists a γ>λ log1
l  such that 

( ) .1,0expinflim >γ>− λγ
∞→

n
nn

eqn  

Remark 3. (1) If we let 0=c  in Theorem 3, one can easily prove that all 
solutions of equation (1) are oscillatory (see [10]). Therefore, we conclude that the 
disruption in the oscillatory property is due to the presence of neutral term. 

(2) It would be interesting to obtain results similar to those presented here for 
the complete oscillation of equations (1) and (2). 
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