AN INTERMEDIATE VALUE THEOREM FOR SEQUENCES WITH TERMS IN A FINITE SET

MIHAI CARAGIU
Department of Mathematics
Ohio Northern University, U. S. A.
e-mail: m-caragiu1@onu.edu
\section*{LAURENCE D. ROBINSON}
Department of Mathematics
Ohio Northern University, U. S. A.
e-mail: l-robinson.1@onu.edu

Abstract

We prove an intermediate value theorem of an arithmetical flavor involving the consecutive averages $\left\{\bar{x}_{n}\right\}_{n \geq 1}$ of sequences with terms in a given finite set $\left\{a_{1}, \ldots, a_{r}\right\}$. For every such set we completely characterize the numbers Π with the property that the consecutive averages $\left\{\bar{x}_{n}\right\}$ of every sequence $\left\{x_{n}\right\}_{n \geq 1}$ with terms in $\left\{a_{1}, \ldots, a_{r}\right\}$ cannot increase from a value $\bar{x}_{k}<\Pi$ to a value $\bar{x}_{l}>\Pi$ without taking the value $\bar{x}_{s}=\Pi$ for some s with $k<s<l$.

1. Introduction

Let $r \geq 1$ be an integer and let $a_{1}, a_{2}, \ldots, a_{r}$ be real numbers with

$$
a_{1}<a_{2}<\cdots<a_{r} .
$$

2000 Mathematics Subject Classification: 11B99, 26D15, 11K31.
Keywords and phrases: sequences, averages, intermediate values, time series.
Received September 26, 2005

Define

$$
\operatorname{SEQ}\left(a_{1}, \ldots, a_{r}\right)
$$

to be the set of all sequences $\left\{x_{n}\right\}_{n \geq 1}$ such that $x_{n} \in\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$ for all $n \geq 1$. For example, $\operatorname{SEQ}(0,1)$ is the set of all binary sequences.

To each sequence $\left\{x_{n}\right\}_{n \geq 1}$ we associate the sequence of consecutive averages $\left\{\bar{x}_{n}\right\}_{n \geq 1}$ defined by

$$
\bar{x}_{n}=\frac{x_{1}+\cdots+x_{n}}{n} .
$$

Clearly, if $\left\{x_{n}\right\}_{n \geq 1} \in \operatorname{SEQ}\left(a_{1}, \ldots, a_{r}\right)$, then

$$
a_{1} \leq \bar{x}_{n} \leq a_{r}
$$

for all $n \geq 1$.
We are now in a position to define the sets which will be studied in the current article.

Definition. For $a_{1}<a_{2}<\cdots<a_{r}$ let us define

$$
I V\left(a_{1}, \ldots, a_{r}\right)
$$

to be the set of all numbers $\Pi \in\left(a_{1}, a_{r}\right)$ with the following "intermediate value property": if $\left\{x_{n}\right\}_{n \geq 1} \in \operatorname{SEQ}\left(a_{1}, \ldots, a_{r}\right)$ and if $\bar{x}_{k}<\Pi<\bar{x}_{l}$ for some integers $k<l$, then there exists an integer s with $k<s<l$ such that $\bar{x}_{s}=\Pi$.

A Putnam Exam problem [1] asks whether $\frac{4}{5}$ is in $I V(0,1)$. Indeed the answer turns out to be affirmative. More generally, we can make the following statement:

Theorem 1. $I V(0,1)=\left\{\frac{k}{k+1}: k \geq 1\right\} \subset(0,1)$.
In the present paper we will fully generalize the above Theorem 1 , providing a complete description of all "sets of intermediate values" $I V\left(a_{1}, \ldots, a_{r}\right)$. In particular we will determine necessary and sufficient conditions under which $I V\left(a_{1}, \ldots, a_{r}\right) \neq \varnothing$.

Note. By definition, the numbers $\Pi \in I V\left(a_{1}, \ldots, a_{r}\right)$ are precisely those which cannot be "skipped" or "jumped over" by increasing averages. In the last section we will discuss the case of intermediate values which cannot be skipped by decreasing averages. This being said, in the next three sections, the term "skipped" will signify "skipped" by averages going up (e.g., $\Pi=0.7$ being skipped at the step between the third and the fourth averages of the sequence $0,1,1,1, \ldots$).

2. Case of Binary Sequences

To prove Theorem 1, we first show that

$$
I V(0,1) \subseteq\left\{\frac{k}{k+1}: k \geq 1\right\}
$$

Indeed, if

$$
\Pi \in\left(0, \frac{1}{2}\right) \cup\left(\frac{1}{2}, \frac{2}{3}\right) \cup\left(\frac{2}{3}, \frac{3}{4}\right) \cup\left(\frac{3}{4}, \frac{4}{5}\right) \cup \cdots,
$$

then the consecutive averages of the sequence

$$
0,1,1,1,1, \ldots
$$

will skip Π.
We now prove the reverse inclusion, namely,

$$
\left\{\frac{k}{k+1}: k \geq 1\right\} \subseteq I V(0,1)
$$

That is, we prove that if $\Pi=\frac{k}{k+1}, k \geq 1$, then Π cannot be skipped by a sequence of consecutive averages $\left\{\bar{x}_{n}\right\}_{n \geq 1}$. We will proceed by contradiction. Assuming $\left\{\bar{x}_{n}\right\}_{n \geq 1}$ skips $\Pi=\frac{k}{k+1}$ it follows that

$$
\begin{equation*}
\bar{x}_{n}<\frac{k}{k+1}<\bar{x}_{n+1} \tag{1}
\end{equation*}
$$

for some $n \geq 1$. First note that x_{n+1} must be 1 , because if $x_{n+1}=0$, then the average \bar{x}_{n+1} cannot be larger than \bar{x}_{n}. Thus, if we denote $S=x_{1}+\cdots+x_{n}$, then (1) can be rewritten as follows:

$$
\begin{equation*}
\frac{S}{n}<\frac{k}{k+1}<\frac{S+1}{n+1} . \tag{2}
\end{equation*}
$$

By cross-multiplication (2) is equivalent with the system of the following two inequalities:

$$
\begin{equation*}
(k+1) S<n k \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
(n+1) k<(k+1)(S+1) \tag{4}
\end{equation*}
$$

From (3) and (4) it follows that

$$
n k-1<(k+1) S<n k
$$

which is impossible, as all three terms are integers, and as there can be no integer falling between consecutive integers. This concludes the proof of Theorem 1.

From Theorem 1, a simple linearity argument leads us to the following result.

Theorem 2. If $a<b$, then

$$
I V(a, b)=\left\{\frac{1}{k+1} a+\frac{k}{k+1} b: k \geq 1\right\}
$$

In the next two sections we will consider sequences with terms in a set with three elements.

3. Case of Ternary Sequences

Let $0<\mu<1$. In order to find $I V(0, \mu, 1)$ we distinguish between the case of an irrational μ and the case of a rational μ. The easier case is the case of an irrational μ. Then there are no intermediate values for the consecutive averages of sequences with terms in the set $\{0, \mu, 1\}$. In other words:

Theorem 3. If $0<\mu<1$ is irrational, then $\operatorname{IV}(0, \mu, 1)=\varnothing$.
Proof. We already know that every $\Pi \in(0,1)$ that is not of the form $\frac{k}{k+1}$ can be skipped by the averages of some sequence in $\operatorname{SEQ}(0,1) \subset$ $S E Q(0, \mu, 1)$. It will be enough to show that if μ is irrational, then every
$\Pi \in(0,1)$ that is of the form $\frac{k}{k+1}$ can be skipped by the averages of some sequence in $\operatorname{SEQ}(0, \mu, 1)$. Indeed, every $\Pi=\frac{k}{k+1}<\mu$ will be skipped by the consecutive averages of the sequence

$$
0, \mu, \mu, \mu, \ldots
$$

(the averages form an increasing sequence of irrationals with limit μ), while every $\Pi=\frac{k}{k+1}>\mu$ will be skipped by the consecutive averages of the sequence

$$
\mu, 1,1,1, \ldots
$$

(here, the averages form an increasing sequence of irrationals with limit 1). This concludes the proof of Theorem 3.

Next, we consider the case $0<\mu=\frac{p}{q}<1$ with p, q relatively prime positive integers. Again, every $\Pi \in(0,1)$ that is not of the form $\frac{k}{k+1}$ can be skipped, so the question we have to answer is which numbers of the form $\Pi=\frac{k}{k+1}$ can be skipped by the consecutive averages of some sequence in $\operatorname{SEQ}\left(0, \frac{p}{q}, 1\right)$.

First note that the sequence

$$
x_{1}=\frac{p}{q}, x_{2}=x_{3}=\cdots=1
$$

has consecutive averages of the form

$$
\begin{equation*}
\frac{\frac{p}{q}+l}{l+1}=\frac{p+q l}{q+q l} \tag{5}
\end{equation*}
$$

where $l=0,1,2, \ldots$. Then every $\Pi=\frac{k}{k+1}>\frac{p}{q}$ that is not of the form $\frac{p+q l}{q+q l}$ can be skipped by the sequence of increasing averages (5), so it
cannot be in $\operatorname{IV}\left(0, \frac{p}{q}, 1\right)$. We will have to determine when a fraction $\frac{p+q l}{q+q l}$ is of the form $\frac{k}{k+1}$. The equality

$$
\frac{p+q l}{q+q l}=\frac{k}{k+1}
$$

can be rewritten in the following equivalent form:

$$
\begin{equation*}
p(k+1)=q(k-l) . \tag{6}
\end{equation*}
$$

From (6), keeping in mind that p, q are relatively prime, we get

$$
k+1=q t,
$$

and

$$
k-l=p t
$$

for some integer t. In this case, $\frac{k}{k+1}$ is of the form $\frac{q t-1}{q t}=1-\frac{1}{q t}$. As a consequence, if a $\Pi=\frac{k}{k+1}>\frac{p}{q}$ is in the set of intermediate values $\operatorname{IV}\left(0, \frac{p}{q}, 1\right)$, then q divides $k+1$.

We will now prove that there is no Π in $\operatorname{IV}\left(0, \frac{p}{q}, 1\right)$ that is of the form $\frac{k}{k+1}$ and is less than $\frac{p}{q}$. First, notice that if $\frac{p}{q}<\frac{1}{2}$, then there is nothing to prove $\left(\right.$ in $(0,1)$ there is no number of the form $\frac{k}{k+1}$ that is less than $\frac{1}{2}$), so we may assume $\frac{p}{q}>\frac{1}{2}$.

Consider the sequence

$$
\begin{equation*}
x_{1}=0, x_{2}=x_{3}=\cdots=\frac{p}{q} . \tag{7}
\end{equation*}
$$

The averages of the sequence (7) are increasing, they approach $\frac{p}{q}$ and are of the form

$$
\frac{p l}{q(l+1)}, \quad l \geq 0
$$

If $\Pi=\frac{k}{k+1}<\frac{p}{q}$ is not of the form $\frac{p l}{q(l+1)}$, then Π will be skipped by the increasing averages of the sequence (7). Thus we only need to consider the case in which

$$
\frac{k}{k+1}=\frac{p l}{q(l+1)},
$$

that is,

$$
\begin{equation*}
\frac{p}{q}=\frac{k(l+1)}{l(k+1)} . \tag{8}
\end{equation*}
$$

Note that in (8) we have $k<l$, since $\frac{p}{q}<1$. We will prove that under the above conditions $\frac{k}{k+1}$ can be skipped by the successive averages of a sequence $\left\{x_{i}\right\}_{i \geq 1}$ in $\operatorname{SEQ}\left(0, \frac{p}{q}, 1\right)$. Assume that the n-th average is the average of u zeros, $v \frac{p}{q}$, s and w ones (in particular, $u+v+w=n$). Without loss of generality we assume that $x_{n+1}=1$. Keeping in mind (8) we need to show that there exist positive integers u, v, w such that

$$
\begin{equation*}
\frac{v \frac{k(l+1)}{l(k+1)}+w}{n}<\frac{k}{k+1}<\frac{v \frac{k(l+1)}{l(k+1)}+w+1}{n+1} . \tag{9}
\end{equation*}
$$

Note that (9) can be rewritten as follows:

$$
\begin{equation*}
\frac{v k(l+1)+w l(k+1)}{n}<k l<\frac{v k(l+1)+w l(k+1)+l(k+1)}{n+1} . \tag{10}
\end{equation*}
$$

Using $n=u+v+w$ it turns out that (10) is equivalent to

$$
\begin{equation*}
0<u k l-v k-w l<l . \tag{11}
\end{equation*}
$$

Since the sufficiently large elements in the additive semigroup generated by k and l consist of all multiples of the $\operatorname{gcd}(k, l) \leq k<l$ larger than a certain value [2, p. 219, Problem 16], it turns out that it is possible to pick up positive integers u, v, w such that (11) holds true.

Up to this point we know that every $\Pi \in(0,1)$ that is not of the form $1-\frac{1}{q t}$ can be skipped by the consecutive averages of some sequence in $S E Q\left(0, \frac{p}{q}, 1\right)$, in other words,

$$
\begin{equation*}
I V\left(0, \frac{p}{q}, 1\right) \subseteq\left\{1-\frac{1}{q t}: t \geq 1\right\} \tag{12}
\end{equation*}
$$

The reverse inclusion

$$
\begin{equation*}
\left\{1-\frac{1}{q t}: t \geq 1\right\} \subseteq I V\left(0, \frac{p}{q}, 1\right) \tag{13}
\end{equation*}
$$

will be proved by contradiction. Assume that $\frac{q t-1}{q t}$ can be skipped by the consecutive averages of some sequence in $\operatorname{SEQ}\left(0, \frac{p}{q}, 1\right)$. Without loss of generality we may assume that $\frac{q t-1}{q t}$ is in between the average

$$
\bar{x}_{n}=\frac{x_{1}+\cdots+x_{n}}{n}
$$

with u of the x_{1}, \ldots, x_{n} being zeros, v being $\frac{p}{q}$ and w being ones $(u+v$ $+w=n)$ and the average

$$
\bar{x}_{n+1}=\frac{x_{1}+\cdots+x_{n}+1}{n+1}
$$

with u of the x_{1}, \ldots, x_{n} being zeros, v being $\frac{p}{q}$ and $w+1$ being ones $\left(x_{n+1}=1\right)$:

$$
\begin{equation*}
\frac{v \frac{p}{q}+w}{n}<\frac{q t-1}{q t}<\frac{v \frac{p}{q}+w+1}{n+1} \tag{14}
\end{equation*}
$$

Equivalently, (14) can be rewritten as follows:

$$
\begin{equation*}
\frac{p v+q w}{n}<\frac{q t-1}{t}<\frac{p v+q w}{n+1} \tag{15}
\end{equation*}
$$

which is equivalent with the system consisting of the following two inequalities:

$$
\begin{equation*}
p v t<q u t+q v t-n, \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
q u t+q v t-n-1<p v t . \tag{17}
\end{equation*}
$$

From (16) and (17) it follows

$$
p v t<q u t+q v t-n<p v t+1,
$$

which is again a contradiction (an integer in between two consecutive integers). This concludes the proof of the reverse inclusion (13). From (12) and (13) we get

Theorem 4. If $0<\frac{p}{q}<1$ with p, q relatively prime positive integers, then

$$
\operatorname{IV}\left(0, \frac{p}{q}, 1\right)=\left\{1-\frac{1}{q t}: t=1,2,3, \ldots\right\} .
$$

A straightforward linearity argument based on the previous two theorems leads us to the following intermediate value theorem characterizing all sets $I V(a, b, c)$.

Theorem 5. Let $a<b<c$ and let $\mu:=\frac{b-a}{c-a}$. If μ is irrational, then

$$
I V(a, b, c)=\varnothing .
$$

If $\mu=\frac{p}{q}$ with p, q relatively prime positive integers, then

$$
I V(a, b, c)=\left\{\left(1-\frac{1}{q t}\right) c+\frac{1}{q t} a: t=1,2,3, \ldots\right\} .
$$

4. The General Intermediate Value Theorem

We will now completely characterize the intermediate value sets of the form $I V\left(0, \mu_{1}, \ldots, \mu_{r}, 1\right)$, where $0<\mu_{1}<\cdots<\mu_{r}<1$. First, notice that we can formulate right away the following result.

Theorem 6. If μ_{i} is irrational for some $i=1,2, \ldots, r$, then

$$
I V\left(0, \mu_{1}, \ldots, \mu_{r}, 1\right)=\varnothing .
$$

Proof. Follows from Theorem 3, if μ_{i} is rational, then every $\Pi \in(0,1)$ can be skipped by the averages of some sequence in

$$
S E Q\left(0, \mu_{i}, 1\right) \subset S E Q\left(0, \mu_{1}, \ldots, \mu_{r}, 1\right) .
$$

Now let us assume that all μ_{i} 's are rational:

$$
\mu_{i}=\frac{p_{i}}{q_{i}}, i=1, \ldots, r,
$$

with $\operatorname{gcd}\left(p_{i}, q_{i}\right)=1$ for all $i=1, \ldots, r$.
Let M be the least common multiple of the denominators of the reduced fractions $\frac{p_{i}}{q_{i}}, i=1, \ldots, r$. Then we will prove that the following result holds true.

Theorem 7. With the above notations, we have

$$
\begin{equation*}
\operatorname{IV}\left(0, \mu_{1}, \ldots, \mu_{r}, 1\right)=\left\{1-\frac{1}{M t}: t=1,2,3, \ldots\right\} . \tag{18}
\end{equation*}
$$

Proof. Let $i \in\{1,2, \ldots, r\}$. Then from Theorem 4 it follows that for $A \geq 2$, the element

$$
\Pi=1-\frac{1}{A}
$$

will be skipped by the averages of some sequence in $\operatorname{SEQ}\left(0, \frac{p_{i}}{q_{i}}, 1\right) \subset$ $\operatorname{SEQ}\left(0, \mu_{1}, \ldots, \mu_{r}, 1\right)$ as long as q_{i} does not divide A. Thus, if $\Pi=1-\frac{1}{A}$ cannot be skipped by the averages of the sequences in $\operatorname{SEQ}\left(0, \mu_{1}, \ldots, \mu_{r}, 1\right)$, then $q_{1}\left|A, q_{2}\right| A, \ldots, q_{r} \mid A$, that is, $M \mid A$, or

$$
\Pi=1-\frac{1}{M t}
$$

for some $t \geq 1$. Thus we have proved that

$$
\begin{equation*}
I V\left(0, \mu_{1}, \ldots, \mu_{r}, 1\right) \subseteq\left\{1-\frac{1}{M t}: t=1,2,3, \ldots\right\} . \tag{19}
\end{equation*}
$$

To complete the proof we will prove the reverse inclusion. In other words, we will show that if $\Pi \in(0,1)$ is of the form $\frac{M t-1}{M t}$, then Π cannot be skipped by the consecutive averages of any sequence in $\operatorname{SEQ}\left(0, \mu_{1}, \ldots\right.$, $\left.\mu_{r}, 1\right)$. We proceed by contradiction.

Assume that $\frac{M t-1}{M t}$ can be skipped by the consecutive averages of some sequence in $\operatorname{SEQ}\left(0, \mu_{1}, \ldots, \mu_{r}, 1\right)$. Without loss of generality we may assume that $\frac{M t-1}{M t}$ is in between the average

$$
\bar{x}_{n}=\frac{x_{1}+\cdots+x_{n}}{n}
$$

with u of the x_{1}, \ldots, x_{n} being zeros, v_{1} being $\frac{p_{1}}{q_{1}}, v_{2}$ being $\frac{p_{2}}{q_{2}}, \ldots, v_{r}$ being $\frac{p_{r}}{q_{r}}$ and w being ones $\left(u+v_{1}+\cdots+v_{r}+w=n\right)$, and the average

$$
\bar{x}_{n+1}=\frac{x_{1}+\cdots+x_{n}+1}{n+1}
$$

with u of the x_{1}, \ldots, x_{n+1} being zeros, v_{1} being $\frac{p_{1}}{q_{1}}, v_{2}$ being $\frac{p_{2}}{q_{2}}, \ldots, v_{r}$ being $\frac{p_{r}}{q_{r}}$ and $w+1$ being ones (we took $x_{n+1}=1$ which leads to the greatest possible increase in the average):

$$
\begin{equation*}
\frac{v_{1} \frac{p_{1}}{q_{1}}+\cdots+v_{r} \frac{p_{r}}{q_{r}}+w}{n}<\frac{M t-1}{M t}<\frac{v_{1} \frac{p_{1}}{q_{1}}+\cdots+v_{r} \frac{p_{r}}{q_{r}}+w+1}{n+1} . \tag{20}
\end{equation*}
$$

For every $i=1, \ldots, r$ let us define

$$
Q_{i}:=\frac{\operatorname{lcm}\left(q_{1}, \ldots, q_{r}\right)}{q_{i}}=\frac{M}{q_{i}} .
$$

With this notation, a multiplication of all terms in (20) by M gives

$$
\begin{aligned}
\frac{p_{1} Q_{1} v_{1}+\cdots+p_{r} Q_{r} v_{r}+M w}{n} & <\frac{M t-1}{t} \\
& <\frac{p_{1} Q_{1} v_{1}+\cdots+p_{r} Q_{r} v_{r}+M w+M}{n+1}
\end{aligned}
$$

which, by cross-multiplication turns out to be equivalent to the following system of inequalities:

$$
\begin{equation*}
p_{1} Q_{1} v_{1} t+\cdots+p_{r} Q_{r} v_{r} t+M w t<M n t-n \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
M n t+M t-n-1<p_{1} Q_{1} v_{1} t+\cdots+p_{r} Q_{r} v_{r} t+M w t+M t \tag{22}
\end{equation*}
$$

Finally, from (21) and (22) it follows that

$$
\begin{aligned}
p_{1} Q_{1} v_{1} t+\cdots+p_{r} Q_{r} v_{r} t+M w t & <M n t-n \\
& <p_{1} Q_{1} v_{1} t+\cdots+p_{r} Q_{r} v_{r} t+M w t+1
\end{aligned}
$$

which is, again, a contradiction (there is no integer in between two consecutive integers). This shows that (19) is true. From (18) and (19), Theorem 7 follows.

From the above result, a linearity argument leads us to the following arithmetic intermediate value theorem.

Theorem 8. Let $a_{1}<a_{2}<\cdots<a_{r}(r \geq 3)$. For $i=2, \ldots, r-1$, let

$$
\mu_{i}:=\frac{a_{i}-a_{1}}{a_{r}-a_{1}} .
$$

Then the following hold true:
(a) If for some $i=2, \ldots, r-1$ the number μ_{i} is irrational, then $I V\left(a_{1}, \ldots, a_{r}\right)=\varnothing$.
(b) If $\mu_{2}, \ldots, \mu_{r-1}$ are all rational numbers, $\mu_{i}=\frac{p_{i}}{q_{i}}$, with $\operatorname{gcd}\left(p_{i}, q_{i}\right)$
$=1$ for $i=2, \ldots, r-1$ and $M=\operatorname{lcm}\left(q_{2}, \ldots, q_{r-1}\right)$, then

$$
I V\left(a_{1}, \ldots, a_{r}\right)=\left\{\frac{1}{M t} a_{1}+\left(1-\frac{1}{M t}\right) a_{r}: t=1,2,3, \ldots\right\}
$$

5. Further Comments

Note that for $a_{1}<a_{2}<\cdots<a_{r}$ the sets $I V\left(a_{1}, \ldots, a_{r}\right)$ represent the values Π with the property that the consecutive averages $\left\{\bar{x}_{n}\right\}$ of every sequence $\left\{x_{n}\right\}_{n \geq 1} \in \operatorname{SEQ}\left(a_{1}, \ldots, a_{r}\right)$ cannot increase from a value $\bar{x}_{k}<\Pi$ to a value $\bar{x}_{l}>\Pi$ without taking the value $\bar{x}_{s}=\Pi$ for some s with $k<s<l$. Similarly we can define the sets

$$
D V\left(a_{1}, \ldots, a_{r}\right)
$$

representing the values Π with the property that the consecutive averages $\left\{\bar{x}_{n}\right\}$ of every sequence $\left\{x_{n}\right\}_{n \geq 1} \in \operatorname{SEQ}\left(a_{1}, \ldots, a_{r}\right)$ cannot decrease from a value $\bar{x}_{k}>\Pi$ to a value $\bar{x}_{l}<\Pi$ without taking the value $\bar{x}_{s}=\Pi$ for some s with $k<s<l$.

The connection between the sets $I V\left(a_{1}, \ldots, a_{r}\right)$ and $D V\left(a_{1}, \ldots, a_{r}\right)$ can be expressed in a simple way as follows:

$$
\begin{equation*}
D V\left(a_{1}, \ldots, a_{r}\right)=-I V\left(-a_{r}, \ldots,-a_{1}\right) . \tag{23}
\end{equation*}
$$

The proof of (23) is straightforward if we use the transformation

$$
\begin{equation*}
\left\{x_{n}\right\}_{n \geq 1} \mapsto\left\{-x_{n}\right\}_{n \geq 1} . \tag{24}
\end{equation*}
$$

Clearly, (24) is a one-to-one correspondence between $\operatorname{SEQ}\left(a_{1}, \ldots, a_{r}\right)$ and $\operatorname{SEQ}\left(-a_{r}, \ldots,-a_{1}\right)$. Under this correspondence, the sequence of averages of $\left\{x_{n}\right\}_{n \geq 1}$ skips (going up) $\Pi \in\left(a_{1}, a_{r}\right)$, if and only if the sequence of averages of $\left\{-x_{n}\right\}_{n \geq 1}$ skips (going down) $-\Pi \in\left(-a_{r},-a_{1}\right)$.

We can use (24) to translate Theorems 2 and 8 for decreasing trends. Thus, we obtain the following two results.

Theorem 9. If $a<b$, then

$$
D V(a, b)=\left\{\frac{k}{k+1} a+\frac{1}{k+1} b: k \geq 1\right\} .
$$

Theorem 10. Let $a_{1}<a_{2}<\cdots<a_{r}(r \geq 3)$. For $i=2, \ldots, r-1$, let

$$
\mu_{i}:=\frac{a_{i}-a_{1}}{a_{r}-a_{1}} .
$$

Then the following hold true:
(a) If for some $i=2, \ldots, r-1$ the number μ_{i} is irrational, then $D V\left(a_{1}, \ldots, a_{r}\right)=\varnothing$.
(b) If $\mu_{2}, \ldots, \mu_{r-1}$ are all rational numbers, $\mu_{i}=\frac{p_{i}}{q_{i}}$, with $\operatorname{gcd}\left(p_{i}, q_{i}\right)$ $=1$ for $i=2, \ldots, r-1$ and $M=\operatorname{lcm}\left(q_{2}, \ldots, q_{r-1}\right)$, then

$$
D V\left(a_{1}, \ldots, a_{r}\right)=\left\{\left(1-\frac{1}{M t}\right) a_{1}+\frac{1}{M t} a_{r}: t=1,2,3, \ldots\right\} .
$$

References

[1] 2004 Putnam Exam, Problem A1.
[2] I. Niven, H. S. Zuckerman and H. L. Montgomery, An Introduction to the Theory of Numbers, 5th ed., Wiley, 1991.

