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Abstract

We present two new normality tests for the error of a linear regression
model. The tests are obtained by applying the normality tests in Arcones
and Wang [3] to the residuals obtained using the least squares
estimators. We show that the considered tests are omnibus. We also
obtain the limit distribution of the considered tests under the null
hypothesis. Simulations show that the power of the presented tests is
competitive with common normality tests.

1. Introduction

In this paper, we apply the normality tests in Arcones and Wang [3]

to the linear regression model. We consider the linear regression model:

, . noo- . ,
Y, j=Bx,;+ej, 1<j<n, where {Sj}j=1 is a sequence of i.i.d. r.v.’s

with mean zero; Xp,js 1 < j < n, are p dimensional vectors and p € R? is
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an unknown parameter. x,, j is called the regressor or predictor variable.

Depending on which characteristic of the linear regression we are
interested in, there are different ways to select the regressor design
{x,, ;j :1<j<n} (see Sections 1.8 and 1.9 in Draper and Smith [10]).

That is why we allow the regressor design to depend on n. Y, ; is called

- 1s an error variable with mean zero. Let F be

the response variable. ¢ j

the c.d.f. of the sequence {¢ j}‘;’:l. We study the testing problem

H, : F has a normal distribution with mean zero,
versus H; : F does not. (1.1)

Let X be the nxp matrix having by j-th row x ;. If XX is
invertible, then the (LS) least squares estimator of [ is uniquely
determined and it is B, := (X’X)'X’Y, where Y := (Y15 oo Yy ) (see,
e.g., Section 3.2 in Rao and Toutenburg [22]). The least squares estimator
has several optimality properties (see, e.g., Section 3.3 in Rao and

n
Toutenburg [22]). It is easy to see that X'X = Z Xp, jXp, j- In order that
j=1
the LS estimator of B is well uniquely defined, we assume that the design
of regressors satisfies the following condition:

A) A4, = xn’jx;hj 1s a nonsingular p X p matrix.

n
j=1

To estimate the distribution F of the errors we use the (OLS)
ordinary least squares residuals &, ; =Y, ;- B'nxn’j, 1<j<n.

Observe that
. n n
B, -B= Z Arzlxn,an,j -B= Z ngr_len,j (1.2)
j=1 Jj=1

and

A ’
A

€nj =Ynj—Buxnj =€ —Bn —B)xy;
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n

n
’ -1 ’ -1
= 8]' - ngxn,kAn xn,j = 8]' - Zekxn’jAn xnyk, (13)
k=1 k=1

where we have used that A,, is a symmetric matrix. Hence

n n n n
R ’ -1
Z €, j%n,j = Z €j%n, j ~ Z Z €1Xn, jXn, jAn Xn,k
=1 =1 =1 k=1
n n
= Zejxnij —ngxnik = 0. (14)
= k=1
This implies that the residual vector (¢,1, .., £, ,) € R" lies in a

subspace of dimension less than or equal to n — p and {¢, j}};:l are not

independent r.v.’s. Most of the normality tests for the errors of regression
model are obtained by applying classical normality tests to the residuals.
An alternative to use the residuals is to use the Theil’s (BLUS) best
linear unbiased scalar residuals. The Theil’'s BLUS residuals are
independent. Huang and Bolch [14] noticed that the power of the
Shapiro-Wilk test is higher using the OLS residuals than the Theil’s
BLUS residuals. Thus, we base our tests on the OLS residuals
€, i» 1 < j < n. Notice that if the term ZZ:l ekx;l’kAglxn’j in (1.3) is

n,j»
asymptotically negligible, the distribution of a statistic based on the

residuals is asymptotically equivalent to the distribution of the statistic
based on the unknown errors.

By the Lévy characterization of the normal distribution, a c.d.f. F
with finite second moment has a normal distribution with mean zero and

variance 6> > 0, if and only if for some m > 1,

m
D,,(F) := sup| Pp 0_1m_1/22 g; Str-@)] =0, (1.5)

teR =1

where @ is the c.d.f. of a standard normal distribution and Py is the

probability for which the i.i.d. r.v.’s €1, ..., €,, have distribution F.
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—m) -
D,, , = sup (n = m)t Z I{é;lm_lﬂz én,ij < t] - ®(t)|, (1.6)
! ~

(i1 erim e L

I = {(iy, oo i) € N™ 2 1< dj Sy ij # g if j # k)

and

~9 1 no .9
G, = — E . En,j‘
n— p Ledj=1

It is easy to see that the distribution of D, ,, is invariant by changes of

scale on the error variable. Given a design of regressors {x,, j}7=17 the
distribution of D, ,, is the same for all normal distributions with mean
zZero.

Given 1 > o > 0, let

bn,m,(x =inf{l >0 : P<I>{Dn,m <A}=1-al,

where Py is the probability measure for which the errors ¢, ..., €, are

1id. r.v’s with a standard normal distribution. Notice that b, ,, o

depends on the regressors design {x,, j}?=1- The proposed test rejects the

null hypothesis if D, > b, m, - Hence, the probability of type I error of

n,m =

the test is less than or equal to o.

We also have that F has a normal distribution with mean zero if and

only if for some m > 2,

m
ﬁm(F) := sup| Pr m_1/2z X; <t -Pp{X; <t} =0. (1.7)
teR :
Jj=1

An estimator of the previous quantity is
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A ) SATS IS o
Dy i=sup >, Im ;en,LjSt ;Zl(en,JSt).(l.S)

(i]_,...,im)elrrfl J=1

Given 1 > a > 0, let

Crmo = 1nffA 2 0: Pp{D, , <A} 21-ab

Then, the test rejects the null hypothesis if ZN)n m 2 Cn.m, o

The two tests above are constructed by doing a minor variation of the
tests in Arcones and Wang [3]. These normality tests are based on
distribution functions as several normality tests do, like the normality
test in Lilliefors [16]. There exists a large literature applying empirical
processes to goodness-of-fit tests (see Stephens [25], del Barrio et al. [9]
and del Barrio [8]).

The asymptotic distribution of the previous test statistics is similar to
that of the empirical distribution based on the residuals. Pierce and
Kopecky [20] obtained the asymptotic distribution of the empirical

distribution function based on the OLS residuals, when x; = (1, Xj 9y e
x; p), for each 1 <i < n. Pierce and Kopecky [20] obtained that the

estimation of regression parameters has no additional effect on the
limiting distribution of the normality test based on empirical process.
Loynes [17] considered the asymptotic properties of the empirical
distribution function obtained from the residuals from a generalized
regression model. White and Macdonald [27] argued that for several
normality tests (such as the D’Agostino’s test) the convergence of the test
using the OLS residuals is quite fast. However, Weisberg [26] noticed
that the effect of the regressors design is significative for the Shapiro and
Wilk test. Jurellkova et al. [15] and Sen et al. [23] considered the
asymptotics of normality tests for the residuals of a linear regression
model using the approach in Shapiro and Wilk.

In view of the remarks above, the cutpoints of each of our tests are
based on a distribution of a test statistic which depends on the regression
design. In Section 2, we prove that the two presented tests are omnibus.
The power of these tests tends to one for any alternative hypotheses as
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the sample size goes to infinity. We also obtain the limit distribution of
the test statistics under the null hypothesis. As expected, under certain
conditions, this limit distribution does not depend on the regressors
design. In Section 3, we present the outcome of several simulations. The
cutpoints and the power of the tests for several regression design
matrices and for sample sizes 8, 16, 20 and 24 are presented. Our results
show that the test based on D, , is competitive with usual common

normality tests. However, the test D seems to behave badly. Section 4

n,m
contains several results on the asymptotics of U-processes, which are of
independent interest. We study the asymptotic normality of U-processes
based on independent (not necessarily identically distributed) r.v.’s and
kernels varying from occurrence to occurrence. Our results generalize to
the case of U-processes the work in Pollard [21] and Arcones [1]. The
proofs of the theorems are given in Section 5.

We will use the usual multivariate notation. For example, given

, 1/2
u=(u,..ug) € R?, |ul|= (Z’;:l u?) - I, denotes the p x p identity

matrix. ¢ will denote a constant which may vary from occurrence to
occurrence.

We also will denote expectation and sample means using the
functional notation common 1in empirical processes. Suppose that
(S, S, u) is a measure space and f is an integrable function, then we

denote wu(f) by .[S f(x)du(x). Given x e S, 8, denotes the Dirac

measure on (S, S). In particular, given a random sample X, ..., X,,, P,

denotes the empirical measure and P,/ denotes n™* Z;'l=1 f(X;).

m m
Given measurable spaces (Si, S1); ooy (Spy> Si)s {H S;, HS]-]
j=1 =

denotes the product space endowed of the product o-field. If u; is a

measure on (S;, S;), for each 1 < j < m, then pu; ®---®u,, denotes the

m m
product measure on [H Sj, HSj].

J=1 j=1
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2. Asymptotic Results for the Tests

In this section, we present several results regarding the asymptotics
of the considered tests. We obtain results similar to the ones in Arcones

and Wang [3]. We assume the following condition:

(B) sup | A;l/zxn il =0, asn— e
1<j<n ’

Next theorem shows that the first test is omnibus.

Theorem 2.1. Assume that regressors design satisfies Conditions (A)

and (B). Suppose that the errors {e; };-:1 form a sequence of i.i.d. r.v.’s with

mean zero, variance 62 >0 and continuous c.d.f. F. Then, for each m > 1,

m
P -1 -
D,, ,, = sup| Ppio Im 1/228]- <tr—®@)|, asn — oo

teR =1

Theorem 2.1 implies that b, ,, , — 0, as n — . Theorem 2.1 also
implies that if the c.d.f. F of the sequence of errors does not have a
normal distribution, then for each 1> o >0, Pp{D, ,, 2 by, p, o} = 1, as
n — oo

Condition (B) is a sort of necessary condition in Theorem 2.1. Suppose

that x, 1A;'x,; — ¢ >0 and sup| A,_Ll/2xn,j | = 0, then the proof of
2<j<n

Theorem 2.1 gives that the residuals are approximately ¢; —cg;, and

m
Dy, LN sup| P 0_1m_1/22(8j —cg))Str—D(t)|, as n —> oo.

teR =1

Next, we consider the asymptotic null distribution of the first test.
We assume the following condition:

n
©) nt Zx;l jA,;lxn,k —1asn — oo
J k=1
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Suppose that for each 1 <i < n, x;, ; = (1, ¥, 2, --» Xp.j, p)- Then
n
nt Y ap A, =1
J, k=1
Observe that
n
-1 ’ -1
n an,]An Xn, k

J, k=1

is the (1, 1)-element of the matrix

n

-1 ’ -1 ’ -1
n an,jxn’jAn Xn kXn ke =1 A,,
Jj k=1
which is 1. Hence, if x; = (1, x; 9, ..., ; ,) for each 1<i<n, then

condition (C) holds.

Theorem 2.2. Assume that the regressors design satisfies (A), (B) and

(C). Suppose that {e j};'o=1 is a sequence of i.i.d. r.v’s from a normal

distribution with mean zero and variance 6> > 0. Then, for each m > 2,

n
_ — — P
2D, —sup n Y (g(c7es, 1) - Elg(o7e;, )| S0, (2.1)
teR
j=1

where
gz, t) = md((m - 1) 2(mY% - &) + (mY%e + 271(e2 - 1)t)o(t),

and ¢ is the pdf of a standard normal distribution.
Consequently
d
nl/QDn,m — sup| U(#)|,
teR

where {U(t) : t € R} is a Gaussian process with mean zero and covariance

given by
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E[U(S)U(t)] = COV(g(Zl, S), g(Zl’ t))’ s, te R’
where Zi is a standard normal r.v.

Without assuming conditions (B) and (C), we may have that
nY/ 2Dn’ n converges in distribution. But, the limit could be different from

the one in the previous theorem. The proof of Theorem 2.2 gives that if
(A) and (B) hold, but (C) does not, then

2D, —sup 02" (@07 e, 1) - EIE(0 e, 1))

teR =1
n P
+ 7?7,1/2)1_1/2 x;L,kAr_len,jskq)(t) — 0, (22)
J k=1
where
3, t) = mo((m - 17 2(m"% — &) + 271 (e2 - 1)to(z).
We have that
/2. -1/2\ " ’ -1

m/ n / Zj,kzl xn,kAn Xn, i€k

and

_ n
Y2, 1/22 e
k=1

are asymptotically equivalent if only if (C) holds. Notice that by (5.8)
n n
m2p 12 Z x;l’kA,_llxn’jek - m1/2n_1/2z ep,
J, k=1 k=1
has a normal distribution with mean zero and variance
n n
mo? - mc2n_1z Z x;l,kA,_len,j.
k=1 j=1

For the second proposed test, we have asymptotics similar to those of
the first test:
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Theorem 2.3. Assume that the regressors design satisfies (A) and (B).
Suppose that the errors {e j};'o:1 form a sequence of i.i.d. r.v.s with mean

zero, variance 62 > 0 and continuous c.d.f. F. Then, for each m > 1,

m

PF{m_l/QZ Ej < t} - PF{El < t}

j=1

>

~ P
D, ,, — sup
teR

as n — oo,

As before Theorem 2.3 implies that ¢, ,, o — 0, as n — . It also
implies that if the distribution of the sequence of errors is not normal,

then for each 1 > o > 0, Pp{D,, ,, 2 ¢ .o} = 1, as n — oo

Theorem 2.4. Assume that the regressors design satisfies (A), (B) and

(C). Suppose that {sj};f;l is a sequence of i.i.d. r.v.’s from a normal

distribution with mean zero and variance 6> > 0. Then, for each m 21,

n
~ P
n'2D, ,, - sup n—1/2§ (h(o7%e;, £) - Elh(c™ e, t)]) | 5 O,
teR
j=1

where

Re, t) = md((m —1)"2(mY% — ) - I(e < t) + (mY2 - 1)eo(?).

- d
Consequently, nl/an,m — supger| V(s)|, where {V(s):se R} is a
mean zero Gaussian process with covariance given by

E[V(s)V(t)] = Cov(h(Z;, s), h(Z;, t)), s,t€ R.
3. Simulations

In this section, we present simulations of the presented normality
tests. Besides the presented tests, we consider the test in (L) Lilliefors
[16], in (SW) Shapiro and Wilk [24], in (BJ) Bera and Jarque [5, 6] and in
(BHEP) Baringhaus and Henze [4] and Epps and Pulley [12]. The SW
and the BJ normality tests are the most often used in the literature in



SOME NEW NORMALITY TESTS FOR THE ERROR ... 67

Statistics and Econometrics, respectively. We include the L test, because
the presented tests appear as a modification of this test. The BHEP test
1s a common test.

We use different regressors designs to see how the power varies with
the cutpoints. We only consider regressors design for the simple linear

regression model. We assume that x,; =(1, xn,j’z)/, where
E j.2 | < 1. Our regressors design follows the discussion on Sections 1.8
and 1.9 in Draper and Smith [10].

We only consider the case m = 2. By the results in Arcones and

Wang [3], there is no gain in using higher order m’s.

First, we use x, ; =(1, (n- 1)_1(2]' -1-n)), for 1 <j<n This

regressors design is used when we would like to check whether there
exists a linear relation between the variables.

The following tables show the values of na, o o and nb, g , for some

values of n. The tables were obtained by doing 10000 simulations from a

standard normal distribution.

nby, 2 o o =0.10 o = 0.05 a = 0.01
n=8 0.1431317074  0.1621240463 0.2086544447
n=12 0.1065845579  0.1237184782 0.1640259523
n=16 0.08653575281  0.09999083749  0.13250019197
n =20 0.07497237684 0.08700437101  0.11447884146
n =24 0.06597126745 0.07531215271  0.09620995402

NCp 9.0 a = 0.10 a = 0.05 a =0.01
n=38 0.2678571429  0.2678571429 0.2857142857
n=12 0.2045454545  0.2272727273 0.2575757576
n=16 0.1791666667  0.1958333333 0.2250000000
n =20 0.1578947368  0.1710526316 0.2000000000
n =24 0.1449275362  0.1576086957 0.1811594203
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The following table shows the power when o = 0.05 of the mentioned

tests of normality.

~

L SW BJ BHEP D, D, 5

)

n=28 0.0892 0.0932 0.1080 0.1046 0.1266  0.0399
n=12 0.1140 0.1404  0.1727  0.1496  0.1680  0.0293
n=16 0.1478 0.1108 0.2414 0.1846  0.2265  0.0302
n =20 0.1653 0.2209 0.2648  0.2262 0.2510  0.0306
n=24 0.2192 0.2864  0.3282 0.2701 0.3136  0.0258

Alternative: double exponential distribution

L SW BJ  BHEP D, D,

)

n=_8 0.2601 0.2974  0.3295 0.3206  0.3619  0.0953
n=12 0.4534 0.5688  0.6086  0.5704  0.6032 0.1263
n=16 0.6563 0.5920 0.7525 0.7286  0.7544  0.2007
n =20 0.7507 0.8316 0.8377  0.8287  0.8447  0.2750
n =24 0.8465 0.8947 0.8956  0.8842 0.9103  0.3111

Alternative: Cauchy distribution

~

L SW BJ BHEP D, Dy

n=_8 0.0973 0.1064 0.1228 0.1156  0.1385 0.0460
n=12 0.1322 0.1806 0.2141 0.1917 0.1988 0.0269
n=16 0.1857 0.1616 0.3043 0.2522 0.2777 0.0371
n =20 0.2113 0.3023 0.3621 0.2936  0.3239 0.0383
n=24 0.2665 0.3731 0.4259  0.3450 0.3886 0.0374

Alternative: Student’s ¢-distribution with three degrees of freedom

L SW BJ BHEP D, D,

n=2_8 0.0635 0.0599 0.0621 0.0646  0.0780 0.0427
n=12 0.0612 0.0738  0.0829  0.0727 0.0823 0.0357
n =16 0.0676 0.0612 0.1086  0.0852 0.0976 0.0439
n =20 0.0673 0.0887 0.1096  0.0815 0.1008 0.0384
n=24 0.0814 0.1123 0.1339  0.0937 0.1140 0.0368

Alternative: Student’s ¢-distribution with ten degrees of freedom
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The following tables show the values of nb, 5, and nc, o, for the

regressors design x, ; = (I, (—l)j) , for 1 < j < n. This regressors design

is used when we would like to estimate B with the best accuracy possible

(assuming that a linear relation between the variables holds).

nbn,Q,(x

a = 0.10

o = 0.05

a = 0.01

0.1386297968

0.1050275466
0.08652461426
0.07504055901
0.06596753173

o= 0.10

0.1568467964
0.1220525521
0.10099724885
0.08644431446
0.07637168722

o = 0.05

0.1936227425
0.1589839848
0.13081039783
0.11339672468
0.09794838675

o =0.01

n=20
n=24

0.2678571429
0.2045454545
0.1791666667
0.1578947368
0.1449275362

0.2857142857
0.2272727273
0.1958333333
0.1710526316
0.1576086957

0.2857142857
0.2500000000
0.2250000000
0.200000000
0.1811594203

The following table shows the power when o = 0.05 of the mentioned

tests of normality for the second regressors design.

L SW BJ BHEP D, Do

n=8 | 00752 00788 0.1143 0.0871 0.1221  0.0385
n=12 | 0.1162 0.1383 0.1670 0.1497 0.1642  0.0257
n=16 | 0.1454 0.0983 02383 0.1840 02166  0.0301
n=20 | 0.1765 0.2233  0.2653 0.2332 0.2554  0.0312
n=24 | 02017 02596 0.3204 0.2570 0.2948  0.0264

Alternative: double exponential distribution
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L SW BJ BHEP D, D,.»
n=2_8 0.2017 0.3426 0.4287 0.3576 0.4323 0.0417
n=12 0.4914 0.5822 0.6116 0.5837 0.6212 0.1207
n=16 0.6547 0.5780 0.7578 0.7395 0.7484 0.2498
n =20 0.7629 0.8209 0.8356 0.8264 0.8481 0.3417
n=24 0.8467 0.8934 0.8939 0.8902 0.8988 0.4038
Alternative: Cauchy distribution
L SW BJ BHEP D, Dy s
n=28 0.0822 0.0854 0.1356 0.1068 0.1416 0.0412
n=12| 0.1373 0.1850 0.2265  0.1867 0.2107 0.0297
n=16| 0.1761 0.1543 0.3075 0.2534 0.2674 0.0350
n=20| 0.2169 0.3006  0.3470  0.2999 0.3192 0.0390
n=24| 0.2525 0.3581 0.4211 0.3475 0.3772 0.1080

IAlternative: Student’s ¢-distribution with three degrees of freedom

L SW BJ BHEP D, Dy
n=8 | 0.0543 0.0597 0.0664 0.0611 0.0864  0.0503
n=12| 0.0602 0.0714  0.0823 0.0731  0.0845  0.0386
n=16| 0.0698 0.0570  0.1108 0.0791  0.0841  0.0392
n=20| 0.0710 0.0900 0.1023  0.0900  0.0991  0.0386
n=24| 0.0741 0.1009  0.1220 0.0906 0.1064  0.0387

IAlternative: Student’s ¢-distribution with ten degrees of freedom

The following tables show the values of nb, 5, and nc, o, for the
regressors design x, ;= (1, ((4/3)n—1)_1(2j—1—n(4/3)))/, for 1<j<(3/4)n;

% = (1, (1Y), for (3/4)n+1<j<n.

nby, 2, o o =0.10 o = 0.05 o = 0.01

n=8 0.1391902200  0.1581479131 0.2032428016
n =12 0.1067211036  0.1242696687 0.1626261962
n =16 0.08794126414  0.10146586222  0.13323187698
n =20 0.07506775110  0.08789944333  0.11266438443
n =24 0.06637517220  0.07669306853  0.10063409877
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nCy, 2,0 o = 0.10 o = 0.05 a = 0.01

n=38 0.2678571429  0.2678571429 0.2857142857
n =12 0.2121212121 0.22727272773 0.25757575776
n =16 0.1791666667  0.1958333333 0.2208333333
n =20 0.1578947368  0.1710526316 0.1973684211
n =24 0.1449275362  0.1576086957 0.1811594203

The following table shows the power when o = 0.05 of the mentioned

tests of normality for the third regressors design.

L SW BJ BHEP D, Dy s
n=3_8 0.0766  0.0796  0.1081  0.0981 0.1281  0.0378
n =12 0.1125 0.1358 0.1779  0.1436  0.1613  0.0302
n =16 0.1453 0.1067 0.2363 0.1868 0.2190 0.0364
n=20 | 01695 0.2412 0.2740 0.2200 0.2535  0.0287
n=24 | 02131 0.2680 0.3237 0.2609 0.2973  0.0277

Alternative: double exponential distribution

L SW BJ BHEP D, o ﬁn 9
n = 0.2341 0.2473 0.3678 0.2579  0.3239  0.0816
n =12 0.4809 0.5670 0.6118 0.5670 0.6009  0.1109
n =16 0.6418  0.5920  0.7479  0.7227  0.7478  0.1833
n=20 | 0.7619 0.8278 0.8329 0.8279 0.8397 0.2524
n=24 | 08416 0.8920 0.8982 0.8901 0.9035 0.3194

Alternative: Cauchy distribution
L SW BJ BHEP D, D,
n = 0.0836 0.0901  0.1182  0.1029  0.1347  0.0433
n=12 0.1389 0.1839  0.2253  0.1832  0.2017 0.0316
n =16 0.1768 0.1498 0.3022 0.2450 0.2764  0.0415
n =20 0.2154 0.3027 0.3590  0.2973 0.3172  0.0408
n =24 0.2636 0.3580  0.4229  0.3513 0.3772  0.0404
IAlternative: Student’s ¢-distribution with three degrees of freedom
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L SW BJ  BHEP D,  D,,

n = 0.0518 0.0563 0.0666  0.0684  0.0933  0.0457
n=12 0.0634 0.0698  0.0875 0.0661 0.0821 0.0382
n =16 0.0657 0.1498  0.1007  0.0809  0.0859  0.0397
n =20 0.0672 0.0910 0.1148 0.0924 0.0954  0.0389
n =24 0.0700 0.0996 0.1333 0.0938 0.0994  0.0359

IAlternative: Student’s ¢-distribution with ten degrees of freedom

Previous simulations show that the test based on D,, 5 is competitive

with the other tests. However, the test based on ﬁn’2 is a bad test. It
seems that the BJ test is the best test overall. The test based on D), 5 is

the second best. The ranking of tests does not change with the regressors
design. However, the power does. The power of the tests is slightly
smaller for the second regressor design than for the first one. The third
regressor design is a combination of the first and the second ones. Not
surprisingly, the power of the tests for the third regressor design is
between that of the first two regressor designs.

4. Several Results on Limit Theorems for U-processes

In order to obtain the asymptotic null distribution of the test
statistics D,, ,, and l~)n’ n We present several results on the central limit
theorem for U-processes over a sequence of independent (not necessarily
identically distributed) r.v.’s and over kernels varying from occurrence to

occurrence. General references on U-processes are Arcones and Giné [2]
and de la Pefia and Giné [7].

Given r.v.’s X7, ..., X, with values in a measurable space (S, S) and

a measurable function A : (S, S™) — R, the U-statistic with kernel &

is defined by

(n—m)

Upm(®) =5 N (X, o X)),

n!
(il,..., lm)GI,r,Ll
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We extend this definition by allowing the function A to vary from
occurrence to occurrence. We present the following theorem:

Theorem 4.1. Let {X,, 1, ..., X, , : n 21} be a triangular array of

row-wise independent r.v.s with values in a measurable space (S, S). Let
Posig, iy, (8™, 8™) — (R, B(R)) be a measurable function for each
(iys +ovr iy, ) € I)},. Suppose that the following conditions are satisfied:

(i) There exists a sequence {3,},_, of positive numbers converging to
zero such that for each n > 1 and each (iy, ..., i,,) € I},

|hn,i1,...,im (Xn,il""’Xn,im)l < nSn a.s.

(i) Var (U,) — o2 < o, where

Un = Z (hn,il,...,im(Xn,il’“"Xn,im)_E[hn,il,...,im(Xn,il’“"Xn,im)])‘
(TR =y £
Then, U, 4 N, 62) as n — .

Next, we present a limit theorem for U-processes over a triangular
array of row-wise independent r.v.’s satisfying a VC-like condition.

Let (T, d) be a metric space. Given K c T, the packing number of K

is defined as
D(u, K) := max{m > 1 : therearet, ..., t,, € K,
such that d(t;, ¢;) > u, fort; #¢;}, u>0.
The covering number of K is defined as
N(u, K) := min{m > 1 : therearet,, ..., t,, € T,

such that K ¢ Ujil E(tj, w)}, u>0,

where E(tj, u)={teT:d(t, tj)<u} It is easy to see that for each

u >0,
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N(u, K) < D(u, K) < N2 'u, K). (4.1)

We will use the previous definitions, when 7 = R" and d is the
Euclidean distance. By Theorem II.3.1 in Marcus and Pisier [18] (see also
Pollard [21, Theorem 3.5]),

> R0 - off)

J=1

E| sup

ve K

} < 9'[0D (log D(u, K))Y%du, (4.2)

for any K ¢ R" and any vy € K, where {Rj}'}zl is a sequence of
Rademacher r.v.’s, v’ = (v(l), - v(”)) and D := sup,cg|v - vg |

We consider triangular arrays of functions satisfying the following

condition:

Definition 4.1. Let {X,, {, .., X,, ,, : n > 1} be a triangular array of
row-wise independent r.v.’s with values in a measurable space (S, S).
Suppose that for each n > m, each (i, ..., i,,) € I}}, and each t € T, we
have a measurable function h,; ; (,t):(S™, 8™)— (R, B(R)), where

T'is an index set. We say that the triangular array of U-processes

{hn,il,...,im(Xn,il7""Xn,im’ t) :1<n, (il, ey l'm) € I,’,ll, t e T}

is manageable with respect to the envelope r.v.’s

Hpiy, iy Koy o0 X ) 2 150, (s 1) € Iy

where H (8™, 8™) — (R, B(R)) is a measurable function if:

n, il, vey lm :
@)

sup| hn,il,‘..,im (Xn,i1 PRXRE Xn ]

e T Jim ? t)l < Hn,il,...,im (Xn,ilr-"’Xn,im) a.s.
€

(ii) The function M(u), defined on (0, oY/ 2] vy
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M(u)
1/2
2
= swp Dl Y (Hygi (e )P | G0 x) |,
n2l,%xq,...,x,€8 ; n
(tl,...,Lm)EIm
satisfies that
91/2
I (log M(u))l/zdu < oo,
0
where
gn(xlr e xn) = {(hn,il,...,im (xil s X t))(il,..., inell

e ROy e T,

Notice that in condition (ii) in Definition 4.1 D(¢, G, (xq, ..., X,)),

¢t > 0, denotes the packing number of G, (x, ..., x,,) when the Euclidean
distance of R/} is ysed.

The last definition is an extension to the U-processes case of
Definition 7.9 in Pollard [21]. Definition 7.9 in Pollard [21] generalizes to
the triangular array case of the concept of VC subgraph classes, which
has been studied by several authors (see for example Dudley [11]).

Next, we present an analogous of (4.2) for our situation. Notice that

(4.2) uses the entropy with respect to the Lo of corresponding

Rademacher process. In our case, by the Cauchy-Schwartz inequality, for

each s,t € T and each xq, ..., x, € S
2
1/2
E|[nY Z Ry (hiy iy, (i ooy 08) =Ry (700X 5 2))
(i sermsim ELS,
2
n

=nz Z Prayiy iy iy sy o 8) =Ry i (7 e X5 T))

U= (i oy )i e i IS
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i =1 (ig im ):(01 im)eln
2 n!
- h’n,zl Im (xll’ 3] xim s t)) n(n — m),
n! 2
= (n_m)! Z (hn Wyl (le’ "xim’s)_hn,il ..... im (xi1 ""’xim’t)) . (4.3)
(L]_ ..... lm)EI,r;l

Hence, for a sequence of Rademacher r.v.’s {Rj};f’:l, for each

X1, .., X, € S and each ¢y € T,

1/2
’L/Eiu%) E Ry (hpiy, i i Xy S 8) =P (e %y T0)
e . .
(i seemsin ELS,

n!/(n-m)! 1/2Dn
< 9J‘( /( )) (log D((n _ m)!/n‘)1/2u, gn(xl, veey xn))l/zdu

0
1/2 « D
<9 —— log D 4.4
() [, s ot G o x e @
where
2
Dy = ?ng Z (hn,il,...,im (xil’ » Xis t) Py, R . (xll y e X to ))
(i1 i JEIT,

Theorem 4.2. Under the notation on Definition 4.1, suppose that for
each t € T, there exists a measurable function f,;  ; (,t): (8™, S™)

— (R, B(R)) such that:

() For each x1, ..., x,, € S and each (iy, ..., i,,) € I}},,

Py @i e o 8) = I (g5 s %y 5 8) 2 0),

(i) For each x1, ..., x, € S,

(B iy i oo % )y Y1 € RY(-ml ¢ e )

FR

lies in a subspace of dimension d of R (n=m)t
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Then, the triangular array of U-processes
{hn,il,...,im (Xn,il’ ces Xpi s t):1<n, (g, .., i) I}, te T}
is manageable with respect to the envelope r.v.’s

{Hn,il,...,im (Xn,il’ e Xn,im) :1<mn, (il’ e Lm) € Irrrlz}’

where H 1.

N1,y

The previous theorem follows from Lemma 4.4 and Corollary 4.10 in
Pollard [21].

Theorem 4.3. With the above notation, suppose that:

(1) The conditions in Definition 4.1 hold.
(i1) There exists a finite constant a such that for each (i, ..., i,,) € I,

Hn,il,...,im (Xn,il’ veey Xn,im) <a a.s.

(iii) For each & > 0, there are a positive number ng and n:T > T
such that #n(T) < o, n(n(t)) = n(t), for each t € T, and for each n > ny

andeach t € T,

n-m)
( ) Z E[(hnai1»~~-sim (Xn,il’ ceey Xn,ima t)

n!
(igs s iy JE I

2
- hn,il,...,im (Xn,il’ o0y Xn,imr TE(t))) ] < 62-

(iv) For each permutation o of {1, ..., m}, each (i, ..., i,,) € I, each
X1y e Xy €S, and each t € T,
Bt (1 s s ) = B (1) o o) £

(v) Foreach s, t € T,

lim nCov(U,(s), U,(t))

n—oo

exists, where
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n—m)
Uy,(t) = ( ) Z P Xy s oo Xy )

n! m
(i oy i ) I

Then

n2(U, @) - ElU, @) : t e T} S5 {Z(t) : t € T},

where {Z(t):te T} is a Gaussian process with mean zero and

covariance,

Cov(Z(s), Z(t)) = lim nCov(U,(s), U,(t)), s, teT.

n—eo

Theorem 4.4. Let {Xj};'ll be a sequence of i.i.d. r.v’s. Let p be a

positive integer. Let h:R™ — R be a measurable function. Let

fokyiy,iy, * R™ — R be a measurable function for each (iy, ..., in,) € Ip,

and each integer 1 < k < d. Let

U,®,t)

_(n-m)
- Tz(ilw-,im)el,'ﬁl [I(h(Xil, ceey Xim)

p
+ Zk:l Frkyiy, i (X s oo X g < t) - P{h(Xil, s X )

P
+ Zk:l Fr iy, i (X s oo X )R < t})

where b = (b, ..., bp)/ e RP, t € R. Suppose that:
(i) The function P{h(Xq, ..., X,,) < t}, t € R, is continuous.

(1) There exists a sequence of positive numbers {Sn}:zl converging to

zero such that for each n > 1 and each (i, ..., i,,) € I,

| Foshis iy K1 oo X)) [ < 8y, s,
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(iii) For each permutation ¢ of {1, ..., m} and each xq, ..., x,, € R,
h(x1, vy X)) = MXG(1)s s Xo(m))-

(iv) For each permutation ¢ of {1, ..., m}, each (i, ..., ip,) € I}, each

X1y s Xy €S, each 1<k <d, andeach t € T,
fn,k,il,,..,im (xl’ s Xms t) = fn,k,ic(l),...,ic(m)(xc(l)’ s Xo(m)» t)'
Then, for each 0 < M < oo,
(n2(U, (b, t)- E[U, (b, t)) : be R, |b| < M, t e R}

converges weakly to a mean zero Gaussian process {Z(b,t):|b|

< M, t € R} with covariance given by

Cov(Z(b, s), Z(d, t)) = lim nCov(U, (b, s), U,(b, t))
n—oo
= Cov(0(X7, s), 0(X7, 1)),
foreach s,t € R, b,de RP,|b|,|d| < M, where

m
0, 1) = Y PIA(XY, oy X1, %, Xjy1s o Xpy) < 8.
j=1

5. Proofs

Proof of Theorem 2.1. By (1.3)

(5.1)

First, we prove that for each 0 < M < oo,
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_ | m m ,
sup sup (n n!m). Z I(Z g; < Zb A,;l/anyij +t] - H(¢) o,

b|<M teR - -
|b]<M te (it e I, \J=1 j=1

(5.2)

where

H(t) = P{Z;n:l g < t}, te R

Since the c.d.f. of €& 1is continuous, so is H. Hence, H is uniformly
continuous and for each € > 0 there exists § > 0 such thatif | s —¢| < §,
then | H(s) - H(t)| < &. By condition (B), there exists a positive integer
no such that if n > ny, then max<j<, mM)| A,;l/2xn,j | <8 If n>nyg,

then we have

(n = m) S e <3 B A i
\bs\?])\lfélﬂgT Z 1 Zglj SZbAn Xpi; +1 H(t)

(if, i ) I \J=1 Jj=1

Ssupw Z I{isij SS+t]—H(t)

teR -
(i1 eer i ) I J=1

< sup| H,(t)- H(t)|+sup| HS +t)— H(t)| < sup| H,(t)- H(¢t)| +¢

teR teR teR
and
o . o (n=m) S R\ -1/2
‘bl‘léfjw%éllg i Z I Zsij < ZbAn Xpi; T L - H()
(i lm)EIrrrlL J=1 J=1

> inf w > I[isij < —8+t]—H(t)

(i1, eemr iy J I \J=1

> —sup| H,(t)-H(t)| —sup| HO +¢)— H(t)| = —sup| H,(t)- H(¢)| -,
teR teR teR
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where
— ! m
H _(n-m) < R
n(t) ol Z(ll . ijl ij t|, te
Hence
(n = m)! I e <Y b AT 2, o+ t|- H(t)
en ot 3 S < Siae,,
|bM te (i i e 17 =1 j=1

< sup| H,(t)- H(t)| +e.
teR

By the strong law of the large numbers for U-processes,

sup| H,(t) - H(t)| = 0.
teR

Hence, with probability one

m m
. n-m) " A -1/2
lim sup sup sup( I g;. < bA x, s+t |- H{)
meup sap eup XL I e = 2 b A

<€ a.s.

Since € > 0 is arbitrary, (5.2) follows.

By (1.2)
A,IL/2(Bn -B) = Z?:l ngT_Ll/2xn’j’
E[AY*@, -B)] = Z’;:l Ele 147, = 0,
Var(4;*B, - B)) = I,
Hence
AV2@, -B) = 0,(1). 5.3

Plugging A,ll/z (ff’)n —B) into b and ml/zfsnt into ¢ in (5.2) and using (5.1)
and (5.3), we get that
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sup (n;ym)! Z { -1/24 12 ‘ <t]_ mY%6,0)| 5 0. (5.4)
teR :

(i]_, ceny im )E I,rrLL

By (1.3)

-1 P22 "B —B)x,
_I’L—pzj=18] n—pz' e;(Bn B)xn,j

+

2 (BB )

By the law of the large numbers

a.s.
g5 — Var(e).

n — p J n n,j n n n :

—
= i

By the definition of A,

nlpZ((B Bu) ) = — ;@—Bn)’xn,,-x;z,,-@—ﬁn)

n-—p4

= n-p (Bn _B) An(Bn _B)
Hence, by (5.3)

2 NL A gy 1 N
_n_p;Ej(Bn_B)xn,j n— p; B Bn)xnj

= _n_p (Bn -B) An(Bn -B)= OP(]-)'



SOME NEW NORMALITY TESTS FOR THE ERROR ... 83

Therefore

P
62 - E[?]. (5.5)

Using (5.5) and the uniformly continuity of H

P
sup| H(m"?6,t) - Hm"?st)| - 0.
teR

Therefore, the claim follows.

Lemma 5.1. Let {sj};-c’:l be a sequence of i.i.d. r.v.’s from a normal

distribution with mean zero and variance > > 0. Assume that conditions
(A) and (B) hold. Let

U,(b, T)

_ 12 (n—m) m mo, 12 1/2
= n! Z(il,...im)el,’; I Zj:l &ij = ijlen Xn,ij FIm
_ ¢,(m—1/2 ol Z;":l pAZ? fiy + G_ltD’
where b € R? and t € R. Then, for each 0 < M < oo,

{U,b,t):be RP|b|< M, te R}

converges weakly to a mean zero Gaussian process {W(b, t) : be RP,|b]|

< M, t € R} with covariance given by
E[W(by, $)W(by, 1)] = Cov(ma((m - 1) 67 sm"? — &),
mo((m -1 67 tm"? —ey))),
foreach | by |, | by | < M, s, te R

Proof. The lemma follows directly from Theorem 4.4.

Lemma 5.2. Under the notation and conditions in the previous

lemma, for each 0 < M < oo,
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sup sup| U, (b, ¢t + n_l/Zst) -U,(0,t)] Lo.
|b|<M teR
|s|lsM
Proof. By Theorem 3.7.2 in Dudley [11] for each >0,

lim lim sup P{ sup |U, (b, s)-Uy,(bg, t)| 21} =0,
80 noee  d((by,s)(by,1))<S

where

dQ((bl’ S)’ (bZ’ t))

= Var(m®((m - 1) 267 (sm¥2 - £1)) - mo((m - 1) 2oL tmY? - 1))

<

m m 2
< m2E81 l:(ESL...,Sn [I(Zj—l gj < sml/zj - I(zjzl gj < tm1/2jD }

By, [m®((m = 1) 267 sm'/? — 1)) - mo((m — 1)o7 em!V? - ¢)))7]

A5 AT

= m?| (o 's) - d(c7 ).

Hence

sup supd?((b, t + n_1/2st), (0, )
|b|<M teR
|s|sM

< sup sup| d(c7 ({t + n_1/2st)) - ®(c't)| = 0,

|s|<M teR

as n — oo, Hence, the claim follows.

Lemma 5.3. There exists a universal constant ¢ such that for each
|s] < 272 and each |h| <1,
(5.6)

sup| ®(t + st + h) — d(t) - (st + h)o(t) | < c(s® + h?).
teR
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Proof. By Taylor theorem, for each s, t € R,

[006) 000~ 5= )00) | [/ - )

= J.s_t (s—t-u)o'(u+t)du

0

<27 (s - 1)? sup{] 0t +u)| : |u|<|s—¢|}
Hence, for each t € R, | s| < 272 and |h| <1,
| D + st +h)— D) - (st + h)o) |
< 27 (st + h)? sup{| ¢t +w)| : |u| <|st+h|.
If | ¢]| < 2, then
27 (st + h): supll 0'(t + w) | : | u| < |st+hl}
< (%% + h?) supyep| 0'(x)| < (457 + h?) sup,z0| 0'(x) |
If | st| <| k|, then
27 (st + h)? sup{| ¢t +w)| : |u| <|st+h|}
< (522 + h2) supyepr| 0'(x) | < 2h% sup,so| 0'(x)].
If |t|>2 and |st|>|h]|, then
27 (st + h)? < %2 + h? < 2522,

|st+h|<|st|+|h]|<2st] <27t
and
|t+u|>|t|-|u|2|t|-|st+h|>27Y¢]>1.

¢" is an odd function and it is negative and increasing in (1, «). Hence
sup{ o't +u)| s |u| < |st+h[}<| 0@ e]).

Therefore, if [¢| > 2 and | st | > | k|, then
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27 (st + h)? supll o't + u) | : |u| < |st+h |} < 2522 027Y ¢ )|

< 85% sup,so 2 ¢'(x)|.
The claim follows from the previous estimations.

Lemma 5.4. For each 0 < M < oo,
1/2 (n—m)
" n! Z(ll, i )GI”

x (®(m Y2571 Z’Tl 1 DAL 23, i+ n 267 st + 071) - (0 7))
]:

SUp |p|<m SUPeRr
|s|<M

- (n-l/if m267 A 2, + G‘lstj¢(6‘1t)‘ =0, asn— .
j=1 ’

Proof. By Lemma 5.3, for n large enough,

_ !
sup sup| n¥2 =) Z

|b|<M teR n! ) - .
|s|<M (i1s oo i),

m
X [d{m_lﬂc_lz b'A,;l/any i * n 267 lst + 0_1t] - CD(G_lt)]

j=1

—m) i
e (o ml NN 2 g 2 s o7t |60

n! -
(i, iy ) I J=1

( ) N 2
n—m) “1/2 - - 1 -
<c sup /2" E m 2671 E b’An1/2xn | +nlo%s?
b |<M nto e = Y
|'s|<M (i1, werim)e Ly,

—m) 2
<en 2 4c sup nl/2M Z Z (b’A;, 1/2xnl 2

]
blsM n.
8] (i, ooyiy eI J=1

n
=en 2 e sup n_1/2z b'A,;l/2xn ixn ]-A,_ll/2b = en V2,
|b|<M o
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We also have that

a1z ;‘m)' Z Zm—l/Q “a- 1/2xn ;

(i, ooy )10 J=1
n
-1/2 1/2 137 4-1/2
=nY Em/c bAn/xn’j.

Proof of Theorem 2.2. By Lemmas 5.2 and 5.4, for each 0 < M <

12 (n—m)
" nl Z(ii,...,im)ez,',g
m m _ —
X (I(ijl g, < ijl bAnl/zxn, T tm'/? + n 1/Zstm1/2)
(S <))
J:

-1/2 " 1/2 15/ 4-1/2 -1 -1,n| P
—(n /ijlm/c bAn/xn,j+G stj(l)(c t)‘ﬁo.

Plugging A,ll/z(ﬁn - B) into b, 671 1/2(

Sup|p <M SUPzeR
|s|sM

n’“(6, — o) into s and of into ¢ in the

previous expression, we get

12 (n —m)! 12 BRIV S
sup|n’® ———= Ilo, m . -Ilocm €. <t
teR n! (i Z)GI [ [ Z le !
Uses iy m -

_ {n_lmz ml/ZG_l (Bn - B)/xn,j + n1/2(6n - G)t](])(t) -0
j=1

By (1.2)

(5.7

n n
-1/2 A ¢ -1/2 -1
VBN B =B = 0V Y A e
J=1 j k=1
We have

87
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-1/2\" ’ -1 -1/2\""
Var(n / Zj,k=1 Xn, kAn Xp j€p — N / Zk:l ek)
2 -1\ " no -1 z
=0 n Z b1 (Zj:l xn, kAn xn’j - 1]
2 -1\ no Al 2
o’n Zkzl ijl X, kAn Xn,
2 -1\ " no -1 2
-20°n Zk:]_ Zj:l Xn kAn Xpj+0
9 _ n n n , _ , _
on 12};:1 ijl Zl=1 xn,jAnlxn,kxn,kAnlxn,l

1IN n _
- 20%n lzkzl ijl x;l’kAnlxn’j + 02

2 2. -1\ o, -1
c° —-on Zk:l ijl xn,kAn Xp,j = 0, (5.8)

using condition (C). Hence

n n
n_1/2 Z x;L’kA,_len’jsk - n_l/zz € = OP(].). (59)
j,k=1 k=1

By a computation in the proof of Theorem 2.1,

n-p.,2 1~ 92 1. P )
Lt -L N =L ) Ay ) = 0p )
We have
W26, - ) = 6 nV2(5, - o) (62 - %)
= 671026, + 0) (07 (n - p)62 - 0% + n p52).
Hence
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+ (6746, —0) "t -271672)n V2

X E ] e2 —62)+ o n2(6, + o) 'n 1p62 — 0. (5.10)
n n
j=1""7

By Corollary 4.2 in Arcones and Giné [2], a U-process 1is
asymptotically equivalent to the first term in its Hoeffding
decomposition:

n2 sup (= m) Z {I{m_l/zi G_leij < t] - @(t)}
j=1

!
teR n: . .
(85 eer iy )€

_ mn_lzn: ((I)((m — 1)_1/2(m1/2t _ 0_18]')) _ q)(t)) i 0. (511)
j=1

Observe that

Eep e [I(m‘lﬂz @10_18 ;< tﬂ
m j=
= EEZ,.‘.,E |:I(Zm 9 G_lgj < m1/2t _ G—lelj:|
m j=

= o((m - 1) 2 (m% - o7'ey)).

(The previous argument is exactly (4.4) in Arcones and Wang [3]. We
have included it for the reader’s convenience.)

From (5.8)-(5.11), we get
(n=m) (A—l -1/2N"" 4 j_
n! Z(il,_..,im)e% I} 6, m ijl g, <t ()

—nl Z;‘zl m(@((m - 1) 2 (m% - 67%¢;)) - (1))

1/2
n / SUPzeRr

(=112 1N -1 _-2 -1\ 2 2 P
(n m'“c Zj:18]+2 6 °n ijl(ej c )tj¢(t)‘—>0, (5.12)

which implies Theorem 2.2.
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The proof of Theorem 2.3 is similar to that of Theorem 2.1 and it is
omitted.

Proof of Theorem 2.4. Equation (5.7) with m =1 gives that

sup
teR

n 2N (1658 <t)-1(07'e <1)
=]

P
— 0.

B [n_l/zZ 1B, - B)/xn,j + /2 (6, - G)t]q)(t)
=1

Using the previous limit, (5.9) and (5.10), we get

sup|
te R

0 WNCCATEN B Ry

n n r
B (n—1/2zk:1 0_18k +91 ,1—1/2211.=1 0—2(8? — 52 )tjq)(t)‘ — 0. (5.13)

(5.12) and (5.13) imply the claim.

We will need the following theorem for triangular arrays. Recall that

a triangular array {Xn jil<j<k,,nz 1} is infinitesimal if for each

€ >0,

P{lg}gnl Xn,j |

v

e} —> 0, as n — .

Theorem 5.1 (Gnedenko and Kolmogorov, see, e.g., Theorem 4.3 in

Petrov [19]). Let {X,, ; : 1< j < k,, n 21} be a triangular array of row-

wise independent r.v.s. Let {a,} be a sequence of real numbers. Let t > 0.

Then, S, —a, — N(u, 02) and the triangular array is infinitesimal if

and only if

() For each &> 0, lim,,_,.. Zf:l P{X, ;|2¢}=0.

i 1 ky,
(i) lim,, ... Zj:l Var(X, ;I(| X, j|<1) =0
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(iii) lim,, .. Z”n E[X, ;I( X, ;|<t]-a, =

Proof of Theorem 4.1. Let P, ; be the distribution of X, ;. Then

n—-m
u, = n-mt Y (Gx,, ©®®dx,, Yy i,

n!
(i1, Im )eI,’,lL

~(Ppiy ®® Py Yy i)

— !
=M Z (((SXn,Ll _Pn,i1 +Pn,11)®®

n!
(ll’ -1 )EIn
(SXn,im - Pn,im Py, im ))hn T
— (Pn,i1 ® ® Pn,zm )hn,il,...,im)
-ml§ (k)
- n! Z Z fn, Useeos Uk (Xn’yil ’o Xn,ik )? (514)
k=1 iy, ip)e I7
where
(k)
fn,il,. ,'k( 1> ’ xk)
-2 > @PH @ oulth, ;i . (5.15)
1<pi<-- <pk<m(J1, Wi )elk jpl =i,.. ,Jp}’_l],,
where
Mgil’-] = le — Pn,il’ ceey Mg;:,] = 8xk _Pn,ik

and Mg’i’j - Pn,jq’ for q ¢ {p;, ..., pp}. Notice that (5.15) is obtained

by collecting all summands with exactly £ summands of the form
(®x, ; —Py,i)- The first summand in (5.15) takes care of the choice of the

(’Zj places, where these products are. The second summand in (5.15)

takes care of the choice of the places where the products of the form P, ;

are. In (5.14), U,, is decomposed into orthogonal summands. If & # ko,
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(i, - Lkl)e Ikl and (]1,...,]k2 )e Ikz’ then

E[fh)

ad) iy En o X

) (X s e Xy ) = O

n, ikl N,01, s g

We also have that if {ij, ..., i} # {j1, ..., Jp}, then

k k
E[f! )1 i i o X, i) ]?1,__"].]% (X jys s X, )l = 0.
Hence, only when (i, ..., i;) is a permutation of (ji, ..., jz)
(k) (k) . :
Bl ip Ko oo X K on X))

may be different from zero.

A
Since there are m ways to choose the p’s in (5.15) and (n = k) to
k (n—m)
choose the free j’s in (5.15), we have
(k) . _ m) (n—k) k
| fn,jl,...,jk (X s oo Xnyip )| < (kj = m) 2%8,n  a.s. (5.16)
By (5.15) and (5.16), for each & > 2,
n—m)
Var % Z n ll’ sy Xn,ik)

(#,- zk)el

< (= m)pyE ([ (m (n__k)! 2k§ n S 2n2* 0.
(5 )=y 2o

By Theorem 5.1

Notice that for each 1 < i < n,

— Vm -1 e m—
(n = m)lfnl nz)|5(nn,m)(1J((: m))2 18 n < m2 16 a.s.
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In the proof of the next theorem, we will use the following lemma:
Lemma 5.5. Let {X,, 1, ..., X, ,, : n > 1} be a triangular array of row-
wise independent r.v.’s with values in a measurable space (S, S). Let
Posiy,.in 2 (8™, 8™) = (R, B(R)) be a measurable function for each

i, «y by ) € I'. Suppose that for each (i, ..., i,,) € I}
1 m m 1 m m

2
Xn,il’ ceey Xn,im )) ] < oo,

Then

(igs iy )E LY
Proof. Without loss of generality, we may that

Elhy iy, i (X iys oo Xnjip ) =0,

for each (i;, ..., i,y) € I}},. We have

Var Z hn,il,...,im (Xn,il’ ceey Xn,im)
(i1s i )L

= Z E[hn,i1 ..... im (Xn,il""’Xn,im)hn,jl ..... Im (Xn,jl’“"Xn,jm )]

(il. ..... im),(jl_ ..... j_m)el,’}l
{itseosim 1 51ees i 129

< Z (E[(hn,il,,..,im (Xn,il’ o0y Xn,im ))2])1/2

(il,..., Lm ), (jl, ‘..,jm)E I,’;l
{i, - im A1, s i 122

(E[(hn,jl,...,jm (Xn,jl y seey Xn,jm ))2])1/2
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1/2
2
< > Elhn, iy, ..oy Kinsigs s X, )]
(1o i )s (15 oes d JE Ly
{1, im L, s i 120
1/2
2
X >, El(hy . (X s s Xy )]

(i1 wees b ): (71, ...,jm)el,’fl
{its o tm WL es im 122

= > Elhn,iy,....ip, Xy o0 X, )]

(s osin ). (i s JE I,
I A L T g 7

_ ( n! nl n! ) (n—m)

(n=m) (n-m) (n-2m) n!

Z El(hp i, (Xnyiy s oo X, )21

n! n!

Notice that there are = m) (o =m) summands in (i, ..., iy,),

(J1, - Jm) € I, and there are ; Possible ways to get {irs oo i}

(n —2m)

MNj1s -+ Jmt =9D. Hence, the total number of summands in

. n! n! n! B
Z(ilvm:im)a VRS i ((n —m\ (n-m) (n- Zm)!)' y symmetry
{01 Jm 12D

each of El(h, ;. i (Xnis - Xni )?] appears the same number of
times. Hence, the last inequality in the last display follows.

Proof of Theorem 4.3. By Theorem 4.1 the finite dimensional

distributions of {nl/ 2U,(t)- E[U,@®)]) : t € T} converge to those of
{Z(t):te T}.

Hence, it suffices to show tightness of the process

{n2U,t) - ElU,@)) : t e T},
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i.e., it suffices to show that for each T > 0, there exists a finite partition &
of T such that

lim sup P{su%) n2| U, () - U, (n(t) - E[U, () - U, (n(t))]| 2 1} < c1, (5.17)

n—oo te

where c is some universal constant.

Take & > 0 small enough such that 97324715 < 1,

9-3/2a7 18
288aJ0 (log M(u))l/zdu <12 (5.18)
and
32172b,,c3 8% <1, (5.19)
where
. n((n—m)!)z( n! n ol j
mo n;:l n! m-m)(n-m) (n-2m))
. n! n! n! . .
Notice = m) (n—m) - (n = 2m) i1s a polynomial on n of degree

2m — 1. Hence, b,, < . Take a finite partition © of T satisfying (iii) for
this 6.

Let (Xflk%, . X,% ), 1 < k < m, be m independent copies of (X, 1, ..

*

Xnn) By Theorem 3.4.1 in de la Pefia and Giné [7],

Plsup % U, (t) - U, (n(t)) - E[U,(t) - U, (n(0))]| = 1}

< ¢, Psup 2| U (1) - U8 (n(z)) - E[UL) (¢) - UL (me))] | = ¢},
teT

(5.20)
where
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By Lemma 5.5 and (5.19), foreach t € T,

e Plsupn?|UL80)() - U2 (n(e)) - E[UL) () - UL (n(2))]| > 27 e}
teT

< 4c§nr‘2n((n ;gm)!f((n il!m)g 0 f!m)z NG —n!2m)!)

XY Bl XL X =Ry (X)L X0 ()]
(i 5ol EID,
3 -2, (n-m) 1 m
< 4ept by D Bl (X ,X,(l’ifn,t)
(i1, eemr iy E T
iy, iy XN X0 (1))

<161 72,282 < 27%. (5.21)
Hence, by Lemma 2.1 in Giné and Zinn [13],

e PinY? supl U8 () - Ul (n(t)) - E[UL () - UL (n(e))]| > e}

< 2¢,, P{supn!/?| U8 (1) - U3 (n(1)) - (TF8) (1) - T (m(2))) | > 27V 51},
teT
(5.22)

where

gl = oml S )Ly
(i oo iy ) I

and (Y(kl), . Y,ﬁk,l ), k=1, .., m, are independent copies of (Xnk%, e

By Theorem 3.4.1 in de la Pefia and Giné [7],

2¢,, Plsupn?| UL () - UL (n(¢)) - (09 (¢) - T3 (m(2))) | 2 27 elc}
teT
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= 2¢,, P{sup n1/2| Usldec, double, sym)(t) _ U}(ldec,double,sym)(n(t)) | > 971 Cr_an}
teT

< 4c,, P{sup nt/ | U,(ldec’ sym)(y) — Uﬁldec’ SYM)(q()) | > 27%¢; Mt}
teT

< 4y Plsup n?| US™ (@) - US™ (n(0)) | 2 27 2¢;0 () 1), (5.23)
teT

where

gfgectotesm) o LZmh S Ry gy (X XU

n!

-h

(L PR S O TR

pidee.sm)) - (n=m) D> Bl i, XWXy,

n! n,n n, Ly
(i 5o €LY

Ur(lsym)(t) - (n - m)! Z R

n! .
(G 'y £

h X

LTI A 0. S NRRD. S )

and {Rj}?zl is a sequence of Rademacher’s i.i.d. r.v.’s independent of

(X 15 oo Xnn)y (XL xE) 1<k <m and (Y, ., v{E) 1<k <m.

M TR nis o Yoon
Notice that hypothesis (iv) is used in (5.23) in order to apply the reverse
decoupling inequality.

We have that

Psup Y2 U™ (1) - U™ (n(2)) | > 272 (¢ ) M)
teT

= Plsup 2| U™ (1) - U™ (n(t)) | 2 272 ¢5 (¢} ) ',
teT

n—m) 2 2
?ujl’)( n‘ ) Z (gn,il,...,im,n(Xn,il’“"Xn,im’t)) SZS
c :
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n-m) 9 2
+P ?u%)( ng ) z (gn,il,...,im,n(Xn,il’ e Xn,im’ t)) > 28
< !
(il,...,im)elrr;l

= I+1I, (5.24)

where
Eniy iy (X5 wos X ) = P i (X1, ey X 8) =Py i (X5 s Xy, W(E)).

By (4.4)

_ 1/2 ",
I< 360m(c;n)r_1((n n,’”)!) E{I N I b (log D(u, G, ))1/2du}, (5.25)
: 0

where

2 2
Dn = sup Z (gn,il,...,im,n(Xn,il’ ) Xn,im’ t)) .

n!

In A, D;lz < 282 m

By (4.1) and the remark on page 22 in
Pollard [21],
(log D(u, G;,)? < (log N2, G, )V*
< 2Y2(log N(272u, G,)V? < 2/2(log D(2 2w, G, ))/>
g2 W2

~ 2
<2'/2| log M| 272 Z (Hoiy iy Xy 000 X 1)) ¢
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where G, and M are as in Definition 4.1. By (5.18) and (5.25),

L= 21/2(36>cm<c;n>r‘1(wjl/2

0 n!

1/2 nl /2 1/2
y J. 2 6( (n_m)Vj [log M[2—2((n_—"n)7j1/2 a_lujj du

_3/25(1_1
< 22(144)ac,, (¢} )" J ’ (log M(u)*du < c,y(cyy)t. (5.26)
0

We have

_9 n—-m) 9
I <8 E|sup ( o ) Z (8nyiyyoin, 1 Xy s oo Xyi 5 1)
teT (i, iy JE I,

—El8niy, i 2K iy s Xy 5 1)

(n—m) 2

<257 2E sup

teT n! Z Ril(gn,il,...,im,n(Xn,il7--an,imat))

(i1 5w eIy

By (4.3)

1/2 2
E|| nY/ Z Ry (8niy, iy n(Xnyiys oo Xnji) > )

(il,..., lm)GI,’;'l

2
- (gn,il,..‘,im,n(xn,il’ H) xn,im’ t)) )

n! 2
< D (@i n @iy oo Xy 9))
(s erim e Ly

2\2
- (gn,il,...,im,n(xn,il’ o0y Xn,im’ t)) )
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2 n!
< 16a ( Z (gn,il,...,im,n(xn,il’ cees xn,im’ 3)
(igs ey €L

2
= &nyig,ei nEniys o Xpi s D))

Hence, by (4.2)

2

n—m)
E sup (n—,) Z R (8n,iy, i, nXniys oo Xnji s 1)

< 36an_1/2(WJ E[ j OD;L (log D(u, G, ) Zdu}

9-3/2
< (72)2Y24%n Y2 j (log M(w))Y2du — 0.
0

Proof of Theorem 4.4. We apply Theorem 4.3, with
T :={0bt)e RPxR:|b|<M,te R}

and
hn,il,...,im ('xl’ e X (b’ t))

p
= I(h(xl, ey xm) + Zkzl fn,k,il,...,im (xl, ey xm)bk < tj,

for each (i, ..., ip,) € I};,. Hypothesis (i) in Theorem 4.3 follows from

Theorem 4.2 with
fn,il,,..,im(xl"“’ X, (b,8) =t —h(xq, ..., x ankll ; xl,...,x )by,
Notice that for each xq, ..., x,, € R,

{(fn i, ( Xips wer X ))( im)e I IS Rn'/n m)! (b t) c T}

= t— h(xil, veey Z fn k, 11 3 x119 ceey xim )bk

(its s i JEITE
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e RO b t)e T

lies in a subspace of dimension p + 2 of R/ (-m)!,

As to hypothesis (iii). Let & > 0. Let I'(¢) := P{h(Xq, ..., X,,) < t},
te R. Since I' is a continuous nondecreasing function such that
lim,, ., T'() =0 and lim; ., I['(t) =1, there are ¢; <ty < - < ¢, such
that ['(¢;)-T(;_) < 2715, for each 1< j<m+1, where ty = — and
tms+1 = . There exists also a t© > 0 such that for each 1< j<m, if
|t-tj| <t then |D(t)-T()| <225 Let n:T — T be defined by
(b, t) = (0, t;), if t € [tj, tj,1), for some 1 < j < m, let n(b, t) = (0, ty), if
t € (=0, t;). Suppose that p§, M < 1. If t € (-, t;), then

—I(M(X;, o X ) S 1)

im
p

<1 h(Xil’--inm)+an,k,il,...,im(Xi1,---’Xim)bk <t |- I(A(XG 0 X5 )St)
=]

X; )<ty +p8, M)-I(MX; ,... X; )<t;),

joee im

ST + pd, M) < 23.
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If t € [tj, tj41), for some 1 < j <m-1,

Ih(Xy, oo X ) S 85 = D8, M)~ I(R(X, oy X; ) S t)

o

Sl[h( IR ankzl 11’ ) lm)bk St}
_I(h(le’ ’ im)Stj)

< I(h(Xil’ ceey Xim) < tj+1 + pSnM)— I(h(Xil, ceny le) < tj),

I[h( R im + an ki, Ll’ ooy Xim)bk < t]

~I(A(X;, o X; ) S )

SI(t; - P8, M <h(X .. X )Stjoy + P8, M)

L]_’

and

I[h( oo lm + an ki, Ll’ veey Xim )bk <t

< E[(I(tj - pd,M < WX;

s o Xi ) S tigy + P8, M))]
= F(tj+1 + pSnM)— F(tj - pSnM) < 4.
If ¢t € [t,,, <), then

1(h(X;

i
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~I(W(Xy s o X; ) S E))

s e

< I, < WXy, 0 X)),

D
I[h(Xil,...,Xim )+an,k,i1,...,im (X0 X; )by St]—[(h(Xil,..., X; )<t;)
k=1

< I(t,, - pd,M < h(X

RIS

and

E

p
I[h(Xil’ o Xi )+ an,k,il,...,im (X oo X )b < t]
k=1

< El(Ity, - p8,M < A(X;, ... X; )] =1=T(t,, — pd,M) <.

Hence, if pd, M < 1, then

— !
sup =L ST B (K e Xy (6, 1)

teT n! ) - .
(st )L,

—h (Xp i ooos Xi o 7lb, 1)) < 8,

n, i1 yeeny im
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