FIXED POINT THEOREMS FOR ORDERED CONTRACTIVE MAPPINGS ON NONCOMMUTATIVE BANACH SPACES

NI FEI and JIANG LINING
Department of Mathematics
Beijing Institute of Technology
Beijing, 100081, P. R. China
e-mail: jianglining@bit.edu.cn

Abstract

Introducing a concept of a noncommutative Banach space, we obtain several fixed point theorems for continuous or discontinuous ordered contractive maps in an ordered noncommutative Banach space. A sufficient condition for the fixed point to be unique is given.

1. Preliminaries

Amann [1] introduced the concepts of ordered topological linear space and ordered Banach space, and gave a number of solutions of nonlinear equations in ordered Banach spaces. Based on his work, many authors studied the properties of fixed points of nonlinear equations in ordered Banach spaces [2-5, 7-8]. Furthermore, Zhang [9] introduced some types of ordered contractive maps and obtained some fixed point theorems in ordered Banach spaces. Since these fixed point results are based on the existence of the ordered structures which are compatible with the related topological structures, illumined by [1] and [9], the paper defines the ordered contractive maps and obtains the corresponding fixed point

[^0]Keywords and phrases: fixed point, order contractive map, noncommutative Banach space.
Supported by Program for New Century Excellent Talents in University of China.
theorems for ordered contractive maps in noncommutative Banach spaces. We now give the definition of a noncommutative Banach space.

Definition 1.1. Let E be a group. Then E is called a noncommutative Banach space if the following conditions are satisfied:

1. There exists a metric d on E so that (E, d) is a complete metric space;
2. The metric d is invariant under the translation operation. That is, $\forall x, y, z \in E, d(x z, y z)=d(x, y)$;
3. There exists a binary continuous operation

$$
F: \mathbb{R} \times E \rightarrow E, \quad(\alpha, g) \mapsto g^{\alpha}
$$

which extends the group multiplications in E;
4. The metric d is sub-homogeneous, that is, for $x \in E$, there exists a constant $C_{x}>0$ such that for $\alpha \in \mathbb{R}$,

$$
d\left(x^{\alpha}, e\right) \leq C_{x}|\alpha| d(x, e)
$$

It is clear that a Banach space is a noncommutative Banach space. The following is a nontrivial example on noncommutative Banach space.

Example 1.1. Suppose that H is a Hilbert space and $U(H)$ is the unitary group of H. As a subset of $L(H), U(H)$ is a complete metric space if one defines

$$
d(S, T)=\left\|T^{-1} S-I\right\|=\|S-T\| \quad(S, T \in U(H))
$$

Furthermore, for $T \in U(H)$ and $\alpha \in \mathbb{R}$, set

$$
T^{\alpha}=\int_{0}^{2 \pi} e^{i \alpha \theta} d E_{\theta}
$$

where E_{θ} stands for the spectral measure associated with the operator T [6], then $U(H)$ is a noncommutative Banach space.

Proof. It suffices to prove that $U(H)$ possesses Properties 3 and 4 of Definition 1.1.

First, suppose that $d\left(T_{n}, T\right) \rightarrow 0$, where $T_{n} \in U(H)$. Since for $k \in \mathbb{N}$,

$$
\begin{aligned}
d\left(T_{n}^{k}, T^{k}\right) & =\left\|T_{n} T_{n}^{k-1}-T T_{n}^{k-1}+T T_{n}^{k-1}-T T^{k-1}\right\| \\
& \leq\left\|T_{n}-T\right\|\left\|T_{n}^{k-1}\right\|+\|T\|\left\|T_{n}^{k-1}-T^{k-1}\right\|,
\end{aligned}
$$

by using induction, we obtain for an arbitrary polynomial $P(x)$, that $d\left(P\left(T_{n}\right), P(T)\right) \rightarrow 0$. Since for $\varepsilon>0$, there exists a polynomial $P_{0}(x)$ such that $\sup _{x \in[0,2 \pi]}\left|P_{0}(x)-x^{\alpha}\right|<\frac{\varepsilon}{3}$,

$$
d\left(P_{0}(T), T^{\alpha}\right) \leq \frac{\varepsilon}{3} ; \quad d\left(P_{0}\left(T_{n}\right), T_{n}^{\alpha}\right) \leq \frac{\varepsilon}{3} .
$$

Also, for $\frac{\varepsilon}{3}>0, \exists N \in \mathbb{N}$ so that if $n>N$, then $\left\|P_{0}\left(T_{n}\right)-P_{0}(T)\right\|<\frac{\varepsilon}{3}$. Thus, when $n>N$,

$$
\begin{aligned}
d\left(T_{n}^{\alpha}, T^{\alpha}\right) & \leq\left\|T_{n}^{\alpha}-P\left(T_{n}\right)+P\left(T_{n}\right)+P(T)-P(T)-T^{\alpha}\right\| \\
& \leq\left\|T_{n}^{\alpha}-P\left(T_{n}\right)\right\|+\left\|P\left(T_{n}\right)-P(T)\right\|+\left\|P(T)-T^{\alpha}\right\| \\
& \leq \varepsilon .
\end{aligned}
$$

Therefore, for $\alpha \in \mathbb{R}, d\left(T_{n}, T\right) \rightarrow 0$ implies that $d\left(T_{n}^{\alpha}, T^{\alpha}\right) \rightarrow 0$.
Next, since the metric d is pseudo-homogeneous, we assume $T \neq I$. For $\alpha \in \mathbb{R}$,

$$
\begin{aligned}
d\left(T^{\alpha}, I\right) & =\left\|\int_{0}^{2 \pi}\left(e^{i \theta \alpha}-1\right) d E_{\theta}\right\| \\
& \leq \sup _{\theta \in[0,2 \pi]}\left|e^{i \theta \alpha}-1\right|
\end{aligned}
$$

Since the exponential function is a periodic function, we consider only the case when $|\alpha| \in[0,1]$

$$
\sup _{\theta \in[0,2 \pi]}\left|e^{i \theta \pi}-1\right|= \begin{cases}2<2 \pi|\alpha|, & \text { if }|\alpha|>\frac{1}{2} \\ \left|e^{i 2 \pi \alpha}-1\right| \leq 2 \pi|\alpha|, & \text { if } 0 \leq|\alpha| \leq \frac{1}{2}\end{cases}
$$

In all, set $C_{T}=\frac{2 \pi}{d(T, I)}$, then for any $\alpha \in \mathbb{R}, d\left(T^{\alpha}, I\right) \leq C_{T}|\alpha| d(T, I)$.

Similarly, we prove that for $T \in U(H), \lim _{\alpha \rightarrow \alpha_{0}} T^{\alpha}=T^{\alpha_{0}}$ and $U(H)$ is a noncommutative Banach space.

2. Ordered Contractive Maps on Noncommutative Banach Spaces

In this section, we introduce an order structure in a noncommutative Banach space and obtain basic properties of ordered contractive maps.

Definition 2.1. Suppose that E is a noncommutative Banach space. A set $P \subseteq E$ is called convex if $\forall x, y \in P, x^{p} y^{q} \in P$, where $p, q \in \mathbb{R}^{+}$ and $p+q=1$. Furthermore, $P \subseteq E$ is called a cone if P is closed, convex and invariant under exponential operation by element of $[0, \infty)$, and if $P \cap P^{-1}=\{e\}$, where $P^{-1}=\left\{x^{-1} \mid x \in P\right\}$.

It is easy to see that a cone is a semigroup. Each cone can induce a partial ordering in E through the rule $x \lesssim y$ if and only if $y^{\beta} x^{-\beta} \in P$ for $\beta \in[0,1]$. This ordering is antisymmetry, reflexive and transitive.

Definition 2.2. If there exists a constant $N>0$ such that for any $e \lesssim x \lesssim y, \quad d(x, e) \leq N d(y, e), P$ is called positive, and the constant N is called the positive constant of P.

Let " \lesssim " be the partial ordering determined by a cone P. For $u, v \in E$, if one of $u \lesssim v$ and $v \lesssim u$ holds, then we say that u and v are comparable and write:

$$
v(u, v)= \begin{cases}u, & \text { when } v \lesssim u \\ v, & \text { when } u \lesssim v\end{cases}
$$

Lemma 2.1. If u and v are comparable, then $u v^{-1}$ and $v u^{-1}$ are comparable, and

$$
e \lesssim \vee\left(u v^{-1}, v u^{-1}\right)
$$

Proof. Suppose that $v \lesssim u$. Then $\forall \alpha \in[0,1]$,

$$
\left(u v^{-1}\right)^{\alpha}\left(v u^{-1}\right)^{-\alpha}=\left(u v^{-1}\right)^{\alpha}\left(\left(u v^{-1}\right)^{-1}\right)^{-\alpha}=\left(u v^{-1}\right)^{2 \alpha}
$$

Since $2 \alpha>0$ and $u v^{-1} \in P,\left(u v^{-1}\right)^{2 \alpha} \in P$. Thus, the elements $u v^{-1}$ and $v u^{-1}$ are comparable, and $v u^{-1} \lesssim u v^{-1}$. Also, $\forall \alpha \in[0,1],\left(u v^{-1}\right)^{\alpha} e^{-\alpha}=$ $\left(u v^{-1}\right)^{\alpha} \in P$, so $e \lesssim u v^{-1}$, and $e \lesssim \vee\left(u v^{-1}, v u^{-1}\right)$.

Definition 2.3. Let E be a noncommutative Banach space and P be a positive cone of E with the positive constant N. A map $A: E \rightarrow E$ is called a β-ordered contractive map if there exists a constant $0<\beta<1$ such that for $u, v \in E$, if u and v are comparable, then $A u$ and $A v$ are also comparable, and moreover

$$
\vee\left(A v(A u)^{-1}, A u(A v)^{-1}\right) \lesssim \vee\left(v u^{-1}, u v^{-1}\right)^{\beta} .
$$

Here, the β is called the constant of the ordered contractive map.
Remark 2.1. The ordered contractive map need not be continuous.
Lemma 2.2. Suppose that for all $n \in \mathbb{N}, u_{n}$ and v_{n} are comparable. If $v_{n} \rightarrow v_{0}, u_{n} \rightarrow u_{0}$, then u_{0} and v_{0} are comparable. That is to say, the ordering structure is compatible with the metric given in E.

Proof. Since $\forall n \in \mathbb{N}$, one of $u_{n} \lesssim v_{n}$ and $v_{n} \lesssim u_{n}$ holds, there exist subsequences $\left\{v_{n_{k}}\right\}$ and $\left\{u_{n_{k}}\right\}$ such that for $\forall 0 \leq \beta \leq 1$, either $u_{n_{k}}^{\beta} v_{n_{k}}^{-\beta} \in P$ or $v_{n_{k}}^{\beta} u_{n_{k}}^{-\beta} \in P$ holds. Without loss of generality, suppose that $u_{n_{k}}^{\beta} v_{n_{k}}^{-\beta} \in P$. Then

$$
\begin{aligned}
d\left(u_{n_{k}}^{\beta} v_{n_{k}}^{-\beta}, u_{0}^{\beta} v_{0}^{-\beta}\right) & \leq d\left(u_{n_{k}}^{\beta} v_{n_{k}}^{-\beta}, u_{n_{k}}^{\beta} v_{0}^{-\beta}\right)+d\left(u_{n_{k}}^{\beta} v_{0}^{-\beta}, u_{0}^{\beta} v_{0}^{-\beta}\right) \\
& =d\left(u_{n_{k}}^{\beta}, u_{0}^{\beta}\right)+d\left(v_{n_{k}}^{-\beta}, v_{0}^{-\beta}\right) .
\end{aligned}
$$

The last equation holds because the metric is invariant under the translation operation.

Because $v_{n_{k}} \rightarrow v_{0}$ and $u_{n_{k}} \rightarrow u_{0}$, we have $v_{n_{k}}^{-\beta} \rightarrow v_{0}^{-\beta}$ and $u_{n_{k}}^{-\beta} \rightarrow u_{0}^{-\beta}$. Since the multiplication operation on E is continuous,

$$
\lim _{k \rightarrow \infty} d\left(u_{n_{k}}^{\beta} v_{n_{k}}^{-\beta}, u_{0}^{\beta} v_{0}^{-\beta}\right)=0 .
$$

Notice, the fact that the cone P is closed, $u_{0}^{\beta} v_{0}^{-\beta} \in P$. This implies that u_{0} and v_{0} are comparable.

Lemma 2.3. If $x, y \in P$ and $x \lesssim y$, then $\forall 0<\beta<1, x^{\beta} \lesssim y^{\beta}$.
Proof. Since $x \lesssim y, \quad \forall \alpha \in[0,1], \quad y^{\alpha} x^{-\alpha} \in P$. For $\quad 0<\beta<1$, $\alpha \beta \in[0,1]$, so $y^{\alpha \beta} x^{-\alpha \beta} \in P$, namely $x^{\beta} \lesssim y^{\beta}$.

Lemma 2.4. If x and y are comparable, then $d\left(\vee\left(x y^{-1}, y x^{-1}\right), e\right)$ $=d(x, y)$.

Proof. Suppose $\vee(x, y)=x$. Then

$$
y x^{-1} \lesssim x y^{-1}
$$

and

$$
\vee\left(x y^{-1}, y x^{-1}\right)=x y^{-1} .
$$

Since the metric d is invariant under the translation operation,

$$
d(x, y)=d\left(x y^{-1}, y y^{-1}\right)=d\left(\vee\left(x y^{-1}, y x^{-1}\right), e\right) .
$$

This completes the proof.

3. Theorems about the Fixed Points

Throughout this section, we suppose that E is a noncommutative Banach space which is partially ordered by a positive cone P with the positive constant N, and give several theorems on the fixed points of the ordered contractive maps on E.

Theorem 3.1. Suppose that the β-ordered contractive map $A: E \rightarrow E$ is continuous. If there exists an element $x_{0} \in E$ such that x_{0} and $A x_{0}$ are comparable, then the sequence $A^{n} x_{0}$ converges to some fixed point x^{*} of A. Moreover, there is a number $C_{x_{0}}$ depending on the choice of x_{0}, so that

$$
d\left(x_{0}, x^{*}\right) \leq\left(\frac{C_{x_{0}} \cdot N \cdot \beta}{1-\beta}+1\right) d\left(x_{0}, A x_{0}\right) .
$$

Proof. Consider the sequence

$$
x_{1}=A x_{0}, x_{2}=A x_{1}, \ldots, x_{n+1}=A x_{n}, \ldots
$$

Since x_{0} and $x_{1}=A x_{0}$ are comparable and the map A is a β-ordered contractive map, x_{1} and $x_{2}=A x_{1}$ are comparable, and hence, x_{n} and $x_{n+1}=A x_{n}$ are comparable. Since

$$
\begin{aligned}
\vee\left(x_{n} x_{n+1}^{-1}, x_{n+1} x_{n}^{-1}\right) & =\vee\left(A x_{n-1}\left(A x_{n}\right)^{-1}, A x_{n}\left(A x_{n-1}\right)^{-1}\right) \\
& \lesssim \vee\left(x_{n-1} x_{n}^{-1}, x_{n} x_{n-1}^{-1}\right)^{\beta},
\end{aligned}
$$

using Lemma 2.3

$$
\begin{aligned}
\vee\left(x_{n} x_{n+1}^{-1}, x_{n+1} x_{n}^{-1}\right) & \lesssim \vee\left(x_{n-1} x_{n}^{-1}, x_{n} x_{n-1}^{-1}\right)^{\beta} \\
& \lesssim \vee\left(x_{n-2} x_{n-1}^{-1}, x_{n-1} x_{n-2}^{-1}\right)^{\beta^{2}} \\
& \lesssim \cdots \\
& \lesssim \vee\left(x_{0} x_{1}^{-1}, x_{1} x_{0}^{-1}\right)^{\beta^{n}} .
\end{aligned}
$$

Thus

$$
\begin{equation*}
d\left(\vee\left(x_{n} x_{n+1}^{-1}, x_{n+1} x_{n}^{-1}\right), e\right) \leq N d\left(\vee\left(x_{0} x_{1}^{-1}, x_{1} x_{0}^{-1}\right)^{\beta^{n}}, e\right) . \tag{1}
\end{equation*}
$$

Because the metric d is sub-homogeneous, there exists a constant $C_{x_{0}}$, which depends on the choice of x_{0}, so that

$$
\begin{equation*}
d\left(\vee\left(x_{0} x_{1}^{-1}, x_{1} x_{0}^{-1}\right)^{\beta^{n}}, e\right) \leq C_{x_{0}} \cdot \beta^{n} d\left(\vee\left(x_{0} x_{1}^{-1}, x_{1} x_{0}^{-1}\right), e\right) . \tag{2}
\end{equation*}
$$

Notice that the metric d is invariant under the translation operation

$$
\begin{equation*}
d\left(\vee\left(x_{n} x_{n+1}^{-1}, x_{n+1} x_{n}^{-1}\right), e\right)=d\left(x_{n}, x_{n+1}\right) . \tag{3}
\end{equation*}
$$

In the same way

$$
\begin{equation*}
d\left(\vee\left(x_{0} x_{1}^{-1}, x_{1} x_{0}^{-1}\right), e\right)=d\left(x_{0}, x_{1}\right) . \tag{4}
\end{equation*}
$$

So, the inequality (2) turns into

$$
\begin{aligned}
d\left(x_{n}, x_{n+1}\right) & =d\left(\vee\left(x_{n} x_{n+1}^{-1}, x_{n+1} x_{n}^{-1}\right), e\right) \\
& \leq N \cdot d\left(\vee\left(x_{0} x_{1}^{-1}, x_{1} x_{0}^{-1}\right)^{\beta^{n}}, e\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq N \cdot C_{x_{0}} \cdot \beta^{n} d\left(\vee\left(x_{0} x_{1}^{-1}, x_{1} x_{0}^{-1}\right), e\right) \\
& =N \cdot C_{x_{0}} \cdot \beta^{n} d\left(x_{0}, x_{1}\right) .
\end{aligned}
$$

Thus, the sequence $\left\{x_{n}\right\}$ is a Cauchy sequence since $\beta \in(0,1)$. Suppose that $x_{n} \rightarrow x^{*}$, then

$$
A x^{*}=A \lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} x_{n+1}=x^{*},
$$

which implies that x^{*} is a fixed point of A. Moreover

$$
\begin{aligned}
d\left(x^{*}, x_{0}\right) & \leq d\left(x_{0}, x_{1}\right)+d\left(x_{1}, x_{2}\right)+\cdots+d\left(x_{n}, x_{n+1}\right)+\cdots \\
& =\sum_{n=1}^{\infty} d\left(x_{n}, x_{n+1}\right)+d\left(x_{0}, x_{1}\right) \\
& \leq \sum_{n=1}^{\infty} C_{x_{0}} \cdot N \cdot \beta^{n} d\left(x_{0}, x_{1}\right)+d\left(x_{0}, x_{1}\right) \\
& =\left(\frac{C_{x_{0}} \cdot N \cdot \beta}{1-\beta}+1\right) d\left(x_{0}, A x_{0}\right) .
\end{aligned}
$$

Corollary 3.2. Conditions and assumptions are the same as in Theorem 3.1. Let \tilde{x} be another fixed point of A. If \tilde{x} and x^{*} are comparable, then $\tilde{x}=x^{*}$.

Proof. Since \tilde{x} and x^{*} are comparable, one can suppose that $\tilde{x} \lesssim x^{*}$. Using the definition of contractive map

$$
\vee\left(A \widetilde{x}\left(A x^{*}\right)^{-1}, A x^{*}(A \widetilde{x})^{-1}\right) \lesssim \vee\left(x^{*} \tilde{x}^{-1}, \tilde{x} x^{*-1}\right)^{\beta},
$$

namely

$$
\vee\left(x^{*} \widetilde{x}^{-1}, \widetilde{x} \widetilde{x}^{*-1}\right) \lesssim \vee\left(x^{*} \widetilde{x}^{-1}, \widetilde{x} x^{*-1}\right)^{\beta} .
$$

Since $\widetilde{x} \lesssim x^{*}, \vee\left(\widetilde{x} x^{*-1}, x^{*} \tilde{x}^{-1}\right)=x^{*} \widetilde{x}^{-1}$, then $x^{*} \widetilde{x}^{-1} \lesssim\left(x^{*} \tilde{x}^{-1}\right)^{\beta},\left(x^{*} \tilde{x}^{-1}\right)^{\beta-1}$ $\in P$. Notice that $1-\beta \in[0,1],\left(x^{*} \tilde{x}^{-1}\right)^{1-\beta} \in P$. By $\left(x^{*} \widetilde{x}^{-1}\right)^{\beta-1} \in P$ and $\left(x^{*} \tilde{x}^{-1}\right)^{1-\beta} \in P, x^{*} \tilde{x}^{-1}=e$, and $x^{*}=\tilde{x}$.

Theorem 3.3. Suppose that $A: E \rightarrow E$ is a β-ordered contractive map. If there exists an element $x_{0} \in E$ so that $\forall n, x_{0}$ and $A^{n} x_{0}$ are comparable, then A has some fixed point, and the sequence $\left\{A^{n} x_{0}\right\}$ converges to one fixed point x^{*} of A. Moreover, there exists a constant $C_{x_{0}}$ such that

$$
d\left(x^{*}, x_{0}\right) \leq\left(\frac{C_{x_{0}} \cdot N \cdot \beta}{1-\beta}+1\right) d\left(x_{0}, A x_{0}\right)
$$

Proof. Similar to the proof of Theorem 3.1, the sequence $\left\{x_{n}=A^{n} x_{0}\right\}$ is a Cauchy sequence. By the completeness of E, let $x_{n} \rightarrow x^{*} \in E$. Now, we prove that x^{*} is a fixed point of A.

For all m, n, suppose that $m>n$, using the given condition, x_{0} and x_{m-n} are comparable. Then $A x_{n}$ and $A x_{m-n}$ are comparable, and so are $x_{n}=A^{n} x_{0}$ and $x_{m}=A^{n} x_{m-n}$. Let $m \rightarrow \infty$, using Lemma 2.2, $\forall n, x_{n}$ and x^{*} are comparable, therefore $A x_{n}$ and $A x^{*}$ are comparable, and so

$$
e \lesssim \vee\left(A x_{n}\left(A x^{*}\right)^{-1}, A x^{*}\left(A x_{n}\right)^{-1}\right) \lesssim \vee\left(x_{n} x^{*-1}, x^{*} x_{n}^{-1}\right)^{\beta}
$$

Since P is a positive cone,

$$
d\left(\vee\left(A x_{n}\left(A x^{*}\right)^{-1}, A x^{*}\left(A x_{n}\right)^{-1}\right), e\right) \leq C_{x_{0}} \cdot N \cdot \beta d\left(\vee\left(x_{n} x^{*-1}, x^{*} x_{n}^{-1}\right), e\right),
$$

that is,

$$
d\left(x_{n+1}, A x^{*}\right)=d\left(A x_{n}, A x^{*}\right) \leq C_{x_{0}} \cdot N \cdot \beta d\left(x_{n}, x^{*}\right) \rightarrow 0
$$

Therefore, $x^{*}=A x^{*}$ and x^{*} is a fixed point of A. At last, similar to the proof of Theorem 3.1, we can get the estimation of $d\left(x^{*}, x_{0}\right)$ and we omit it here.

Theorem 3.4. Let $A: E \rightarrow E$ be a continuous map and satisfy the following condition:
(C1) If u and v are comparable, then $A u$ and $A v$ are comparable. Also, if u and $A u$ are comparable, and v and $A v$ are comparable, then there
exists a $\lambda \in\left(0, \frac{1}{2}\right)$ so that for $\forall \beta \in[0,1]$,

$$
\begin{aligned}
\vee\left(A v(A u)^{-1}, A u(A v)^{-1}\right)^{\beta} \lesssim & \vee\left(A u \circ u^{-1}, u \circ(A u)^{-1}\right)^{\lambda \beta} \\
& \circ \vee\left(A v \circ v^{-1}, v(A v)^{-1}\right)^{\lambda \beta} .
\end{aligned}
$$

If there exists an element $x_{0} \in E$, such that x_{0} and $A x_{0}$ are comparable, then the sequence $\left\{A^{n} x_{0}\right\}$ converges to a fixed point x^{*} of A. Moreover, there exists a constant $C_{x_{0}}$ such that

$$
d\left(x_{0}, x^{*}\right) \leq\left(1+\frac{C_{x_{0}} \cdot N \cdot \lambda}{1-2 \lambda}\right) d\left(x_{0}, A x_{0}\right)
$$

Proof. Set $\beta=\frac{\lambda}{1-\lambda}$, then

$$
1+\frac{N \beta}{1-\beta}=1+\frac{\lambda \cdot N}{1-2 \lambda} .
$$

Consider the sequence:

$$
x_{1}=A x_{0}, x_{2}=A x_{1}=A^{2} x_{0}, \ldots, x_{n+1}=A x_{n}, \ldots
$$

Since x_{0} and $A x_{0}$ are comparable, for $n \in \mathbb{N}, x_{n}$ and $A x_{n}$ are comparable, and

$$
\begin{aligned}
e & \lesssim \vee\left(x_{n} x_{n+1}^{-1}, x_{n+1} x_{n}^{-1}\right) \\
& =\vee\left(A x_{n-1}\left(A x_{n}\right)^{-1}, A x_{n}\left(A x_{n-1}^{-1}\right)\right) \\
& \lesssim \vee\left(A x_{n-1} x_{n-1}^{-1}, x_{n-1}\left(A x_{n-1}\right)^{-1}\right)^{\lambda} \vee\left(A x_{n} x_{n}^{-1}, x_{n}\left(A x_{n}\right)^{-1}\right)^{\lambda} \\
& =\vee\left(x_{n} x_{n-1}^{-1}, x_{n-1} x_{n}^{-1}\right)^{\lambda} \vee\left(x_{n+1} x_{n}^{-1}, x_{n} x_{n+1}^{-1}\right)^{\lambda} .
\end{aligned}
$$

Therefore

$$
e \lesssim \vee\left(x_{n} x_{n+1}^{-1}, x_{n+1} x_{n}^{-1}\right) \lesssim \vee\left(x_{n} x_{n-1}^{-1}, x_{n-1} x_{n}^{-1}\right)^{\lambda} \vee\left(x_{n+1} x_{n}^{-1}, x_{n} x_{n+1}^{-1}\right)^{\lambda},
$$

and $\forall \beta \in[0,1]$,

$$
\vee\left(x_{n} x_{n+1}^{-1}, x_{n+1} x_{n}^{-1}\right)^{\beta} \lesssim \vee\left(x_{n} x_{n-1}^{-1}, x_{n-1} x_{n}^{-1}\right)^{\beta \lambda} \vee\left(x_{n+1} x_{n}^{-1}, x_{n} x_{n+1}^{-1}\right)^{\beta \lambda} .
$$

That is,

$$
\vee\left(x_{n} x_{n-1}^{-1}, x_{n-1} x_{n}^{-1}\right)^{\beta \lambda} \vee\left(x_{n+1} x_{n}^{-1}, x_{n} x_{n+1}^{-1}\right)^{-(1-\lambda) \beta} \in P
$$

and so

$$
\vee\left(x_{n+1} x_{n}^{-1}, x_{n} x_{n+1}^{-1}\right)^{(1-\lambda)} \lesssim \vee\left(x_{n} x_{n-1}^{-1}, x_{n-1} x_{n}^{-1}\right)^{\lambda}
$$

Since $0<\lambda<\frac{1}{2}, 0<\frac{\lambda}{1-\lambda}<1$, using Lemma 2.3

$$
\begin{aligned}
e & \lesssim\left(x_{n+1} x_{n}^{-1}, x_{n} x_{n+1}^{-1}\right) \\
& \lesssim \vee\left(x_{n} x_{n-1}^{-1}, x_{n-1} x_{n}^{-1}\right)^{\lambda / 1-\lambda} \\
& \lesssim \cdots \\
& \lesssim \vee\left(x_{0} x_{1}^{-1}, x_{1} x_{0}^{-1}\right)^{(\lambda / 1-\lambda)^{n}} .
\end{aligned}
$$

Using inequality (2) in the proof of Theorem 3.1, there exists a constant $C_{x_{0}}$ such that

$$
d\left(\vee\left(x_{n+1} x_{n}^{-1}, x_{n} x_{n+1}^{-1}\right), e\right) \leq C_{x_{0}} \cdot N \cdot\left(\frac{\lambda}{1-\lambda}\right)^{n} d\left(x_{0} x_{1}^{-1}, x_{1} x_{0}^{-1}\right)
$$

Since the metric d is invariant under the translation operation,

$$
d\left(x_{n}, x_{n+1}\right) \leq C_{x_{0}} \cdot N \cdot\left(\frac{\lambda}{1-\lambda}\right)^{n} d\left(x_{0}, x_{1}\right)
$$

This implies that $\left\{x_{n}\right\}$ is a Cauchy sequence. By the completeness of E, let $x_{n} \rightarrow x^{*} \in E$. Then

$$
A x^{*}=\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} x_{n+1}=x^{*}
$$

Thus, A has a fixed point in E and the sequence $\left\{A^{n} x\right\}$ converges to a fixed point of A.

Theorem 3.5. Let $A: E \rightarrow E$ be a map satisfying Condition (C1) of Theorem 3.4. If there exists an element $x_{0} \in E$ so that $\forall n \in \mathbb{N}, x_{0}$ and $A^{n} x_{0}$ are comparable, then A has a fixed point in E and the sequence
$\left\{A^{n} x_{0}\right\}$ converges to a fixed point x^{*} of A. Moreover, there exists a constant $C_{x_{0}}$ such that

$$
d\left(x_{0}, x^{*}\right) \leq\left(1+\frac{N \cdot C_{x_{0}} \cdot \lambda}{1-2 \lambda}\right) d\left(x_{0}, A x_{0}\right)
$$

Proof. Similar to the proof of Theorem 3.3, $\left\{x_{n}=A^{n} x_{0}\right\}$ is a Cauchy sequence. Let $x_{n} \rightarrow x^{*} \in E$. Now, we prove that x^{*} is a fixed point of A. As found before, for all n, x_{n} and x^{*} are comparable. Using Condition (C1), for all n, x_{n-1} and $x_{n}=A x_{n-1}$ are comparable. Let $n \rightarrow \infty$. Then using Lemma 2.2, x^{*} and $A x^{*}$ are comparable. Hence

$$
\begin{aligned}
e & \lesssim \vee\left(A x_{n}\left(A x^{*}\right)^{-1}, A x^{*}\left(A x_{n}\right)^{-1}\right) \\
& \lesssim \vee\left(A x_{n} x_{n}^{-1}, x_{n}\left(A x_{n}\right)^{-1}\right)^{\lambda} \circ \vee\left(A x^{*} x^{*-1}, x^{*}\left(A x^{*}\right)^{-1}\right)^{\lambda} .
\end{aligned}
$$

Let $n \rightarrow \infty$. Then we obtain

$$
\begin{aligned}
e & \lesssim \vee\left(x^{*}\left(A x^{*}\right)^{-1}, A x^{*}\left(x^{*}\right)^{-1}\right) \\
& \lesssim \vee\left(A x^{*} x^{*-1}, x^{*}\left(A x^{*}\right)^{-1}\right)^{\lambda} \circ \vee\left(A x^{*} x^{*-1}, x^{*}\left(A x^{*}\right)^{-1}\right)^{\lambda}
\end{aligned}
$$

that is,

$$
e \lesssim \vee\left(x^{*}\left(A x^{*}\right)^{-1}, A x^{*}\left(x^{*}\right)^{-1}\right) \lesssim \vee\left(A x^{*} x^{*-1}, x^{*}\left(A x^{*}\right)^{-1}\right)^{2 \lambda} .
$$

Thus, $\vee\left(A x^{*} x^{*-1}, x^{*}\left(A x^{*}\right)^{-1}\right)^{2 \lambda-1} \in P$. Since $2 \lambda-1<0$ and $\vee\left((A x)^{*} x^{*-1}\right.$, $\left.x^{*}\left(A x^{*}\right)^{-1}\right) \in P, x^{*}\left(A x^{*}\right)^{-1}=A x^{*}\left(x^{*}\right)^{-1}=e$, namely $A x^{*}=x^{*}$. Therefore, x^{*} is a fixed point of A.

Remark 3.1. In Theorems 3.3, 3.4 and 3.5, the estimations of $d\left(x_{0}, x^{*}\right)$ are the same as that in Theorem 3.1. This is because $\left\{x_{n}\right\}$ is the Cauchy sequence which makes $d\left(x_{n}, x^{*}\right) \leq C_{x_{0}} \cdot N \cdot \beta^{n} d\left(x_{1}, x_{0}\right)$ holds. In Theorems 3.4 and 3.5, $\beta=\frac{\lambda}{1-\lambda}$.

Theorem 3.6. Suppose that $u_{0}, v_{0} \in E$ with $u_{0} \lesssim v_{0}$, and $\left[u_{0}, v_{0}\right]=$ $\left\{u \in E \mid u_{0} \lesssim u \lesssim v_{0}\right\}$ is an ordered interval in E. If $A:\left[u_{0}, v_{0}\right] \rightarrow\left[u_{0}, v_{0}\right]$ is a β-ordered contractive map, then A has a unique fixed point. Moreover, for all $x \in\left[u_{0}, v_{0}\right]$, the sequence $\left\{A^{n} x\right\}$ converges to the only fixed point of A.

Proof. Define sequences:

$$
\begin{aligned}
& u_{1}=A u_{0}, u_{2}=A u_{1}, \ldots, u_{n+1}=A u_{n}, \ldots \\
& v_{1}=A v_{0}, v_{2}=A v_{1}, \ldots, v_{n+1}=A v_{n}, \ldots
\end{aligned}
$$

then $\left\{u_{n}\right\},\left\{v_{n}\right\} \subset\left[u_{0}, v_{0}\right]$. Since $u_{0} \lesssim v_{0}$ and A is a β-ordered contractive map, for all n, u_{n} and v_{n} are comparable, and

$$
\begin{aligned}
e & \lesssim \vee\left(u_{n} v_{n}^{-1}, v_{n} u_{n}^{-1}\right) \\
& =\vee\left(A u_{n-1}\left(A v_{n-1}\right)^{-1}, A v_{n-1}\left(A u_{n-1}\right)^{-1}\right) \\
& \lesssim \vee\left(u_{n-1} v_{n-1}^{-1}, v_{n-1} u_{n-1}^{-1}\right)^{\beta} \\
& \lesssim \cdots \\
& \lesssim \vee\left(u_{0} v_{0}^{-1}, v_{0} u_{0}^{-1}\right)^{\beta^{n}}
\end{aligned}
$$

Because P is positive, there exists a constant $C_{u_{0} v_{0}^{-1}}$ and a positive integer N such that

$$
d\left(u_{n}, v_{n}\right)=d\left(u_{n} v_{n}^{-1}, e\right)=d\left(v_{n} u_{n}^{-1}, e\right) \leq C_{u_{0} v_{0}^{-1}} \cdot N \cdot \beta^{n} d\left(u_{0}, v_{0}\right)
$$

Since again $u_{0} \lesssim v_{1}$ for all n, u_{n} and u_{n+1} are comparable, and

$$
\begin{aligned}
e & \lesssim \vee\left(u_{n} u_{n+1}^{-1}, u_{n+1} u_{n}^{-1}\right) \\
& =\vee\left(A u_{n-1}\left(A u_{n}\right)^{-1}, A u_{n}\left(A u_{n-1}^{-1}\right)\right) \\
& \lesssim \vee\left(u_{n-1} u_{n}^{-1}, u_{n} u_{n-1}^{-1}\right)^{\beta} \\
& \lesssim \cdots \\
& \lesssim \vee\left(u_{0} u_{1}^{-1}, u_{1} u_{0}^{-1}\right)^{\beta^{n}}
\end{aligned}
$$

Thus

$$
d\left(u_{n}, u_{n+1}\right) \leq \beta^{n} N d\left(u_{0}, u_{1}\right) .
$$

Notice that $\beta<1,\left\{u_{n}\right\}$ is a Cauchy sequence with a limit point $u^{*} \in$ $\left[u_{0}, v_{0}\right]$. Similarly, $\left\{v_{n}\right\}$ is a Cauchy sequence with a limit point $v^{*} \in\left[u_{0}, v_{0}\right]$. Then

$$
d\left(u^{*}, v^{*}\right)=\lim _{n \rightarrow \infty} d\left(u_{n}, v_{n}\right) \leq \lim _{n \rightarrow \infty} C_{u_{0} v_{0}^{-1}} \cdot N \cdot \beta^{n} d\left(u_{0}, v_{0}\right)=0 .
$$

This implies that $u^{*}=v^{*}$.
Now, we prove that u^{*} is a fixed point of A. For all $m>n$, since u_{0} and u_{m-n} are comparable, $A^{n} u_{0}=u_{n}$ and $A^{n} u_{m-n}=u_{m}$ are comparable. Let $m \rightarrow \infty$. Then u_{n} and u^{*} are comparable, and $A u_{n}$ and $A u^{*}$ are also comparable

$$
e \lesssim \vee\left(A u_{n}\left(A u^{*}\right)^{-1}, A u^{*}\left(A u_{n}\right)^{-1}\right) \lesssim \vee\left(u_{n} u^{*-1}, u^{*} u_{n}^{-1}\right)^{\beta} .
$$

So

$$
\lim _{n \rightarrow \infty} d\left(u_{n+1}, A u^{*}\right)=\lim _{n \rightarrow \infty} d\left(A u_{n}, A u^{*}\right) \leq \lim _{n \rightarrow \infty} C_{u_{n} u^{*-1}} \cdot N \cdot \beta d\left(u_{n}, u^{*}\right)=0 .
$$

Thus, $A u^{*}=u^{*}$, and u^{*} is a fixed point of A.
For all $x \in\left[u_{0}, v_{0}\right]$, since x and u_{0} are comparable, $A^{n} x$ and $A^{n} u_{0}$ are comparable, and

$$
e \lesssim \vee\left(A^{n} x\left(A^{n} u_{0}\right)^{-1}, A^{n} u_{0}\left(A^{n} x\right)^{-1}\right) \lesssim\left[\vee\left(u_{0} x^{-1}, x u_{0}^{-1}\right)\right]^{\beta^{n}} \rightarrow e .
$$

Therefore, $A^{n} x \rightarrow u^{*}$.
Now, we prove that the fixed point of A is unique. Suppose that v is another fixed point of A in $\left[u_{0}, v_{0}\right]$, then

$$
d\left(u^{*}, v\right) \leq d\left(u^{*}, A^{n} u_{0}\right)+d\left(A^{n} u_{0}, A^{n} v\right) .
$$

Notice that $u_{0} \lesssim v$, and therefore we have

$$
\begin{aligned}
e & \lesssim v\left(A^{n} u_{0}\left(A^{n} v\right)^{-1}, A^{n} v\left(A^{n} u_{0}\right)^{-1}\right) \\
& =\vee\left(\left(A A^{n-1} u_{0}\right)\left(A A^{n-1} v\right)^{-1},\left(A A^{n-1} v\right)\left(A A^{n-1} u_{0}\right)^{-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \lesssim \vee\left(A^{n-1} u_{0}\left(A^{n-1} v\right)^{-1}, A^{n-1} v\left(A^{n-1} u_{0}\right)^{-1}\right)^{\beta} \\
& \lesssim \cdots \\
& \lesssim \vee\left(u_{0} v^{-1}, v u_{0}^{-1}\right)^{\beta^{n}} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
d\left(A^{n} u_{0}, A^{n} v\right) & =d\left(v A^{n} u_{0}\left(A^{n} v\right)^{-1}, A^{n} v\left(A^{n} u_{0}\right)^{-1}\right) \\
& \leq N d\left(v\left(u_{0} v^{-1}, v u_{0}^{-1}\right)^{\beta^{n}}, e\right) \\
& \leq N C_{u_{0} v^{-1}} \beta^{n} d\left(u^{*}, v\right) .
\end{aligned}
$$

Since u^{*} and v are fixed points, $d\left(A^{n} u_{0}, A^{n} v\right) \rightarrow d\left(u^{*}, v\right)$, we have $d\left(u^{*}, v\right)=0$. The uniqueness is proved.

References

[1] H. Amann, On the number of solutions of nonlinear equations in ordered Banach spaces, J. Funct. Anal. 11 (1972), 346-384.
[2] Y. H. Du, Fixed points of increasing operators in ordered Banach spaces and applications, Appl. Anal. 38 (1990), 1-20.
[3] D. J. Guo, Fixed points of mixed monotone operators with applications, Appl. Anal. 31 (1988), 215-244.
[4] D. J. Guo and V. Lakshmikantham, Couple fixed points of nonlinear operators with applications, Nonlinear Anal. 11 (1987), 623-632.
[5] Juan J. Nieto and Rosana Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005), 223-239.
[6] Walter Rudin, Functional Analysis, 2nd ed., McGraw-Hill, Inc., New York, 1991.
[7] Y. R. Syau, Some fixed point theorems of T-monotone operators, J. Math. Anal. Appl. 205 (1997), 325-329.
[8] J. G. Wang, Fixed points of increasing operators in ordered Banach spaces, Acta Math. Sinica (Chin. Ser.) 43 (2000), 43-48 (in Chinese).
[9] X. Zhang, Fixed points of ordered contractive maps, Acta Math. Sinica (Chin. Ser.) 48 (2005), 973-978 (in Chinese).

[^0]: 2000 Mathematics Subject Classification: 47H10.

