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Abstract

Introducing a concept of a noncommutative Banach space, we obtain
several fixed point theorems for continuous or discontinuous ordered
contractive maps in an ordered noncommutative Banach space. A
sufficient condition for the fixed point to be unique is given.

1. Preliminaries

Amann [1] introduced the concepts of ordered topological linear space
and ordered Banach space, and gave a number of solutions of nonlinear
equations in ordered Banach spaces. Based on his work, many authors
studied the properties of fixed points of nonlinear equations in ordered
Banach spaces [2-5, 7-8]. Furthermore, Zhang [9] introduced some types
of ordered contractive maps and obtained some fixed point theorems in
ordered Banach spaces. Since these fixed point results are based on the
existence of the ordered structures which are compatible with the related
topological structures, illumined by [1] and [9], the paper defines the
ordered contractive maps and obtains the corresponding fixed point
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theorems for ordered contractive maps in noncommutative Banach spaces.
We now give the definition of a noncommutative Banach space.

Definition 1.1. Let E be a group. Then FE is called a noncommutative
Banach space if the following conditions are satisfied:

1. There exists a metric d on E so that (E, d) is a complete metric
space;

2. The metric d is invariant under the translation operation. That is,
Vx, v, z € E, d(xz, yz)=d(x, y);

3. There exists a binary continuous operation
F:RxE > E, (a,g)+ g%,

which extends the group multiplications in E;

4. The metric d is sub-homogeneous, that is, for x € E, there exists a

constant C,, > 0 such that for a € R,
d(x®, e) < Cy| a|d(x, e).

It is clear that a Banach space is a noncommutative Banach space.
The following is a nontrivial example on noncommutative Banach space.

Example 1.1. Suppose that H is a Hilbert space and U(H) is the
unitary group of H. As a subset of L(H), U(H) is a complete metric

space if one defines
dS, T)=|T'S~I|=[S-T| (S, T <UH).

Furthermore, for 7 € U(H) and o € R, set
21 -
7% - j ¢ 9OGE,,
0

where Eg stands for the spectral measure associated with the operator T

(6], then U(H) is a noncommutative Banach space.

Proof. It suffices to prove that U(H) possesses Properties 3 and 4 of
Definition 1.1.
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First, suppose that d(T},,T) — 0, where T,, e U(H). Since for k e N,
ATk, %) = | T,1F 7t T TR - TR
SITu =TT+ TN T - T,

by using induction, we obtain for an arbitrary polynomial P(x), that

d(P(T,), P(T)) - 0. Since for ¢ > 0, there exists a polynomial Py(x)

such that sup,c[o, oq]| Po(x) - 2% | < %

d(By(T), T*) < d(Ry(Ty,), Ty') <

E. £
3’ 3’

Also, for % >0, dN e N so that if n > N, then | Py(T,) - Py (T)| < %

Thus, when n > N,
d(T,', T%) < | Ty = P(T,) + P(T,) + P(T) - P(T") - T* |
<| T = P(T,) | + | P(T,) - P(T) ||+ P(T) - T* |
<e
Therefore, for a € R, d(T,, T) — 0 implies that d(7)", T*) — 0.

Next, since the metric d is pseudo-homogeneous, we assume T # I.

For a € R,

27 0
d(T*, T) = HJ (€ _1)dE,
0

< sup | e 1 |-
0€[0, 2n]

Since the exponential function is a periodic function, we consider only the
case when | a | € [0, 1]

. 1
. 2 <20 al, if|loa|>=,
wp [ 1217 || la] >3 1
0¢[0, 2n] |el2na—1|s2n|(x|, ifOS|0L|S§.

27
d(T, I)

In all, set Cp = , then for any a e R, d(T%, I) < Cp| o |d(T, I).
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Similarly, we prove that for T e U(H), lim,_,,, 7" = T and U(H)

1s a noncommutative Banach space.

2. Ordered Contractive Maps on Noncommutative

Banach Spaces

In this section, we introduce an order structure in a noncommutative

Banach space and obtain basic properties of ordered contractive maps.
Definition 2.1. Suppose that E is a noncommutative Banach space.
A set P c E is called convex if Vx, y € P, xy? € P, where p,q € R"
and p + ¢ = 1. Furthermore, P < E is called a cone if P is closed, convex
and invariant under exponential operation by element of [0, «), and if

PNPL={e}, where P71 = (x71|x e P

It is easy to see that a cone is a semigroup. Each cone can induce a
partial ordering in E through the rule x < y if and only if y’x™® ¢ P for

B € [0, 1]. This ordering is antisymmetry, reflexive and transitive.

Definition 2.2. If there exists a constant N > 0 such that for any
e <x <y dx, e) < Nd(y, e), Pis called positive, and the constant N is
called the positive constant of P.

Let “<” be the partial ordering determined by a cone P. For u,v € E,
if one of # < v and v < u holds, then we say that u and v are comparable

and write:

(w, v) u, when v < u,
v (u, v) =
’ v, when u <uv.

Lemma 2.1. If u and v are comparable, then wl and vul are

comparable, and
e <v vt out.

Proof. Suppose that v < u. Then Va € [0, 1],

(™ o) = () ) = L
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Since 20 > 0 and uv™! € P, (uwv')** e P. Thus, the elements uv™' and
vu"! are comparable, and vu ! < uv. Also, Va € [0,1], (wv H)*e™® =
(w1 eP,soe<uv? and e < v (wvt, vu ). O

Definition 2.3. Let E be a noncommutative Banach space and P be a
positive cone of E with the positive constant N. A map A : E — E is

called a B-ordered contractive map if there exists a constant 0 < <1
such that for u, v € E, if u and v are comparable, then Au and Av are

also comparable, and moreover
v (Av(Aw) ™, Au(Av) ) < v ou, wo P
Here, the B is called the constant of the ordered contractive map.

Remark 2.1. The ordered contractive map need not be continuous.

Lemma 2.2. Suppose that for all n € N, u, and v, are comparable.
If v, > vy, u, > uy, then uy and vy are comparable. That is to say, the

ordering structure is compatible with the metric given in E.

Proof. Since Vn € N, one of u,, < v, and v, < u, holds, there exist

~

subsequences {vnk } and {unk } such that for V0 <B <1, either uﬁk U;E eP

or vP 4P ¢ P holds. Without loss of generality, suppose that ub v B ep.
ng np np np

Then

d(uﬁkv;}f, ugvaﬁ) < dwP vfg uf’lkvaﬁ) + d(ugkvaf’, ugvaﬁ)

ng np’
= d(ugk, ug) + d(v;}E’, vaﬁ).

The last equation holds because the metric is invariant under the
translation operation.

-B —B -B —B

Because v,, — vp and u,, —ug, we have Uy = V0 and U, = Uy

Since the multiplication operation on E is continuous,

Jim d(ul v P ufusP) = 0.
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Notice, the fact that the cone P is closed, u806B € P. This implies that u

and vy are comparable. O
Lemma 2.3.If x,ye P and x <y, then VO < B < 1, xP < yﬁ.

Proof. Since x <y, Vael0,1], y*x*eP. For 0<B<l,

aB €[0,1], so y*Px® ¢ P, namely xP < ,P. o

Lemma 2.4. If x and y are comparable, then d(v (xy™', yx7!), e)
=d(x, y).

Proof. Suppose v(x, y) = x. Then

and
vy yx H=ay L
Since the metric d is invariant under the translation operation,
d(x, y) = dlxy ™!, oy = d(v (7, x ), e).

This completes the proof. |
3. Theorems about the Fixed Points

Throughout this section, we suppose that E is a noncommutative
Banach space which is partially ordered by a positive cone P with the
positive constant N, and give several theorems on the fixed points of the
ordered contractive maps on E.

Theorem 3.1. Suppose that the B-ordered contractive map A:E —> E

is continuous. If there exists an element xq € E such that xy and Axg

are comparable, then the sequence A"x( converges to some fixed point x*

of A. Moreover, there is a number Cx0 depending on the choice of xg, so

that

Cx "N
d(xO,x*)S (?—fﬁ—kljd(ﬁco, Axo)
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Proof. Consider the sequence
X1 = Axg, X9 = Axq, ..., Xpy1 = Axy, ...

Since x3 and x; = Axy are comparable and the map A is a B-ordered
contractive map, x; and x9 = Ax; are comparable, and hence, x, and

X,4+1 = Ax, are comparable. Since

V(Axn—l (Axn )71 ’ Axn (Axn—l )71 )

-1 -1
v (xnxn+l’ Xn+1%n )

N

-1 -1
v (xn—lxn ’ xnxn—l)B’

using Lemma 2.3

-1 -1 -1 -1
Vv (xnanrl’ Xn+1%n ) SV (xn—lxn ’ xnxn—l)B

A

2
-1 -1
Vv (xn—an—l’ Xn-1%n-2 )B

A

-1 —1\p"
v (2%, %1% )B .

A

Thus

n
(v (XpXni1s Tna¥n'), €) < Nd(v (xoxit, 212" e). ¢
Because the metric d is sub-homogeneous, there exists a constant Cxo’
which depends on the choice of xg, so that
n
d(v (xoxi ', 220" P, €) < Cp - Bd(v (w1, :xp"), e). @)
Notice that the metric d is invariant under the translation operation
-1 -1
d(v (xp%p51, Xpi1%y, ) €) = d(xp,, Xp41)- 3)
In the same way
d(v (xoxi ", 225" ), €) = dl(xg, x). )
So, the inequality (2) turns into

-1 -1
d(xn’ xn+1) = d(V (xnxn+1’ Xn+1%n )’ e)

< N -d(v (xoxit, xxg ", )
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<N- Cxo ! Bnd(v (x()xl_l’ xlxal )’ e)
= N - Cy, -B"d(xg, x1).

Thus, the sequence {x,} is a Cauchy sequence since B € (0, 1). Suppose

that x,, — x”, then

Ax” = A lim x, = lim Ax,, = lim x,,,1 = x,
n—o n—w n—oo

which implies that x* is a fixed point of A. Moreover

d(x", xg) < d(xg, x1) + d(xq, x9) + -+ d(x,,, Xp41) + -

= D d(xn, %pe1) + dlxo, 31)
n=1

< ZCxO - N - p"d(xg, x1) + d(xg, x1)

n=1
= (Olfﬁ + ]_j d(JCO, Axo) O

Corollary 3.2. Conditions and assumptions are the same as in
Theorem 3.1. Let X be another fixed point of A. If X and x" are

comparable, then ¥ = x".

Proof. Since ¥ and x* are comparable, one can suppose that ¥ < x".

Using the definition of contractive map
v (AR (Ax*), Ax*(A%) ) < v (" F L B,
namely
vEET R < v (@tx T P
Since ¥ <x*, v(E 1, x*F ) =2"%"!, then x* %' < (x*x 1P, (x*x 1P
e P. Notice that 1-Be[0,1], ')} PeP. By x*x 1P ' eP and

x*f_1)17[3 e P, 1 =¢, and x* = . O
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Theorem 3.3. Suppose that A : E — E is a B-ordered contractive

map. If there exists an element xo € E so that Vn, xo and A"x, are
comparable, then A has some fixed point, and the sequence {A"xy}

converges to one fixed point x* of A. Moreover, there exists a constant Cx0

such that
C. .N.
d(x*, xo) < (xolfﬁﬁ + ljd(xo, Axo)

Proof. Similar to the proof of Theorem 3.1, the sequence

{x, = A"xy} is a Cauchy sequence. By the completeness of E, let
x, — x" € E. Now, we prove that x” is a fixed point of A.

For all m, n, suppose that m > n, using the given condition, x; and
Xpy_pn are comparable. Then Ax, and Ax,,_, are comparable, and so are
x, = A"xy and x,, = A"x,,_,. Let m — o, using Lemma 2.2, Vn, x,

and x* are comparable, therefore Ax, and Ax" are comparable, and so
e 5 v (Ax, (Ax*)", Ax*(Ax,) ) £ v (0™ wa, P
Since P is a positive cone,
d(v (Ax,(Ax")", Ax*(Ax,) "), €) < Cyy - N - Ba(v (0", x'x,1), o),
that is,
d(xp.1, A7) = d(Ax,, Ax™) < Cy - N -Bd(x,, x*) = 0.
Therefore, x* = Ax™ and x" is a fixed point of A. At last, similar to the

proof of Theorem 3.1, we can get the estimation of d(x", xy) and we omit

it here. o

Theorem 3.4. Let A : E — E be a continuous map and satisfy the

following condition:

(C1) If u and v are comparable, then Au and Av are comparable. Also,
if u and Au are comparable, and v and Av are comparable, then there
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existsa A € (0, %) so that for VB € [0, 1],

v (Av(Aw) Y, Au(Av) P < v (Au o, uo (Au) Y

o v(Av o v, v(Av) )P,
If there exists an element xy € E, such that xy and Axq are comparable,

then the sequence {A"x,} converges to a fixed point x* of A. Moreover,

there exists a constant Cy such that
. Cp, "N -A
d(xo, X )S 1+E—W d(xo, AJC())

Proof. Set B = %, then

NB AN

1 .
178 1- 2

Consider the sequence:

X1 = Axg, X9 = Axy = Azxo, ey Xpg1 = Axyyy e

Since x; and Ax, are comparable, for neN, x, and Ax, are

comparable, and

e <V (%2011, X1k ")
= v (Ax,_1(Ax,) ", Ax, (Axply)
< v (Axy gty 2 (Ax ) v (A, w0, (Ax,) T
=V (21, %12V (120 2200 )
Therefore

-1 -1 -1 -1\ -1 -1 \A
esVv (xnxn+1’ Xn+1%n ) SV (xnxn—l’ Xn-1%n ) Vv (xn+1xn ’ xnxn+1) ’

and VB € [0, 1],

-1 -1 -1 -1\Br -1 -1 A
v (xnxn+1’ Xn+1%n )B Y% (xnxn—l’ Xn-1%n )B Vv (xn+1xn > XnXn+1 )B .
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That 1s,
-1 —1\BA -1 -1 \—(1-2
Vv (xnxn—l’ Xn-1%n )B v (xn+1xn ’ xnxn+1) ( B € P’
and so
-1 -1 \(1-2 -1 —-1\A
Vv (xn+1xn ’ xnxn+1)( ) S (xnxn—l’ Xn-1%Xn ) .
. 1 A .

Since 0 < A < 9 0< T < 1, using Lemma 2.3

-1 -1
es (xn+lxn s xnanrl)

-1 —1\M/1-A
SV (xnxn—l’ Xp-1Xn ) /
< ..

-1 —1\(A/1-2)"
< Vv (xoxy, X120 )(/ r,

Using inequality (2) in the proof of Theorem 3.1, there exists a constant
C,.. such that

X0

_ _ A Y _ _
d(v (%ps1%5" s XpXpi1)s €) < Cy - N - (m) d(xoxi ", x120").

Since the metric d is invariant under the translation operation,

7\’ n
d(xp, Xp41) < Cyy - N - (m) d(xg, %1).

This implies that {x,} is a Cauchy sequence. By the completeness of E,

let x, - x* € E. Then

* . . *
Ax" = lim Ax, = lim x,,; = x".
n—oo n—o

Thus, A has a fixed point in E and the sequence {A"x} converges to a

fixed point of A. O

Theorem 3.5. Let A : E —» E be a map satisfying Condition (C1) of

Theorem 3.4. If there exists an element xo € E so that Vn € N, xy and

A"xy are comparable, then A has a fixed point in E and the sequence
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{A"xy} converges to a fixed point x* of A. Moreover, there exists a

constant Cy, such that
. N-C, ‘A
d(xg, x7) < (1 + ﬁ]d(xo, Axg).

Proof. Similar to the proof of Theorem 3.3, {x, = A"x,} is a Cauchy
sequence. Let x, - x* € E. Now, we prove that x” is a fixed point of A.

As found before, for all n, x, and x* are comparable. Using Condition

(C1), for all n, x,_;1 and x,, = Ax,_; are comparable. Let n — . Then

using Lemma 2.2, x* and Ax" are comparable. Hence
e 5 v (Ax,(Ax"), Ax"(Ax,) ™)
< v (Axpx;t, x,(Ax, ) o v(Ax ™, 2 (Ax) Y
Let n — o. Then we obtain
e < v (x"(Ax*), Ax*(x*) )
< v (Ax*x* 0 xf(Ax) ) o v(Axtx T ot (AxT) Y,
that is,
e s v (A, A (")) S v (AxtxtT wt (AP
Thus, v (Ax*x*7, x*(Ax*) 1?7 e P. Since 20 -1<0 and v ((Ax)'x*",
HAx*) ) e P, x*(Ax*) ! = Ax*(x*) ! = e, namely Ax* = x*. Therefore,
x" is a fixed point of A. |

Remark 3.1. In Theorems 3.3, 3.4 and 3.5, the estimations of
d(xg, x*) are the same as that in Theorem 3.1. This is because {x,} is
the Cauchy sequence which makes d(x,, x") < Cy - N -B"d(x;, xo)

holds. In Theorems 3.4 and 3.5, B = ﬁ
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Theorem 3.6. Suppose that ug, vy € E with uy < vy, and [ug, vy] =
{ueEluy Susvy} is an ordered interval in E. If A : [ug, vy] — [ug, vol
is a B-ordered contractive map, then A has a unique fixed point. Moreover,
for all x € [ug, vg], the sequence {A"x} converges to the only fixed point of
A.

Proof. Define sequences:
u; = Aug, ug = Auyq, ..., Uy = Ay, ...,
v = Avg, g = Avyq, .., Uy = Ay, .
then {u,}, {v,} < [ug, vg]. Since uy < vy and A is a B-ordered contractive
map, for all n, u, and v,, are comparable, and

1

e <V (upvy' s vatty')

Vv (Aun—l (Avn—l )71 ’ Avn—l (Aun—l )71 )

-1 -1
Vv (un—lvn—l > Un—1Un—1 )B

A

A

-1 —1\8"
v (uovg > Vo )B .

N

Because P is positive, there exists a constant Cu bl and a positive
0Y0
integer N such that

d(uy,, v,) = duv,t, e) = dv,u,’, e) < CuOU61 N - B"d(ug, vg)-

Since again uy < v; for all n, u, and u,,; are comparable, and

-1 -1
es Vv (unun+1’ Un+1Un )

= V(Aun—l(Aun)il’ Aun(AuZh ))

N

-1 -1
Vv (un—lun > Upllp—1 )B

N

-1 —1\8"
v (wour -, wmuyg )B .

A
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Thus
d(urw un+1) < BnNd(u07 u'l)'

Notice that B <1, {u,} is a Cauchy sequence with a limit point u" e

[wo, vg]. Similarly, {v,} is a Cauchy sequence with a limit point

v" € [ug, vo]. Then
du*,v*) = lim d(u,, v,) < lim C _; - N - B"d(ug, vy) = 0.
n—ow n—o UV

This implies that z* = v*.

Now, we prove that «* is a fixed point of A. For all m > n, since U
and u,_, are comparable, A"uj=u, and A"u,_,=u, are
comparable. Let m — . Then u, and u" are comparable, and Au, and
Au” are also comparable

e < v (Au,(Au*)?, Au*(Au,) ™) < v (wu' ™, w'u P
So
r}grgo d(uy,.1, Au™) = r}l_rfio d(Au,, Au™) < r}l_r)rio Cunu*_1 N -Bd(u,, u*) = 0.
Thus, Au” = u*, and «” is a fixed point of A.

For all x € [ug, vy, since x and u are comparable, A"x and A"u,

are comparable, and
e < v (AM(AMuy) Y, AMug(A™x) ) < [v (wox ™, xual)][‘)’n - e

Therefore, A"x — u”.

Now, we prove that the fixed point of A is unique. Suppose that v is
another fixed point of A in [ug, vy], then

du®, v) < d(u*, AMuy) + d(A"uy, A™).
Notice that ugy < v, and therefore we have
e < v (AMup(A™) T, AM(A )™t

= V(A4 ug) (AA" o), (A4 N) (AA" Tug) )
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v (An—luo(An—lv)—l, An—lv(An—luO)—l)B

A

N

v (v, vug? )Bn .

N

d(Aug, A™) = d(v AMug(A™) ™t A"(A ) )
< Nd(v (ugv?, vug* )Bn, e)

n *
< NCuOv,lﬁ d(u s U).

Since u* and v are fixed points, d(A"ug, A™) — d(u*, v), we have

d(u’,

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

v) = 0. The uniqueness is proved. |
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