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Abstract

This paper considers the existence and uniqueness of solutions for the
fourth-order two point boundary value problem

4
d Z:f(x,u,u’,u")+e(x),0<x<1, I
dx

u(0) = u'(1) = u"(0) = u"(1) = 0, (2

where f:[0, 1] x R3 5> R is the function satisfying Carathéodory

condition and e(x) e L'[0,1]. With the condition of the nonlinear

increasing function and Leray-Schauder principle, the existence and
uniqueness of solutions of a kind of fourth-order boundary value
problems are discussed.

1. Introduction

The static elastic beam can be described by a fourth-order boundary
value problem. Since the both sides of the support beam have different

conditions, there exist various boundary value problems. We consider the
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problem about the static elastic beam with one simple support and one
sliding support.

Some results of the existence and uniqueness for the boundary value
problem (1)-(2) can be found in [1, 3-4]. In this paper, we discuss the
existence and uniqueness for the boundary value problem (1)-(2).

2. The Main Result

In this paper, the following normed spaces are considered: C[0,1],
c'o, 1], C?[o,1], L'[0,1] and L”[0,1]. |-I; and ||, denote usual
I}0,1] and I2[0,1] norms, respectively. Let o*!(0,1) be the Sobolev

space which consists of such kinds of functions y : [0, 1] - R, where y', "

4

4
and y” are all absolutely continuous on [0, 1] and Z Y ¢ 1Mo, 1]. We use
x

the following lemmas:

Lemma 2.1 [2]. If y € L}0, 1] and y(0) = 0 or y(1) = 0, then
2 _ 42
¥z < n—zlly l3- ®3)

Lemma 2.2. Suppose e(x) e I}[0, 1]. Then there exists only one solution

for the linear boundary value problem

4
% =e(x), xel0,1] (4)

with
»(0) = y'(1) = ¥"(0) = y"(1). (5)

It is easy to show that u = u(x) is the unique solution of boundary

value problem (4)-(5), where

u(x) = Io(x —Pe(t)dt + % Ax® + Bx,
A= —I: e(t)dt,

B- %Jole(t)dt _ jol (1= 1)2e(t)dt.
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The main result of the paper is as follows:

Theorem 2.3. Suppose functions f, h, g : [0, 1] x R? 5 R satisfy

the Carathéodory condition and e e L'0,1]. If f has the following

decomposition:
f(x5 Y, 2, u) = h(x, Y, 2, u)+ g(x, Y, 2, u)
with
@) for any (x, y, z, u) € [0, 1]x R® and o, B, v € (0, 1), m e L*[0, 1],
| Al v, 2 w)| < m( o [* 4] 2P+ |u]), ©®)

(i) for a, b, ¢, d € L*[0, 1], v € [1, 2),

yg(x, v, 2, u) < ay® + b yz |+ yu |+ d| y [, @
(iii) there exist L?-Carathéodory condition function w : [0, 1]><}R2

— R and function y(x) € L}0, 1] such that
| f(x, 3, 2, w)| < wlx, 3, 2)| ul|+y(x), ®

forany y, z, u € R and almost all x < [0, 1], and

n? -8

2
dlal, + 2o, + x|, < =—7—,

©)

then there exists a unique solution for boundary value problem (1)-(2) in

c?o, 1].

3. The Proof of Theorem 2.3

Let X =C?[0,1], Y =I'0,1] and D(L) = {u|u € (0, 1), u(0) =
u'(1) = u"(0) = u"(1) = 0}. Then D(L) < X. We define linear operator
L:D(L) - Y by

d*u

L(u) = e u e D(L)
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and define nonlinear operator N : X — Y by
Nw)(x) = f(x, u, v, u"), x€(0,1).
Let K = L', Since L is one-to-one linear operator, by Lemma 2.2 and the

Arzéla-Ascoli’s theorem, it follows that KN is a continuous operator. By
the theorem of Leray-Schauder, we can prove that the boundary value

problem (1)-(2) has a solution in C2[0, 1]. For this, we need only to obtain
all the possible solutions of
dhu _
dx*

u(0) =u'(1) = u"(0) =u"(1) =0

Mx,u, ', u")+re(x), xe[0,1] (10)

in C2[0, 1] which do not depend on any priori estimate of A e [0, 1].

So, suppose u(x) is the solution with respect to some A € [0, 1] of

equations (1)-(2), we prove that there exists M > 0 such that

maxi| L, [ @, [« L.} < M.

Multiplying (10) by « and integrating them on [0, 1], we have

1 d4u 1 1
I u—_,dx kJ. uf(x, v, u", u")dx + XI u(x)e(x)dx
0 dx 0 0

IA

1
J |ul| h(x, ', u", u")|dx
0
1 1
+I |ul| gx, v, u", u")|dx +I |u||e(x)|dx
0 0
1 1
< lj‘ uldx +J. | h(x, u', u", u™) |2dx
2Jo 0
1 ! ”n "
o J Ll et utsu) s+ ul, ) o)

In terms of conditions of the theorem, we get

1 d4u 1 1
J u—,dx = uu" B —J wu"dx = —u'u' [ +I u'u"dx < | u” ||§,
0 dx 0 0

|h(x, ur’ u", uw)l < mZ(l u |0L, | u' |B, | u" |y)2 < 4m2(| u |20L, | u' |2B, | u" |27).
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From ! w(x) P%dx < | u|?* and Lemma 2.1, we have
0 2

1
J|u”M&uJ&u0Wx
0

IN

1 2 2 2 2 2
shuly +2mLQwls® + 157+l w37

IA

2 2a
1( 4 "2 2( 4 "2
eI A LIAC NPT S
B
4 "2 "2
(S 1w
T
1
J ug(x, u, u', u")dx
0
! 2 ! '
<llal, | wdx+|ol, | |u|dx
0 0
1 . 1 v
elel, | e sfdl],| [ulds

2
Slalolwly + 1ol wlgluly +1e ol wlal vy +1d .1l

2 3
_4 n 2 2 "2
S( ZJ I a el w15 +(;) (M A7
T

2Y? 2 (2) ,
(2 el +(3) 1dLpu g

Then

e (8 16 8 4 AR v
"5 S(n—4+75—4||a||oo+n—3||b||oo+n—2||C||ooj||u”||2 +(;) 16 el " 13

20 B
2| 4 2 4 2 2 4
“2m u((—j I+ (5 1 P n;] el
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For a, B € (0,1) and y € (1, 2), by the condition

n? -8

dlal, +20b], + 2 cll,, <,

we know that there exists M; > 0 such that
[ ", < M;. 11)

From (8), (10) and (11), we know that there exists M >0 such that

4
‘ d—st
dx

Then from

< M.

x xpt g4
u'(x) = J. u"(t)dt = J. d—f:dsdt,
0 040 ds

u'(x) = J: u'(s)ds, u(x)= I: u'(s)ds,
we get that sup{ u(x)|, | w'(x)|, | &"(x)[} < M.

Next, if the nonlinear term satisfies conditions in Theorem 2.3 for
almost all x € [0, 1] and for each fixed (5, u) the function y strictly

decreases, then there exists, for the boundary value problem (1)-(2), only

one solution in CZ[0, 1].

In fact, if u(x) and wug(x) are all solutions of the boundary value

problem (1)-(2), then

4
d—Lfll = f(x, uy, ul, uf) +e(x), 0<ux <1,
dx
u1(0) = w1 (1) = u(0) = u(1) = 0

and

d4u2 _

e flox, ug, uh, uh) +e(x), 0<x<l,
x

u9(0) = uh(1) = u3(0) = uz(1) = 0.
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Since the function f strictly decreases, we have

” 1 d4 d4
[ (w1 — us) ||z = .“0( “ u2j(u1 — ug)dx

det  dx*
1
= [ [Py, v ) = £ g, s, )} (e — )l < 0,

and so | (u; —ug) |, = 0.

Note that

sup {|uy(x) - ug(x)[} < sup {{ui(x)—up(x)[} <[ (@ —u2) [y
x€|0, 1 xe|0, 1
and therefore for almost all x € [0, 1], u;(x) = ug(x). Further, since u;(x)

and ug(x) are all continuous functions, we have u;(x) = ug(x) for every

x e [0, 1].
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