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Abstract 

This paper considers the existence and uniqueness of solutions for the 
fourth-order two point boundary value problem 
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where [ ] RR →× 31,0:f  is the function satisfying Carathéodory 

condition and ( ) [ ].1,01Lxe ∈  With the condition of the nonlinear 
increasing function and Leray-Schauder principle, the existence and 
uniqueness of solutions of a kind of fourth-order boundary value 
problems are discussed. 

1. Introduction 

The static elastic beam can be described by a fourth-order boundary 
value problem. Since the both sides of the support beam have different 
conditions, there exist various boundary value problems. We consider the 
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problem about the static elastic beam with one simple support and one 
sliding support. 

Some results of the existence and uniqueness for the boundary value 
problem (1)-(2) can be found in [1, 3-4]. In this paper, we discuss the 
existence and uniqueness for the boundary value problem (1)-(2). 

2. The Main Result 

In this paper, the following normed spaces are considered: [ ],1,0C  

[ ],1,01C  [ ],1,02C  [ ]1,01L  and [ ].1,0∞L  1⋅  and 2⋅  denote usual 

[ ]1,01L  and [ ]1,02L  norms, respectively. Let ( )1,01,4ω  be the Sobolev 
space which consists of such kinds of functions [ ] ,1,0: R→y  where yy ′′′,  

and y ′′′  are all absolutely continuous on [ ]1,0  and [ ].1,01
4

4
L

dx
yd ∈  We use 

the following lemmas: 

Lemma 2.1 [2]. If [ ]1,01Ly ∈  and ( ) 00 =y  or ( ) ,01 =y  then 

.4 2
22

2
2 yy ′

π
≤  (3) 

Lemma 2.2. Suppose ( ) [ ].1,01Lxe ∈  Then there exists only one solution 
for the linear boundary value problem 

( ) [ ]1,0,4

4
∈= xxe

dx
yd  (4) 

with 
( ) ( ) ( ) ( ).1010 yyyy ′′′=′′=′=  (5) 

It is easy to show that ( )xuu =  is the unique solution of boundary 
value problem (4)-(5), where 
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The main result of the paper is as follows: 

Theorem 2.3. Suppose functions [ ] RR →× 31,0:,, ghf  satisfy 

the Carathéodory condition and [ ].1,01Le ∈  If f has the following 
decomposition: 

( ) ( ) ( )uzyxguzyxhuzyxf ,,,,,,,,, +=  

with  

  (i) for any ( ) [ ] 31,0,,, R×∈uzyx  and ( ) [ ],1,0,1,0,, ∞∈∈γβα Lm  

( ) ( ),,,, γβα ++≤ uzymuzyxh  (6) 

 (ii) for [ ] [ ),2,1,1,0,,, ∈γ∈ ∞Ldcba  

( ) ,,,, 2 γ+++≤ ydyucyzbayuzyxyg  (7) 

(iii) there exist 2L -Carathéodory condition function [ ] 21,0: R×w  

R→  and function ( ) [ ]1,01Lx ∈γ  such that 

( ) ( ) ( ),,,,,, xuzyxwuzyxf γ+≤  (8) 

for any R∈uzy ,,  and almost all [ ],1,0∈x  and 

,4
824

2
2 −π<π+π+ ∞∞∞ cba  (9) 

then there exists a unique solution for boundary value problem (1)-(2) in 
[ ].1,02C  

3. The Proof of Theorem 2.3 

Let [ ],1,02CX =  [ ]1,01LY =  and ( ) { ( ) ( ) =ω∈|= 0,1,01,4 uuuLD  
( ) ( ) ( ) }.0101 =′′′=′′=′ uuu  Then ( ) .XLD ⊂  We define linear operator 

( )LDL :  Y→  by 

( ) ( )LDu
dx

uduL ∈= ,4
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and define nonlinear operator YXN →:  by 

( ) ( ) ( ) ( ).1,0,,,, ∈′′′= xuuuxfxuN  

Let .1−= LK  Since L is one-to-one linear operator, by Lemma 2.2 and the 
Arzéla-Ascoli’s theorem, it follows that KN is a continuous operator. By 
the theorem of Leray-Schauder, we can prove that the boundary value 
problem (1)-(2) has a solution in [ ].1,02C  For this, we need only to obtain 
all the possible solutions of 

( ) ( ) [ ]1,0,,,,4

4
∈λ+′′′λ= xxeuuuxf

dx
ud  (10) 

( ) ( ) ( ) ( ) 01010 =′′′=′′=′= uuuu  

in [ ]1,02C  which do not depend on any priori estimate of [ ].1,0∈λ  

So, suppose ( )xu  is the solution with respect to some [ ]1,0∈λ  of 
equations (1)-(2), we prove that there exists 0>M  such that 

{ } .,,max Muuu ≤′′′ ∞∞∞  

Multiplying (10) by u and integrating them on [ ],1,0  we have 
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In terms of conditions of the theorem, we get 
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( ) ( ) ( ).,,4,,,,, 222222 γβαγβα ′′′≤′′′≤′′′′′′ uuumuuumuuuxh  
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From ( )∫ αα ≤
1
0

2
2

2 udxxu  and Lemma 2.1, we have 
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For ( )1,0, ∈βα  and ( ),2,1∈γ  by the condition 

,4
824

2
2 −π<π+π+ ∞∞∞ cba  

we know that there exists 01 >M  such that 

.12 Mu <′′  (11) 

From (8), (10) and (11), we know that there exists 0>M  such that 

.4

4
Mds

dx
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Then from  
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x x t
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( ) ( )∫ ′′=′
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x
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we get that ( ) ( ) ( ){ } .,,sup Mxuxuxu ≤′′′  

Next, if the nonlinear term satisfies conditions in Theorem 2.3 for 
almost all [ ]1,0∈x  and for each fixed ( )u,δ  the function y strictly 

decreases, then there exists, for the boundary value problem (1)-(2), only 

one solution in [ ].1,02C  

In fact, if ( )xu1  and ( )xu2  are all solutions of the boundary value 

problem (1)-(2), then 
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Since the function f strictly decreases, we have 
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and therefore for almost all [ ],1,0∈x  ( ) ( ).21 xuxu =  Further, since ( )xu1  
and ( )xu2  are all continuous functions, we have ( ) ( )xuxu 21 =  for every 

[ ].1,0∈x  
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