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Abstract

Let B be a Galois algebra over a commutative ring R with Galois

group G. Then B is a direct sum of Galois algebras such that each

direct summand is a composition of a central Galois algebra and a

commutative Galois algebra. A sufficient condition is also given under

which B is commutative.

1. Introduction

Let B be a Galois algebra with Galois group G over a commutative
ring R with no idempotents but 0 and 1, C be the center of B, and K =
{g € G|g(c) = ¢ for each ¢ € C}. Then in [2] it was shown that B is a

central Galois algebra with Galois group K and C is a commutative
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Galois algebra over R with Galois group G/K. The purpose of the present

paper is to generalize this theorem to any Galois algebra by using the
structure theorem for Galois algebras [5, Theorem 3.8]. We shall give a
further description of the structure of a Galois algebra, and derive a
sufficient condition for a Galois algebra being commutative.

2. Basic Definitions and Notations

Throughout this paper, B will represent a ring with 1, G a finite

automorphism group of B, C the center of B and BY the set of elements in
B fixed under each element in G. A ring B is called a Galois extension of

BY with Galois group G if there exist elements {a;,b; in B,
i=1,2,..,n} for some integer n such that 2?21 a;8(b;) = 8, , for each

g € G, a Galois algebra over R if B is a Galois extension of R which is

contained in C, and a central Galois extension if B is a Galois extension
over its center C.

3. Galois Algebras

Throughout, let B be a Galois algebra with Galois group G over a
commutative ring R, C be the center of B, and B® = {b ¢ B|g(b) = b for
each g € G}. It was shown that if R contains no idempotents but 0 and 1,

then B is a central Galois algebra with Galois group K
(={g eGlg(c)=c for each ce C}) and C is a commutative Galois

algebra over R with Galois group G/K [2, Theorem 1]. We shall
generalize this theorem for any Galois algebra by using the structure
theorem for B [5, Theorem 3.8].

Lemma 3.1 [5, Theorem 3.8]. Let B be a Galois algebra over R with
Galois group G. Then there are orthogonal idempotents {e;|i =1, 2, ..., m
for some integer m} in C and subgroups H; of G such that Be; is a

central Galois algebra with Galois group H; for each i =1, 2, ..., m and

B = @Z?; Be;, or B = (@ Z:il Bei) @ Ce, where e =1 - Zzl e; and
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Ce = Be is a commutative Galois algebra with Galois group G|c, = G.

Next lemma describes the direct summand Be; of Bfor i =1,2,..., m
in Lemma 3.1.

Lemma 3.2. By keeping the notations as given in Lemma 3.1, let
Gle;)={g eG|gle;)=¢;} and K; ={g € G(e;)|g(ce;) = ce; for each ¢ € C}.
Then Be; is a Galois algebra over Re; with Galois group G(e;) and K; is
a normal subgroup of G(e;) for each i =1, 2, ..., m.

Proof. Since B is a Galois algebra with Galois group G, it is a Galois

extension with Galois group G(e;) and Be; is a Galois extension of
(Be; )G(ei) with Galois group G(e;)|g,; = G(e;) [5, Lemma 3.7]. Moreover,
by Lemma 3.1 in [6], let B, be the Boolean algebra generated by
{0, eg|g € G}. Then each e; is a minimal element in B, such that
e; = [le, for some e, € B,. This implies that for each h e G, h(e;)

(= n(ITeg) =11 ehgh_l) is also a minimal element in B,. Thus, for each

g €@, gle;) =e; or gle;)  e; = 0. But then (Bei)G(ei) = BY%; by the proof
of Lemma 9 in [4]; and so (Be; )G(ei) = Re;. Therefore Be; is a Galois
algebra over Re; with Galois group G(e;). Also it is clear that K; is a
normal subgroup of G(e;) for each i =1, 2, ..., m.

Theorem 3.3. By keeping the notations of Lemmas 3.1 and 3.2, let
G(e;) = {g € G| gle;) = e;}. Then Be; is a central Galois algebra over Ce;
with Galois group K; and Ce; is a commutative Galois algebra over Re;

with Galois group G(e;)/K; foreach i =1, 2, ..., m.
Proof. By Lemma 3.2, Be; is a Galois algebra over Re; with Galois
group G(e;) and K; is a normal subgroup of G(e;) for each

i=1,2, .., m Hence Be; is a Galois extension of (Be;)Ki with Galois

group K;. By Lemma 3.1, Be; is a central Galois algebra over Ce; with

Galois group H;, so (Be;)i =Ce;. It is clear that H, c K;, so
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Ce; = (Be;)Ki < (Be;)i = Ce;. Thus (Be;)Xi = (Be;)i = Ce;; and so Be;
is a central Galois algebra over Ce; with Galois group K; and Ce; is a
commutative Galois algebra over Re; with Galois group G(e;)/K; for
eachi=1,2 ..., m.

Corollary 3.4. By keeping the notations of Theorem 3.3, H; = K;.

Proof. By Lemma 3.1 and Theorem 3.3, Be; is a central Galois
algebra over Ce; with Galois groups H; and K;, respectively, and
H; c K;. Let Jgz = {b € Be;|bx = g(x)b for all x € Be;}. Then J, # {0}
for each g € K; such that Be; :@ZheHi Jy, = @deKi Jg [3, Theorem
1]. Noting that H; < K;, we conclude that H; = K.

Corollary 3.5. By keeping the notations of Theorem 3.3, if G(e;) is
cyclic for each i =1, 2, ..., m, then B is commutative.

Proof. By Theorem 3.3, Be; is a Galois algebra over Re; with Galois

group G(e;), so Be; is commutative whenever G(e;) is cyclic [1, Theorem

11] for each i. Thus B = (G—) Zil Bei] @ Ce is commutative.

Corollary 3.6. By keeping the notations of Theorem 3.3, if G is an
Abelian group such that J . ~Jgj = {0} for all non-identity g; # g; € G,
where J, = {b € Blbx = g(x)b for all x € B}, then Bis commutative.

Proof. Since BJ g = Begi [3, Proposition 2 and Lemma 2] and
J g, -Jgj = {0} for all non-identity g; # g; € G, eg, "€g; = 0 for all
non-identity g; # g; In G. Hence eg, and eg; are different minimal
elements in B, in case eg # 0 and eg; # 0. Thus each e; in {e;|i =
1, 2, ..., m} as given in Lemma 3.1 is eg, for some g; #1 in G, and

H; ={g e Gleges =e,} =11, g} which is a cyclic group; and so each

Be; is commutative [1, Theorem 11]. Therefore B = (@ z:il Beij @ Ce
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1s commutative.

Remarks. (1) Theorem 3.3 covers the case of B in which R contains
no idempotents but 0 and 1, where e; =1 for each i.

(2) By Theorem 3.3, if J, = {0} for each g # 1, then B = de(; Jg

= J; = C [3, Theorem 1]; and so B is commutative.
4. Galois Algebras with a Transitive Galois Group

In this section, we will show that a Galois algebra with a Galois
group G is a direct sum of Galois algebras with Galois group induced by
and isomorphic with G. Then a structure theorem for a Galois algebra
with a transitive Galois group is obtained and an element in the Galois
group G is characterized. Let I = {e;|i =1, 2, ..., m for some integer m}

as given in Lemma 3.1. Then, by Lemma 3.1 in [6], each e; is a minimal

element in B,, the Boolean algebra generated by {0, eg 18 € G}, and

each element g € G permutes I. Hence I = Ule O;, where {O;} are

the orbits of I under the G-action. We call G a transitive Galois group if 1
has one orbit under the G-action. We note that if G is a transitive Galois
group, then for any e;, e; € I, there exists a g € G such that gle;) = ej.

Let E; = Zeieoj ej. Then g(E;)=E; for each geG, and
k
B=®),  BE;®Ce
Theorem 4.1. B = @Zfﬂ BE; ® Ce such that BE; is a Galois algebra

over RE; with transitive Galois group G|BE]- = @G foreach j=1,2,.., k.

Proof. Since O ;j is an orbit of I under the action of G, G is transitive
on O;. Also since g(E;) = E; for each g € G, G(E;) = G, where G(E;)
=1{g € G|g(Ej) = E;}. Thus BE; is a Galois algebra over RE; with
Galois group G |BEj = G [5, Lemma 3.7] foreach j =1, 2, ..., k.

Theorem 4.1 implies that the study of a Galois algebra is reduced to
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the study of Galois algebras BE; with transitive Galois group

G| BE; = G and a commutative Galois algebra Be, so we study a Galois
algebra with a transitive Galois group for the rest of the section.
We begin with a structure theorem for B.

Theorem 4.2. Let B be a Galois algebra with a transitive Galois
group Gand I ={e;|i =1, 2, ..., m} be as given in Lemma 3.1. Then (1)

Be; = Be; forany i, j =1, 2, .., m, (2) Be; is a Galois algebra over Re;
with Galois group Gle;), (8) for i,j=1,2,..,m, Gle;) and Glej) are
conjugate subgroups of G, that is, there exists a g € G such that G(ej) =
gG(ei)g_l, and (4) let P(Be;, Bej) be the set of isomorphisms from Be;
to Be; induced by G. Then gGle;) = P(Be;, Be;) for any g € G such
that g(e;) = e;.

Proof. (1) Since G is transitive on I, there exists a ¢ € G such that
g(e;) = e;. Hence g : Be; — Be; is an isomorphism as rings because g is
an automorphism of B. (2) This is a consequence of Lemma 3.2. (3) Since
gle;) =ej, gG(ei)gf1 < G(ej). Thus the order of G(e;) < the order of G(e;).
Similarly g‘lG(ej)g c G(e;). Thus Gle;) gG(e;)g ™, and so Gle;j) =
gGle;)g™t. (4) Since g 'P(Be;, Be;) c Gle;), P(Be;, Bej) c gGle;).
Also gGle;) c P(Be;, Bej), so gGle;) = P(Be;, Bej) for any g € G such
that g(e;) = e;.

As given by Corollary 3.5, we have a sufficient condition under which
B is commutative.

Corollary 4.3. If G(e;) is cyclic for some i =1, 2, ..., m, then B is

commutative.
Proof. By Theorem 4.2, B = [(—B Z:’il Beij ® Ce such that Be; = Be;
for any i, j =1, 2, ..., m. By hypothesis, Be; is a Galois algebra with

cyclic Galois group G(e;), so Be; is commutative [1, Theorem 11]. Thus B

is commutative.



SOME NOTES ON THE STRUCTURE OF GALOIS ALGEBRAS 7

Let Aut(B) be the automorphism group of B, Aut;(B)= {o € Aut(B)|a
permutes I}. Then Aut;(B) is a subgroup of Aut(B), and
G < Autj(B). Let g € G. Then for each e; € I, either g(e;) =¢; or
gle;) = ej # ¢; for some e; e I. Hence G =S; USy, where S; = {g ¢
G|gle;) =e; for some e; € I} and Sy = {g € G|g(e;) # ¢; for each
i=1,2, .., mj.

Theorem 4.4. (1) For any g € S; such that g | Be; = identity on Be;
for some i =1, 2, ..., m, then g is the identity of G (hence G(e;)| e, = Gle;)),
and (2) for any g € Sy, J5 = {0}, thatis, eg = 0.

Proof. (1) Since B is a Galois algebra with Galois group G, there

exists a G-Galois system for B {aj, b;inB,j=12, .., n} for some integer
n such that Z?:l ajg(bj) = 8 4 for each g € G. Hence Z?zl (aje;)g(bje;)
=¢;8) , for each g € G(e;). Thus ¢; = Z;Lzl (aje;)(g(bje;) — bje;) for each
g=#1 in G(e;). But ¢ #0, so glp, =1 whenever g =1 in G(e).

Therefore, that g| Be; = identity on Be; implies that g is the identity of
G.

(2) For any g € Sy, assume J 4 # {0}. Since BJ, = Be, [3, Proposition
2 and Lemma 2], e, # 0. Let e; =[le, for some e, =e,. Then
ege; = ¢;, and so g € H; by the definition of H; [5, Theorem 3.8]. Thus

g(e;) = e;, a contradiction. Therefore J, = {0}.

Next is a description of S;.

Corollary 4.5. Let S; ={g € G|g(e;) = ¢; for some e; € I}. Then
S = U, Ge).

Proof. Let geG(e;). Then g(e;)=¢;; and so geS;. Thus
UZl G(e;) = Sp. On the other hand, if g € S;, then g(e;) = ¢; for some

e; € I, and so g € G(e¢;). Hence S; < U:’il G(e;). Thus S; = UZI G(e;).



8 GEORGE SZETO and LIANYONG XUE

Corollary 4.6. If e, -ep # 0 for all g, h € S;, then B = Be; @ Ce
such that Be; is a central Galois algebra with Galois group Hy (that is,

m = 1) as given in Lemma 3.1.

Proof. For any g, h e Sj, e, e, # 0 by hypothesis, so e, -e; =
eg ~egp # 0 [3, Proposition 2]. Hence eg, # 0. Thus gheS; by
Theorem 4.4; and so S; is a subgroup of G, and e =Ilgcgs €5 # 0.
Therefore S; < H; by the definition of H;. But S; = U:Zl G(e;) by
Corollary 4.5, so Hy = Hy == H,, =5;. Thus B = Be; @ Ce such

that Be; is a central Galois algebra with Galois group H; by Lemma 3.1.

We conclude the present paper with two examples: (1) a Galois
algebra B over R with Galois group G such that B is not a central Galois
algebra over C with Galois group K (= {g € G|g(c) = ¢ for all ¢ € C}),

and (2) a noncommutative Galois extension with a cyclic Galois group.

Example 1. Let RJ[i, j, k] be the real quaternion algebra over R, D be
the field of complex numbers, B = R[i, j, k] ® (D ® D), and G = {1, g;,

gj, 8k}, where gi(a, d; ® dy) = (iail, dy ®dy), gjla, dy ®dy) = (jaj L,
d; ®dy), and gp(a, dy ® dy) = (kak™, dy ® dy) for all (a, d; ® dy) in B,

where d is the conjugate of the complex number d. Then, (1) B is a

Galois extension with a G-Galois system

{al = (1’ 0)9 Qg = (L’ 0)’ as = (]’ 0)’ ay = (k> 0)’ as = (O’ 1 ®1),
ag = (0,V-1®1), a; = (0,1®v-1), ag = (0, V-1 ® V- 1);
b= £ (1, 0), by = — (0, 0), b5 = —+(j, 0), by =~ (k, 0),

b =5 (0,101), b5 = -1 (0,V~1 ®1),
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b=~ L0.18"1). 05 = 10 mm_—l)}.

@) BE =R®[R®R)=R®R. (3) By (1) and (2) B is a Galois
algebra over R ®@ R with Galois group G. (4) C=R®(D®p D). (5) By
(3) and (4) B is not a central Galois algebra with Galois group G. (6)
K ={geG|g(c) =c forall ¢ e C} = {1}, and so B is not a central Galois
algebra with Galois group K.

Example 2. Let B = My(R) ® My(R), a direct sum of matrix rings
of order 2 over reals R, and G ={(a), where a(x, y)=(y,x) for all
(x, y) € B. Then B is a noncommutative Galois extension with Galois

group G of order 2.
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