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Abstract

Let B be a Galois algebra over a commutative ring R with Galois
group G. Then B is a direct sum of Galois algebras such that each
direct summand is a composition of a central Galois algebra and a
commutative Galois algebra. A sufficient condition is also given under
which B is commutative.

1. Introduction

Let B be a Galois algebra with Galois group G over a commutative
ring R with no idempotents but 0 and 1, C be the center of B, and =K

{ ( ) ccgGg =|∈  for each }.Cc ∈  Then in [2] it was shown that B is a

central Galois algebra with Galois group K and C is a commutative
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Galois algebra over R with Galois group .KG  The purpose of the present

paper is to generalize this theorem to any Galois algebra by using the
structure theorem for Galois algebras [5, Theorem 3.8]. We shall give a
further description of the structure of a Galois algebra, and derive a
sufficient condition for a Galois algebra being commutative.

2. Basic Definitions and Notations

Throughout this paper, B will represent a ring with 1, G a finite

automorphism group of B, C the center of B and GB  the set of elements in
B fixed under each element in G. A ring B is called a Galois extension of

GB  with Galois group G if there exist elements { ii ba ,  in B,

}ni ...,,2,1=  for some integer n such that ( )∑ =
δ=n

i gii bga
1 ,1  for each

,Gg ∈  a Galois algebra over R if B is a Galois extension of R which is

contained in C, and a central Galois extension if B is a Galois extension
over its center C.

3. Galois Algebras

Throughout, let B be a Galois algebra with Galois group G over a

commutative ring R, C be the center of B, and { ( ) bbgBbBG =|∈=  for

each }.Gg ∈  It was shown that if R contains no idempotents but 0 and 1,

then B is a central Galois algebra with Galois group K

( { ( ) ccgGg =|∈=  for each })Cc ∈  and C is a commutative Galois

algebra over R with Galois group KG  [2, Theorem 1]. We shall

generalize this theorem for any Galois algebra by using the structure
theorem for B [5, Theorem 3.8].

Lemma 3.1 [5, Theorem 3.8]. Let B be a Galois algebra over R with

Galois group G. Then there are orthogonal idempotents { miei ...,,2,1=|

for some integer }m  in C and subgroups iH  of G such that iBe  is a

central Galois algebra with Galois group iH  for each mi ...,,2,1=  and

∑ =
⊕= m

i iBeB
1

 or ,
1

CeBeB
m
i i ⊕






⊕= ∑ =

 where ∑ =
−= m

i iee
1

1  and
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BeCe =  is a commutative Galois algebra with Galois group .GG Ce ≅|

Next lemma describes the direct summand iBe  of B for mi ...,,2,1=
in Lemma 3.1.

Lemma 3.2. By keeping the notations as given in Lemma 3.1, let

( ) ( ){ }iii eegGgeG =|∈=  and { ( ) ( ) iiii cecegeGgK =|∈=  for each }.Cc ∈

Then iBe  is a Galois algebra over iRe  with Galois group ( )ieG  and iK  is

a normal subgroup of ( )ieG  for each ....,,2,1 mi =

Proof. Since B is a Galois algebra with Galois group G, it is a Galois

extension with Galois group ( )ieG  and iBe  is a Galois extension of

( ) ( )ieG
iBe  with Galois group ( ) ( )iBei eGeG

i
≅|  [5, Lemma 3.7]. Moreover,

by Lemma 3.1 in [6], let aB  be the Boolean algebra generated by

{ }.,0 Ggeg ∈|  Then each ie  is a minimal element in aB  such that

gi ee ∏=  for some .ag Be ∈  This implies that for each ,Gh ∈  ( )ieh

( ( ) )1−∏=∏=
hghg eeh  is also a minimal element in .aB  Thus, for each

,Gg ∈  ( ) ii eeg =  or ( ) .0=⋅ ii eeg  But then ( ) ( )
i

GeG
i eBBe i =  by the proof

of Lemma 9 in [4]; and so ( ) ( ) .i
eG

i ReBe i =  Therefore iBe  is a Galois

algebra over iRe  with Galois group ( ).ieG  Also it is clear that iK  is a

normal subgroup of ( )ieG  for each ....,,2,1 mi =

Theorem 3.3. By keeping the notations of Lemmas 3.1 and 3.2, let

( ) ( ){ }.iii eegGgeG =|∈=  Then iBe  is a central Galois algebra over iCe

with Galois group iK  and iCe  is a commutative Galois algebra over iRe

with Galois group ( ) ii KeG  for each ....,,2,1 mi =

Proof. By Lemma 3.2, iBe  is a Galois algebra over iRe  with Galois

group ( )ieG  and iK  is a normal subgroup of ( )ieG  for each

....,,2,1 mi =  Hence iBe  is a Galois extension of ( ) iK
iBe  with Galois

group .iK  By Lemma 3.1, iBe  is a central Galois algebra over iCe  with

Galois group ,iH  so ( ) .i
H

i CeBe i =  It is clear that ,ii KH ⊂  so
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( ) ( ) ii H
i

K
ii BeBeCe ⊂⊂  .iCe=  Thus ( ) ( ) ;i

H
i

K
i CeBeBe ii ==  and so iBe

is a central Galois algebra over iCe  with Galois group iK  and iCe  is a

commutative Galois algebra over iRe  with Galois group ( ) ii KeG  for

each ....,,2,1 mi =

Corollary 3.4. By keeping the notations of Theorem 3.3, .ii KH =

Proof. By Lemma 3.1 and Theorem 3.3, iBe  is a central Galois

algebra over iCe  with Galois groups iH  and ,iK  respectively, and

.ii KH ⊂  Let { ( )bxgbxBebJ ig =|∈=  for all }.iBex ∈  Then { }0≠gJ

for each iKg ∈  such that ∑ ∑∈ ∈
⊕=⊕=

i iHh Kg ghi JJBe  [3, Theorem

1]. Noting that ,ii KH ⊂  we conclude that .ii KH =

Corollary 3.5. By keeping the notations of Theorem 3.3, if ( )ieG  is

cyclic for each ,...,,2,1 mi =  then B is commutative.

Proof. By Theorem 3.3, iBe  is a Galois algebra over iRe  with Galois

group ( ),ieG  so iBe  is commutative whenever ( )ieG  is cyclic [1, Theorem

11] for each i. Thus CeBeB
m
i i ⊕







⊕= ∑ =1
 is commutative.

Corollary 3.6. By keeping the notations of Theorem 3.3, if G is an

Abelian group such that { }0=⋅
ji gg JJ  for all non-identity ,Ggg ji ∈≠

where { ( )bxgbxBbJg =|∈=  for all },Bx ∈  then B is commutative.

Proof. Since 
ii gg BeBJ =  [3, Proposition 2 and Lemma 2] and

{ }0=⋅
ji gg JJ  for all non-identity ,Ggg ji ∈≠  0=⋅

ji gg ee  for all

non-identity ji gg ≠  in G. Hence 
ige  and 

jge  are different minimal

elements in aB  in case 0≠
ige  and .0≠

jge  Thus each ie  in { =| iei

}m...,,2,1  as given in Lemma 3.1 is 
ige  for some 1≠ig  in G, and

{ ∈= gHi  } { }iggg geeeG
ii

,1==|  which is a cyclic group; and so each

iBe  is commutative [1, Theorem 11]. Therefore CeBeB
m
i i ⊕







⊕= ∑ =1
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is commutative.

Remarks. (1) Theorem 3.3 covers the case of B in which R contains
no idempotents but 0 and 1, where 1=ie  for each i.

(2) By Theorem 3.3, if { }0=gJ  for each ,1≠g  then ∑ ∈
=

Gg gJB

CJ == 1  [3, Theorem 1]; and so B is commutative.

4. Galois Algebras with a Transitive Galois Group

In this section, we will show that a Galois algebra with a Galois
group G is a direct sum of Galois algebras with Galois group induced by
and isomorphic with G. Then a structure theorem for a Galois algebra
with a transitive Galois group is obtained and an element in the Galois
group G is characterized. Let { mieI i ...,,2,1=|=  for some integer }m

as given in Lemma 3.1. Then, by Lemma 3.1 in [6], each ie  is a minimal

element in ,aB  the Boolean algebra generated by { },,0 Ggeg ∈|  and

each element Gg ∈  permutes I. Hence ∪k
j jOI

1
,

=
=  where { }jO  are

the orbits of I under the G-action. We call G a transitive Galois group if I
has one orbit under the G-action. We note that if G is a transitive Galois
group, then for any ,, Iee ji ∈  there exists a Gg ∈  such that ( ) .ji eeg =

Let =jE  ∑ ∈ ji Oe ie .  Then ( ) jj EEg =  for each ,Gg ∈  and

∑ =
⊕⊕= k

j j CeBEB
1

.

Theorem 4.1. ∑ =
⊕⊕= k

j j CeBEB
1

 such that jBE  is a Galois algebra

over jRE  with transitive Galois group GG
jBE ≅|  for each ....,,2,1 kj =

Proof. Since jO  is an orbit of I under the action of G, G is transitive

on .jO  Also since ( ) jj EEg =  for each ( ) ,, GEGGg j =∈  where ( )jEG

{ ( ) }.jj EEgGg =|∈=  Thus jBE  is a Galois algebra over jRE  with

Galois group GG
jBE ≅|  [5, Lemma 3.7] for each ....,,2,1 kj =

Theorem 4.1 implies that the study of a Galois algebra is reduced to
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the study of Galois algebras jBE  with transitive Galois group

GG
jBE ≅|  and a commutative Galois algebra Be, so we study a Galois

algebra with a transitive Galois group for the rest of the section.

We begin with a structure theorem for B.

Theorem 4.2. Let B be a Galois algebra with a transitive Galois

group G and { }mieI i ...,,2,1=|=  be as given in Lemma 3.1. Then (1)

ji BeBe ≅  for any ,...,,2,1, mji =  (2) iBe  is a Galois algebra over iRe

with Galois group ( ),ieG  (3) for ,...,,2,1, mji =  ( )ieG  and ( )jeG  are

conjugate subgroups of G, that is, there exists a Gg ∈  such that ( ) =jeG

( ) ,1−gegG i  and (4) let ( )ji BeBeP ,  be the set of isomorphisms from iBe

to jBe  induced by G. Then ( ) ( )jii BeBePegG ,=  for any Gg ∈  such

that ( ) .ji eeg =

Proof. (1) Since G is transitive on I, there exists a Gg ∈  such that

( ) .ji eeg =  Hence ji BeBeg →:  is an isomorphism as rings because g is

an automorphism of B. (2) This is a consequence of Lemma 3.2. (3) Since

( ) ,ji eeg =  ( ) ( ).1
ji eGgegG ⊂−  Thus the order of ( ) ≤ieG  the order of ( ).jeG

Similarly ( ) ( ).1
ij eGgeGg ⊂−  Thus ( ) ( ) ,1−⊂ gegGeG ij  and so ( ) =jeG

( ) .1−gegG i  (4) Since ( ) ( ),,1
iji eGBeBePg ⊂−  ( ) ⊂ji BeBeP ,  ( ).iegG

Also ( ) ( ),, jii BeBePegG ⊂  so ( ) ( )jii BeBePegG ,=  for any Gg ∈  such

that ( ) .ji eeg =

As given by Corollary 3.5, we have a sufficient condition under which
B is commutative.

Corollary 4.3. If ( )ieG  is cyclic for some ,...,,2,1 mi =  then B is

commutative.

Proof. By Theorem 4.2, CeBeB
m
i i ⊕







⊕= ∑ =1
 such that ji BeBe ≅

for any ....,,2,1, mji =  By hypothesis, iBe  is a Galois algebra with

cyclic Galois group ( ),ieG  so iBe  is commutative [1, Theorem 11]. Thus B

is commutative.



w
w

w
.p

ph
m

j.c
om

SOME NOTES ON THE STRUCTURE OF GALOIS ALGEBRAS 7

Let ( )BAut  be the automorphism group of B, ( ) { ( ) α|∈α= BBI AutAut

permutes }.I  Then ( )BIAut  is a subgroup of ( ),Aut B  and

( ).Aut BG I⊂  Let .Gg ∈  Then for each ,Iei ∈  either ( ) ii eeg =  or

( ) iji eeeg ≠=  for some .Ie j ∈  Hence ,21 SSG ∪=  where { ∈= gS1

( ) ii eegG =|  for some }Iei ∈  and { ( ) ii eegGgS ≠|∈=2  for each

}....,,2,1 mi =

Theorem 4.4. (1) For any 1Sg ∈  such that =|
iBeg  identity on iBe

for some ,...,,2,1 mi =  then g is the identity of G ( ( ) ( )),iBei eGeGhence
i
≅|

and (2) for any { },0,2 =∈ gJSg  that is, .0=ge

Proof. (1) Since B is a Galois algebra with Galois group G, there

exists a G-Galois system for B { jj ba ,  in B, }nj ...,,2,1=  for some integer

n such that ( )∑ =
δ=n

j gjj bga
1 ,1  for each .Gg ∈  Hence ( ) ( )∑ =

n
j ijij ebgea

1

gie ,1δ=  for each ( ).ieGg ∈  Thus ( ) ( ( ) )∑ =
−= n

j ijijiji ebebgeae
1

 for each

1≠g  in ( ).ieG  But ,0≠ie  so 1≠|
iBeg  whenever 1≠g  in ( ).ieG

Therefore, that =|
iBeg  identity on iBe  implies that g is the identity of

G.

(2) For any ,2Sg ∈  assume { }.0≠gJ  Since gg BeBJ =  [3, Proposition

2 and Lemma 2], .0≠ge  Let hi ee ∏=  for some .gh ee =  Then

,iig eee =  and so iHg ∈  by the definition of iH  [5, Theorem 3.8]. Thus

( ) ,ii eeg =  a contradiction. Therefore { }.0=gJ

Next is a description of .1S

Corollary 4.5. Let { ( ) ii eegGgS =|∈=1  for some }.Iei ∈  Then

=1S  ( )∪m
i ieG

1
.

=

Proof. Let ( ).ieGg ∈  Then ( ) ;ii eeg =  and so .1Sg ∈  Thus

( )∪m
i ieG

1=
 .1S⊂  On the other hand, if ,1Sg ∈  then ( ) ii eeg =  for some

;Iei ∈  and so ( ).ieGg ∈  Hence ( )∪m
i ieGS

11 .
=

⊂  Thus ( )∪m
i ieGS

11 .
=

=
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Corollary 4.6. If 0≠⋅ hg ee  for all ,, 1Shg ∈  then CeBeB ⊕= 1

such that 1Be  is a central Galois algebra with Galois group 1H  (that is,

)1=m  as given in Lemma 3.1.

Proof. For any 0,, 1 ≠⋅∈ hg eeShg  by hypothesis, so =⋅ hg ee

0≠⋅ ghg ee  [3, Proposition 2]. Hence .0≠ghe  Thus 1Sgh ∈  by

Theorem 4.4; and so 1S  is a subgroup of G, and .0
11 ≠∏= ∈ gSg ee

Therefore 11 HS ⊂  by the definition of .1H  But ( )∪m
i ieGS

11 =
=  by

Corollary 4.5, so .121 SHHH m ==== "  Thus CeBeB ⊕= 1  such

that 1Be  is a central Galois algebra with Galois group 1H  by Lemma 3.1.

We conclude the present paper with two examples: (1) a Galois

algebra B over R with Galois group G such that B is not a central Galois

algebra over C with Galois group ( { ( ) ccgGgK =|∈=  for all }),Cc ∈

and (2) a noncommutative Galois extension with a cyclic Galois group.

Example 1. Let [ ]kjiR ,,  be the real quaternion algebra over R, D be

the field of complex numbers, [ ] ( ),,, DDkjiRB R⊗⊕=  and { ,,1 igG =

},, kj gg  where ( ) ( ),,, 21
1

21 ddiaiddagi ⊗=⊗ −  ( ) ( ,, 1
21

−=⊗ jajddag j

),21 dd ⊗  and ( ) ( )21
1

21 ,, ddkakddagk ⊗=⊗ −  for all ( )21, dda ⊗  in B,

where d  is the conjugate of the complex number d. Then, (1) B is a

Galois extension with a G-Galois system

( ) ( ) ( ) ( ) ( )

 ⊗===== ,11,0,0,,0,,0,,0,1 54321 akajaiaa

( ) ( ) ( );11,0,11,0,11,0 876 −⊗−=−⊗=⊗−= aaa

( ) ( ) ( ) ( ),0,
4
1,0,

4
1,0,

4
1,0,1

4
1

4321 kbjbibb −=−=−==

( ) ( ),11,0
4
1,11,0

4
1

65 ⊗−−=⊗= bb
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( ) ( ) .11,0
4
1,11,0

4
1

87 
−⊗−=−⊗−= bb

(2) ( ) .RRRRRBG ⊕≅⊗⊕=  (3) By (1) and (2) B is a Galois

algebra over RR ⊕  with Galois group G. (4) ( ).DDRC R⊗⊕=  (5) By

(3) and (4) B is not a central Galois algebra with Galois group G. (6)

{ ( )cgGgK |∈=  c=  for all } { },1=∈ Cc  and so B is not a central Galois

algebra with Galois group K.

Example 2. Let ( ) ( ),22 RMRMB ⊕=  a direct sum of matrix rings

of order 2 over reals R, and ,α=G  where ( ) ( )xyyx ,, =α  for all

( ) ., Byx ∈  Then B is a noncommutative Galois extension with Galois

group G of order 2.
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