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Abstract

We prove that for n = 2m when m is a positive integer, the zero order

Hankel transform of r” is a Dirac distribution. As an application, we
discuss the Green function of the Helmholtz equation in spherical
geometry. We also present the Hankel transform of some Bessel and
Gaussian functions obtained from Weber integrals of Bessel functions.

1. Introduction

The zero order Hankel transform of the function f(r) is defined by the
relation [2, 3]

F(o) = [ ) o(kr)rar &
with the inverse
£(r) = J' : F(k)do(kr)kdk (1a)
and
J : Jo(kr)To(k'r)rdr = 8(k — k')/k @)

in which J; is the Bessel function of the first kind of order zero and § is
the Dirac distribution.
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The Plancherel theorem states

Jw f(r)g(r)rdr = I " F(k)G(k)kdk. ®3)
0 0

The relation (1) is valid at every point at which f(r) is continuous
provided that the function defined on (0, ) is piecewise continuous and

of bounded variation in every finite subinterval on (0, ) and that the

integral J;O| f(r) |r1/2dr is finite.

An extensive table of zero order Hankel transforms exists [3].

We use here the following definitions of the Hankel transform:

H{f(r)} = lim,_, J: exp(—ar)f(r)do(kr)rdr, a >0, 4)

H{F(k)} = lim,_ j : exp(—qk) F(k)Jo(kr)kdk, q>0.  (4a)

The expressions (4) and (4a) reduce to (1) and (la) when limit and
integration commute which requires the uniform convergence of these

processes.

Let us compare (1) and (4) for f(r) = r*~2 with p real. Then we get
from (1)

F(k) = k" .[ : J(kt)t" Tdt = 24 TR (w/2)/T(1 - n/2) [6, p. 3511  (5)
in which I' is the function gamma and 0 < p < 1/2.
Now, according to (4) with a > 0,
E(r“_g) = lim,_ J.OOO exp(—ar)JO(kr)r“_ldr (6)
but [6, p. 385]

I exp(—ar)dJy(kr)r*tdr
0

= (W) (@® + &) 2T o Fi[u/2, (- w2, 1 k%@ + k%) '], (6a)
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9 F} is the hypergeometric function reducing for a = 0 to
2 P (/2,1 -w)/2,1;1)
and [5, p. 161]:
o1 (0/2, 1 -w)/2, ;1) = T(1/2)/T(Q - w/2)T[Q + p)/2]. (6b)
Substituting (6a) into (6) and taking into account (6b) gives
H(r*2) = KT ()I(/2)/T(Q - w/2)TI( + w)/2] )
but [5, p. 35]
() = 27 a 2r(/2)r(@ + w2, (7a)

Taking into account (7a), the expression (7) reduces to (5) with no more

constraint on p.

Another interesting example is given by the function
f(r) = Jv(r)/r7‘+1 v>0 Areal ®

for which (4) becomes
HUJ, (kr)/r*1) = limg_ j " expl—ar)dy(kr)d (kr)rtdr.  (9)
0

It is proved [6, p. 402] that for 0 < X < v +1, limit and integration
commute lim _[ = Ilim so that (4) reduces to (1) and [6, p. 403]

H{J, (kr)/r" 1) = A, v)R (10)
with
AL, v) = TOOT(v = & +1)/2)/2*T2[(v + 1 + 1)/2]T[(x - v + 1)/2].  (10a)

We prove in this note that the Hankel transform of r?™ is a Dirac

distribution when m is a positive integer.
2. Hankel Transform of the Monomials r", n Positive Integer

We start with the Hankel transform of r*2 when p is an arbitrary

real positive number which has according to (6), the expression (5) that
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we may write

H(r*7?) = =24k T (w/2)/ur (-p/2) 11)
since

I(1 - p/2) = —ul(-p/2)/2. (11a)

For p > 0, we get from (11), limj_, ﬂ(r“_z) = o but £ =0 in (6) also

gives [H(r* )], = =, so we have

limy,_., j - jlimkjo. (12)

2.1. Odd integer p

With u = 2m +1, m > 1, the relation (11) becomes

H{p?m 1) = —92m*lp2mHlr (o 4 1/2)/(2m + 1) (-m —1/2). (13)
Using the relation [1, p. 255]
I(m +1/2) = 1.3.5...2m - 1)n"/2 /2m (14a)

and [5, p. 35] for z non integer

[(z)[(1 - 2) = n/sin(nz), (14b)
we get
1YT(=m —1/2) = sin[(m + 3/2)x]C(m + 3/2)/x (15)
with
[(m +3/2) = 1.3.5... (2m — 3)n'/2 j2m 1, (15a)

Substituting (14a) and (15) into (13) gives the well known result [2, 3]
E{r2m—1} — Amk_Qm_l, (16)
A, = =221 (m +1/2)T(m + 3/2)sin [(m + 3/2)n}/(2m + 1),  (16a)

for instance, for m =1 and m = 2 : H{r} = -1/k3, H{r®} = 9/k°.
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2.2. Even integer pu

With p = 2m + 2, m > 0, the relation (11) becomes
H{r?™) = 22210 (m +1)/2(m + 1)E2™ 2T (-m - 1) = 0 (17)
since 1/T(-m - 1) = 0.

Now, according to (12) for 2 = 0, (17) = « which suggests that

H{r®™\ is a Dirac distribution and in particular for m = 0,
H{r%) = 8 (k)/k. (18)

To check this result, we just have to use the dual transform (4a) with
F(k) = 5(k)/k which gives

H{S(0)/k) = Timg—o [ exp(-gh)o() o r)dk = r° (19)

in agreement with (18).
To get H{r®™} for m > 0, we introduce the differential operator
A, = 0% + k7o, (20)
with the generalization of (12)
Ay j - j Ap. (202)
Now, taking into account (6), the relation (18) is
lim,_ o j: exp(—ar)dy(kr)r*tdr = 5(k)/E. (21)
Let us apply Aj to (21) : according to the Bessel equation satisfied by
Jo(kr) and using the derivatives 8'(k) = —8(k)/k, 8"(k) = 25(k)/k2, we get
Apdo(kr) = —r2do(kr), AL[S(k)/E] = —28"(k)/k. (22)
So, taking into account (22), applying A;, to (21) gives

Hi{r?} = -25"(k)/k. (23)
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To check (23), we still use (4a)

HE(0)/ ) = ~2Tim g [ expl-ah)8" (k) kr)k

= ~2limg 0 [exp(~qk) o (kr)]; g
= — 205 Jo(kr)—g = 7 (24)
since 02J(2) = —Jo(2) + 1/z J1(2) so that [62J(2)],_q = —1/2

The generalization of this result to r®™ is obtained with the iterated

operator A(,?m) such as

NFMTo (kr) = (1) 2o (kr), AZV[(k)/E] = N(m)s ™) (R)/k,  (25)

the first relation (25) is trivial while the second one uses the derivatives

of the Dirac distribution 8(")(2) = (-1)"n!8(z)/2" for instance,
ND[s(k)/k] = 8/35W(k)/E, (26)
the calculation of N(m) for m > 2 has still to be made.
Then taking into account (25) with A(,;” ) f = IA(,Z" ) gives
H?™} = (1) N(m)s™) (k)/ @7
with the dual
H{(~1)" N(m)s®™(k)/k} = r2™ (27a)
implying according to (4a)
(<) N(m) [T o (kr)]j—g = 17" (28)

whose (24) is a particular case.

We get, for instance, from (27) for m = 2 taking into account (26)

Hi*Y = 8/35W(R)/k (29)
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and from (28)

8/3[0\T g (kr)ly—g = r* (292)

since
W, (2) = Iy (2) - 2J,(2)/z - 8Ty (2)/22 + 6J,(2)/2° (30)

with
Jo(z)=1-2%/4..., Ji(z)=2/2-2%/16... (30a)

so that [6(24)J0(z)]2=0 = 3/8.

3. Application

Let us consider the Green function of the Helmholtz equation in
spherical geometry. Then using polar coordinates, this equation is

[02 + r 710, + K2)g(r, 1y) = —4nd (r — 1y)/r (31)
with the Hankel transform
Ak, 1) + Bk, 1y) + E2G(k, 1) = —4nd o (kry) (32)

in which

Ak, 1) = limy_o | rdrexp(-ar)do(kr)oZa(r, ry),
0

B(k, 1p) = lim,_,q dr exp(-ar)Jy(kr)o,g(r, ry),

Gk, 1p) = lim,_,q OOrolr exp(—ar)dJy(kr)g(r, ry). (33)
0

Using integration by parts, a simple calculation gives

B(k, ry) = b(k, 1g) + J' : dra(r, 1) J; (kr), (34)

b(k, 1o) = [g(r, ro)Jo(kr)ly (34a)
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and
Alk, 7o) = ay(ky 9) = as(ky ) — & j : drg(r, 10)Jy (k) - K2G(k, 1y)  (35)

with
ay(k, 1) = [r0,8(r, ro)Jo(kr)]y
ag(k, 1) = [g(r, o) {Jo (kr) — kry (k)i - (35a)

Substituting (34) and (35) into (32) gives

ay(k, 1) — ag(k, 1) + bk, 1) = —4nd o (kry), (36)
and taking into account (34a) and (35a), this equation becomes
[ro,g(r, r)Jo(kr) + krg(r, ry) Jy(kr)ly = —4ndo(krp). (37

Now, according to the right hand side of (31), the solutions of Helmholtz

equation in the half spaces r > ry and r < ry are obtained by exchanging

rand ry which suggests

[\

g(r, ) = f(r)do(kry), r
= f(rg)Jo(kr), 7

But (38b) implies that r0,g(r, ry)Jo(kr) + krg(r, ry)J;(kr) = 0 since

) (383.)

IA

0. (38b)

0, Jo(kr)do(kr) + kdo(kr)d;(kr) = 0 (39)
so taking into account (38a), the relation (37) reduces to
lim, 0 [r0,8(r, ro)Jo(kr) + krg(r, ry) 1 (kr)] = —4n (40)

with the solution in which A is an amplitude and Y; is the Bessel

function of the second kind of order zero
£(r) = AY,(r). (41)
Substituting (41) into (40) and using the Wronskian relation [1]

Yo (kr)eJ(kr) = Y (kr)do(kr) = 2/nkr (42)
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gives A = —21% so that finally

glr, ny) = —2n2Y0(kr)J0(kr‘o ), T

vV

o

= —2TE2Y0(k7‘0)J0(k7‘), r

IA

- (43)

Taking into account (39), a second set of solutions [4] is obtained with the
Hankel function H(kr) = Jy(kr) + iYy(kr),

glr, ) = 2in2H0(kr)J0(kro), r

\2

o

= 2in?Ho(kry)dJo(kr), 1

IA

9. (44)

Hankel transform is a powerful tool to handle problems in cylindrical

geometry.

Remark. The first Weber integral [6, p. 394] for Re.p > 0 is
J.: Jo(kr)exp(- p?r?)r*tdr = ®,(p, k) (45)
in terms of the confluent hypergeometric function | Fj,
®,(p, k) = [[(1/2)/2p" Jexp(-k? [4p®) Fy (1 - p/2, 1; k* /4p®)  (45a)

which the Hankel transform of exp(— p%r?)r*~! giving for p = 2,

Flexp(-p?r?)} = 1/2 p®exp(-k* [4p?). (46)

The second Weber integral [6, p. 399] gives for Re. p,
J. Jo(kr)d(cr)exp(-p2r?)r*Ldr = Q,(p, k) 47
0
in which with @® = k% + ¢2 - 2ke cos ¢,

Qu(p. ) = [rw/2)/2"] [ dbexp-s?/4p?) Fy (1 - /2. 1 0 /4p%).

(47a)
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Hankel transform of the function J(cr)exp(- p?r?)r*~2 taking for p = 2

the simple form

F{Jo(cr)exp(- p?r?)} = 1/2pexpl[- (k% + ¢*)/4p®|Io(ke/2p%)  (48)

in which I is the modified Bessel function of the first kind of order zero.

(1]

(2]

(3]
(4]

(5]
(6]
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