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Abstract 

The paper establishes a unified representation theorem for 
(co)integrated processes up to the second order which provides a compact 
and informative insight into the solution of VAR models with unit roots, 
and sheds light on the cointegration features of the engendered 
processes. The theorem is primarily stated by taking a one-lag 
specification as a reference frame, and it is afterwards extended to cover 
the case of an arbitrary number of lags via a companion-form based 
approach. All proofs are obtained by resorting to an innovative and 
powerful algebraic apparatus tailored to the derivation of the intended 
results. 

1. Introduction 

In the wake of Granger’s original representation theorem, published 
in the Eighties (Engle and Granger [6]), the analysis of vector 
autoregressive – VAR – models with unit roots has risen to a major 
branch of modern econometrics, whose track bears the mark of 
Johansen’s contributions (Johansen [16, 17, 18]). 
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Representation theorems offer a time-series mirror image of the final 
form of structural models, insofar as they provide closed-forms solution to 
VAR systems, link the integration order of the engendered solution to the 
parameter space of the parent model, and bring to the foreground the 
cointegration relationships inherent in the system. 

The development of representation theorems from Granger’s seminal 
work has followed two major directions. The former, aimed at extending 
the original approach beyond first-order integrated – ( )1I  – processes, has 
eventually led to Johansen’s well-known results (ibid.) and more recently 
to Faliva and Zoia’s ( )2I  and unified representation theorems [11, 12]. 
The latter has addressed the issue of solving VAR systems with unit 
roots by resorting to ad hoc and tailor-made algebraic tooling, such as the 
Smith-McMillan form (Engle and Yoo [7], Haldrup and Salmon [14], 
Hansen [15]), Jordan and companion forms (Archontakis [1], Gregoir 
[13]), partitioned inversion and Laurent expansion about a pole of a 
matrix-polynomial inverse (Faliva and Zoia [9, 10]). 

This paper fits in with the aforementioned framework inasmuch as 
an overall insight into VAR-model solutions and their (co)integration 
features is obtained from an innovative formulation of a general 
representation theorem, via a tailor-made analytical apparatus centred 
on orthogonal-complement algebra, a noteworthy matrix decomposition, 
and ad hoc matrix-polynomial inversion formulas about a pole. 

The aim of the paper is to provide a unified representation theorem 
for ( )υI  processes with 2,1=υ  capable of shedding light on the 
integration and cointegration characteristics of the solutions of VAR 
systems via the closed-form expressions of the parameter matrices 
involved. A simple-lag VAR model – which can be neatly solved resorting 
to the algebraic toolkit of the Appendix – is first investigated; reached 
conclusions are then extended to the case of an arbitrary number of lags 
by a companion-form based approach. 

The article develops as follows: an overall glance at the outcomes of 
the paper is cast in Section 2; Section 3 establishes a unified 
representation theorem of new conception for cointegrated processes; 
proofs rest on an effective algebraic apparatus as devised in the Appendix. 
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2. Reference Model and Basic Results on VAR Solutions 

Let us consider an n-dimensional vector autoregressive (VAR) model 
specified as follows: 

( )
( ) ( ) ( ),1,1,, nnnn

L tt ε=yA
 (1) 

where tε  is a white noise process, 

 ( ) 0≠+= 11 , AAIA LL  (2) 

is a linear polynomial in the lag operator L, whose total effect matrix 

1AIA +=  (3) 

has index 2≤υ  and whose characteristic polynomial ( )zAdet  has a 
possibly multiple unit-root with all other roots outside the unit circle. 

Solving (1) yields 

( )∑ ∑
υ

=

∞

=

−υ
υ +++=

1 0

1
1 ,

j j

j
jjjtjt Lt MNNy ωηω  (4) 

where the jM ’s are coefficient matrices with exponentially decreasing 

entries, the jω ’s denote arbitrary vectors, 

∑ ∑
≤τ ≤τ

ττ ==
t t

tt 121 , ηηεη  (5) 

are first and second order random walks, respectively, 

,1−υυ −= NNN  (6) 

( )
⎩
⎨
⎧

=υ
=υ+

=−υ ,1if
,2if

1 0
AIN

N  (7) 

( ) ,1
⊥υ

−
⊥υ⊥υ⊥υ ′′= BCBCN  (8) 

⊥υB  and ⊥υC  denote orthogonal complements of full column-rank 

matrices υB  and υC  obtained by a rank factorization of ,υA  that is, 

( ) ( ) ( )., υυ
υ

υυ
υ ==′= CBACBA rrr  (9) 
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The solution ty  is an integrated ( )I  process, namely 

( ).~ υIty  (10) 

Indeed the said solution turns out to exhibit a multi-fold integration and 
cointegration ( )CI  structure, whose core features are 

( ) ( ) ( ),,,~0~ υ
υ =υυ→′ AyyC rcrCII tt  (11) 

( ) ( ) ( ),,1,2~1~ AyyB rncrCII tt −=→′⊥  under ,2=υ  (12) 

where cr stands for cointegration rank and B is a full column-rank 
matrix obtained by a rank factorization of A, that is, 

( ) ( ) ( )., CBACBA rrr ==′=  (13) 

We should look at (1) as a companion-form reparametrization of an 
isomorphic q-lag m-dimensional VAR model 

 
( ) ( )∑

=
− =+

q

k m
tktk

m
t

1 1,1,
~~~ εyPy  (14) 

and solve, we would obtain 

( ) .~~~~~~~
1 0

1
1 ∑ ∑

υ

=

∞

=

−υ
υ +++=

j j

j
jjjtjt Lt MNNy ωηω  (15) 

Here, the jM~ ’s are coefficient matrices with exponentially decreasing 

entries, the jω~ ’s denote arbitrary vectors, t1
~η  and t2

~η  are first and 

second order random walks, respectively, and 

,~~~
1−υυ −= NNN  (16) 

( )
⎩
⎨
⎧

=υ
=υ′+

=−υ ,1if
,2if~

1 0
JAIJN

N  (17) 

,~ JJNN ′=  (18) 

( ) .1, ⎥⎦
⎤

⎢⎣
⎡= −qmmm 0IJ  (19) 

Likewise ,ty  the process ty~  is characterized by integration and 
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cointegration properties, namely 

( ),~~ υIty  (20) 

( ) ( ) ( ),,~~0~~ υυ⇒′
υ CII tt yyJC  (21) 

( ) ( ),1,~~1~~~ −υυ⇒−υ′⊥ CII tt yyPB  under ,2=υ  (22) 

where ∑
=

=
q

k
kk

1
PP  and B~  is a full column-rank matrix obtained by a rank 

factorization of ∑
=

+=
q

j
j

1
,PIP  that is, 

( ) ( ) ( ).~~,~~ CBPCBP rrr ==′=  (23) 

In the next section, the results claimed above will be proved on a sound 
basis, whose algebraic core is set forth in the Appendix. 

3. A Unified Representation Theorem 

In this section, we establish the main result, namely a unified 
representation theorem for (co)integrated processes up to the second 
order whose outcomes have been anticipated in Section 2. The basic 
theorem takes a one-lag VAR model with unit roots as a reference frame, 
and the extension to a multi-lag specification is developed as a corollary. 

Theorem 3.1. Consider an n-dimensional VAR model specified as 
follows: 

( )
( ) ( ) ( ),1,1,, nnnn

L tt ε=yA  (1) 

where 

( ) 0≠+= 11 , AAIA LL  (2) 

is a linear polynomial in the lag operator L and tε  is a white noise 

process. 

Let the roots of the characteristic polynomial ( )zAdet  lie outside the 
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unit circle except for a possibly multiple unit-root, and let the total effect 
matrix 

1AIA +=  (3) 

be of index .2≤υ  

Further, let ,υB  ,υC  B, C, R and S be full column-rank matrices 
defined as in Theorem 1 in the Appendix. 

Then the following closed-form representation holds for the solution 
of equation (1): 

( )∑ ∑
υ

=

∞

=
−

−υ
υ +++=

1 0

1
1 ,

j j
jtjjjtjt t εωηω MNNy  (4) 

where the jM ’s are coefficient matrices with exponentially decreasing 

entries, 1ω  and 2ω  denote arbitrary vectors, 

∑ ∑
≤τ ≤τ

ττ ==
t t

tt 121 , ηηεη  (5) 

are first and second order random walks, respectively, 

,1−υυ −= NNN  (6) 

( )
⎩
⎨
⎧

=υ
=υ+

=−υ ,1if
,2if

1 0
AIN

N  (7) 

( ) .1
⊥υ

−
⊥υ⊥υ⊥υ ′′= BCBCN  (8) 

The vector ty  given by (4) is an integrated ( )I  as well as cointegrated 
( )CI  process, for which the following statements hold true: 

(a) ( ),~ υIty  (9) 

(b) ( ) ( ) ( ) ( ),,,~0~ υ
⊥⊥υ =υυ⇒′ AyyC rcrCII tt  (10) 

where cr stands for cointegration rank. Trivially υC  is one choice of the 

cointegrating matrix ( ) ,⊥⊥υC  which can more conveniently be specified 

as follows: 
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( ) ( )⊥⊥⊥
+

⊥⊥υ = SCBCC  if 2=υ  and ,2 0≠A  (11) 

( )⊥⊥υC  is an empty matrix if 2=υ  and ,2 0=A  (12) 

( ) CC =⊥⊥υ  if ,1=υ  (13) 

(c) ( ) ( ) ( ),,1,~1~ AyyB rncrCII tt −=−υυ⇒−υ′⊥  under .2=υ  

 (14) 

Proof. The VAR model (1) is nothing but a constant-coefficient linear 
difference equation. Its solution consists – transient components apart – 
of a particular solution of the complete equation and of the 
complementary solution ascribable to unit roots (see, e.g., Faliva and Zoia 
[12, p. 26]). 

In operator form, a particular solution of (1) is given by 

( ) ,1
tt L ε−= Ay  (15) 

where 

( ) ( ).
1

1 ∑
υ

=

−− +∇=
j

j
j LL MNA  (16) 

The latter result ensues from Theorem 4 in the Appendix, thanks to the 
isomorphism between polynomial algebras of complex variables and lag 
operator (see, e.g., Dhrymes [5, p. 23]), and to the sum calculus identities 

( ) ( ) .1,1 12
2 ∑∑ ∑

≤τ τ≤ϑ ≤τ

−− =∇=
−

=∇=
− t t

LILI
 (17) 

Resorting to the said theorem – by taking 2=υ  and 1=υ  in turn – it 
yields the expressions of 1−υN  and .υN  This eventually leads to the 

following expression for :ty  

 ∑ ∑
υ

=

∞

=
−+=

1 0
,

j j
jtjjtjt εη MNy  (18) 

where the jN ’s are as specified in (6) and (7). 
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Likewise, the complementary solution is expressible as 

( )0Lt
1−= Ay  (19) 

and, resorting to Theorem 3, p. 27 in Faliva and Zoia [12], the following 
closed-form expression can be established for its permanent component: 

.
1

1
1∑

υ

=

−υ
υ+=

j
jjt tNNy ωω  (20) 

Adding ty  and ty  gives the solution (4). 

As far as results (a)-(c) are concerned, their proofs rest on the 
following considerations. 

Result (a). By inspection of (4), we deduce that under ,2=υ  ty  is the 

resultant of a drift component ∑
=

2

1
,

j
jjωN  of a deterministic linear trend 

component ,12 tωN  of both a first and a second-order stochastic trend 

components, ∑
≤τ t

tε1N  and ,2∑ ∑
≤τ τ≤ϑ

ϑ
t

εN  respectively, and of a ( )∞VMA  

component in the white noise argument .tε  As a result the solution is an 

integrated process of order 2. 

On the other hand, under ,1=υ  ty  is the resultant of a drift 

component ,11ωN  of a first order stochastic trend component, ∑
≤τ

τ
t

,1 εN  

and of a ( )∞VMA  component in the white noise argument .tε  As a result 
the solution is an integrated process of order 1. This proves (9). 

Result (b). First of all observe that, under ,2=υ  the solution (4) can 
be expressed as follows: 

[ ] .,
011

212
12 ∑

∞

=
−+⎥⎦

⎤
⎢⎣

⎡
+

++
=

j
jtj

t

t
t

t
ε

ωη
ωωη

MNNy  (21) 

It is clear from statement (vii) of Theorem 1 in the Appendix that the 
columns of ( )⊥⊥2C  span the row kernel of [ ]., 12 NN  This in turn entails 
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that, by premultiplying both sides of (21) by ( ) ,2 ′
⊥⊥C  the term containing 

non-stationary components – namely stochastic and deterministic trends 
–, disappears and the following 

( ) ( ) ( ) ( ) ( )∑
∞

=
⊥⊥−⊥⊥⊥⊥ →′→′=′

0
222 2,2~0~

j
ttjtjt CII yyCMCyC ε  

 (22) 

holds accordingly. The cointegration rank, i.e., the rank of the 

cointegration matrix ( ) ,2 ⊥⊥C  turns out to be equal to ( )2Ar  in light of (4) 

of Theorem 1 of the Appendix, upon noting that 2C  is trivially a choice of 

( ) .2 ⊥⊥C  Statement (11) is established by choosing ( ) ( )⊥⊥⊥
+

⊥⊥ = SCBCC2  

according to (16) of Theorem 1 in the Appendix, and result (12) ensues 

from statement (b) of the said theorem, upon noting that if ⊥⊥
+ SCB  is a 

square non-singular matrix, its orthogonal complement collapses into an 
empty matrix (see, e.g., Faliva and Zoia [12, p. 131]). Should it be the 
case, the cointegration relationships recovering stationarity would no 
longer exist insofar as the cointegration rank would drop to zero. 

Passing now to the case ,1=υ  observe that the solution (4) can be 
rewritten as 

( ) ∑
∞

=
−++=

0
111 ,2

j
jtjtt εωη MNy  (23) 

where 

 ( ) ⊥
−

⊥⊥⊥ ′′== BCBCNN 1
1  (24) 

in light of (6) and (7), upon keeping in mind that 

CC =1  (25) 

under .1=υ  

It is therefore clear that the columns of ( )⊥⊥C  span the row kernel of 

.1N  Premultiplication of both sides of (23) by ( )′⊥⊥C  leads to annihilate 
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the term containing the non-stationary component – namely the 
stochastic trend – and the following 

( ) ( ) ( ) ( ) ( )∑
∞

=
⊥⊥−⊥⊥⊥⊥ →′→′=′

0
1,1~0~

j
ttjtjt CII yyCMCyC ε  (26) 

holds accordingly. The cointegration rank is equal to ( )Ar  in light of (5) 
of Theorem 1 in the Appendix, upon noting that C is trivially a choice of 
( ) .⊥⊥C  This argument establishes (13) as well. The proof is now 

complete. 

Result (c). First of all observe that, under ,2=υ  (4) can be rewritten 
as follows: 

( ) ( ) .
0

1112122 ∑
∞

=
−+++++=

j
jtjttt t εωηωωη MNNy  (27) 

Then observe that in light of (19) of Theorem 1 in the Appendix, the 
columns of ( )⊥⊥BG  span the row kernel of 2N  and one choice of ( )⊥⊥BG  

is the partitioned matrix [ ( ) ]⊥⊥⊥ 2, CB  as per formula (18) of the said 

theorem. The columns of the latter block span the row kernel of [ ]12, NN  
(see proof of Result (b)), and the columns of the former block span the 
subspace of the row kernel of 2N  not intersecting with the row kernel of 
[ ],, 12 NN  respectively. 

Hence, by premultiplying both sides of (27) by ,⊥′B  the non- 
stationarities due to second-order random walks and deterministic trend 
are removed whereas the non-stationarity due to first-order random 
walks is not, and the following 

( ) ∑
∞

=
−⊥⊥⊥ ′++′=′

0
111 ,

j
jtjtt εωη MBNByB  

( ) ( )1,2~1~ CII tt yyB →′⊥  (28) 

hold accordingly. The cointegration rank is equal to ( )Arn −  in light of 
(5) of Theorem 1 of the Appendix. The proof is now complete. 
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So far we have considered one-lag VAR models; however multi-lag 
dynamic specifications happen to be the rule in econometric modelling, 
whence a stimulus to bridge the gap between simple and multi-lag 
analysis. In this connection, a companion-form representation of a multi-
lag model (see, e.g., Banerjee et al. [2, p. 143]) turns out to provide the 
way-out to tailor the foregoing analysis to general dynamic models along 
the guidelines drawn below. 

Consider to this end a one-lag n-dimensional VAR model, satisfying 
the hypothesis of Theorem 3.1, specified as follows: 

( ) ( ) ( )1,,1,
11

nnnn
ttt ε=+ −yAy  (29) 

and let the coefficient matrix 1A  and the vector ty  be partitioned as 

( )
,

321

1,
1

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

=

0000

0000
0000

I
..........

I
I

P..PPP

A

q

n
 (30) 

( )
,

~

~
~

1

1

1,
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

+−

−

qt

t

t

n
t

y

y
y

y  (31) 

where the 2q  blocks of 1A  are square matrices of order m, the q blocks of 

ty  are 1×m  vectors and n equals mq. 

Further, let the right-hand side vector tε  be specified as 

,~
tt εε J ′=  (32) 

where ( )mt WN~~ε  and 

[ ]00 ...,,,IJ =  (33) 

is a selection matrix whose q blocks are square matrices of order m. 
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By premultiplying both sides of (29) by J and by resorting to the 
companion-form matrix (30), (31) and (32), an isomorphic q-lag model 

( ) ( )∑
=

− =+
q

k m
tktk

m
t

1 1,1,
~~~ εyPy  (34) 

arises from the parent one-lag model (29) as simple computations show. 

Then, the solution of equation (34) can be recovered from that of 
equation (29), and cointegration analysis can be run by spanning the row 
kernels of the matrices [ ]1, −υυ NNJ  and υJN  as the following corollary 
shows. 

Corollary 3.1.1. Consider an m-dimensional q-lag VAR model 
specified as 

( ) ( )∑
=

− =+
q

k m
tktk

m
t

1 1,1,
~~~ εyPy  (35) 

and its companion-form reparametrization 

ttt ε=+ −11yAy  (36) 

for which the hypotheses of Theorem 3.1 are maintained. Here, ,1A  ty  and 

tε  are as defined in (30), (31) and (32), respectively. 

The following closed-form representation holds for the solution of 
equation (35): 

( )∑ ∑
υ

=

∞

=

−υ
υ +++=

1 0

1
1 ,~~~~~~~

j j

j
jjjtjt Lt MNNy ωηω  (37) 

where the jM~ ’s are coefficient matrices with exponentially decreasing 

entries, 1
~ω  and 2

~ω  denote arbitrary vectors, 

∑ ∑
≤τ ≤τ

ττ ==
t t

tt 121
~~,~~ ηηεη  (38) 

are first and second order random walks, respectively, 

,~~~
1−υυ −= NNN  (39) 
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( )
⎩
⎨
⎧

=υ
=υ′+

=−υ ,1if
,2if~

1 0
JAIJN

N  (40) 

,~ JJNN ′=  (41) 

1AIA +=  and N is the matrix (8) of Theorem 3.1. 

The vector ty~  given by (37) is an integrated ( )I  as well as cointegrated 
( )CI  process, for which the following statements hold: 

(a) ( ),~~ υIty  (42) 

(b) ( ) ( ) ( ),,~~0~~~
υυ⇒′

⊥⊥υ CII tt yyC  (43) 

where ⊥υC
~  is written for ⊥υJC  and the rank qualification ( )⊥⊥

+ SCPB ~~~r  

( )⊥= S~r  is adopted for .2=υ  Trivially υC
~  is one choice of ( ) ,~

⊥⊥υC  which 

can be more conveniently specified as follows: 

( ) ( )⊥⊥⊥
−

⊥⊥υ −= SCPBCC ~~~~~  if 2=υ  and ( ) ( ) ,12 mqr −>A  (44) 

( )⊥⊥υC
~  is an empty matrix if 2=υ  and ( ) ( ) ,12 mqr −=A  (45) 

( ) CC ~~
=⊥⊥υ  if ,1=υ  (46) 

(c) ( ) ( ),1,~~1~~~ −υυ⇒−υ′⊥ CII tt yyPB  under .2=υ  (47) 

Insofar as the rank assumptions 

( ) ( )⊥⊥⊥
+

⊥⊥ =′′ SSCPPPBR ~~~~~ rr   and  ( ) ( )⊥⊥ =′ BBP ~~ rr  (48) 

are adopted, propositions (b) and (c) provide a full characterization of the 
cointegration properties of the solution. 

To prove (37), observe that 

(i) a particular solution of (35) can be obtained from that of (36) –
namely ty  of formula (18) – by premultiplication by J, that is, 

 ∑ ∑
υ

=

∞

=
−+==

1 0

~

j j
jtjjtjtt εη JMJNyJy  
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∑ ∑
υ

=

∞

=
−′+′=

1 0

~~
j j

jtjjtj εη JJMJJN  

∑ ∑
υ

=

∞

=
−+=

1 0

~~~~

j j
jtjjtj εη MN  (49) 

keeping in mind (32) and its by-product 

.~
jtjt ηη J ′=  

(ii) The permanent component of the complementary solution, namely 

∑
υ

=

−υ
υ+=

1

1
1

~~~~~

j
jjt tωω NNy  (50) 

can be obtained likewise from formula (20). 

By adding (49) and (50), we get (37). 

For what concerns Result (a) the proof is the same as in Theorem 3.1. 

Proofs of subsequent results develop along the same lines as in 
Theorem 3.1, with Theorem 2 in the Appendix providing the algebraic 
support once offered by Theorem 1 in the Appendix. 

Indeed, the row kernels of ,~N  for ,1=υ  and of [ ]12
~,~ NN  and ,~

2N  
for 2=υ  under the rank conditions (45), turn out to be spanned by the 

columns of the matrices ,~C  and 

( ) ( ) ,~~~~~
2 ⊥⊥⊥

+
⊥⊥ −= SCPBCC  (51) 

( ) [ ( ) ],~,~
2 ⊥⊥⊥⊥ ′= CBPJBG  (52) 

respectively, according to (49) and (51) of Theorem 2 of the Appendix 
bearing in mind (52) and (53) of the said theorem. As a by-product, under 

,2=υ  the columns of ⊥′BP ~  turn out to span the subspace of the row 

kernel of 2
~N  not intersecting with that of [ ].~,~

12 NN  

Hence, by resorting to the same line of reasoning set forth in the 
proof of Theorem 3.1, the way is paved to prove (43), (44), (46) and (47), 
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as well as (45), with (54) of Theorem 2 in the Appendix playing the same 
role formerly played by (9) of Theorem 1 in the Appendix. 

Should either the rank qualification ( ) ( )⊥⊥⊥
+ = SSCPB ~~~~ rr  or the 

rank assumptions (48) fail to hold, then the previous arguments should 
be restated accordingly. The way would be paved, should we resort to the 
analytical set-up formerly devised by Faliva and Zoia [11, 12]. This is 
nevertheless beyond the scope of the present paper. 

Appendix 

Definition 1. Let C be an n-row matrix of full column-rank. An                
n-row matrix ⊥C  of full column-rank is said to be an orthogonal 

complement of C if 

( ) ( )., CCCC rnr −==′ ⊥⊥ 0  (1) 

Obviously ⊥C  is not unique and trivially a choice of ( )⊥⊥C  is C itself. 

Note also that ⊥C  is reduced to an empty matrix when C is square 
(see, e.g., Faliva and Zoia [12, p. 131]). We shall henceforth write 

KC =⊥  (2) 

to indicate that K is one choice of .⊥C  

Definition 2. Let A be a square matrix. The index of A, written 
( ),ind A  is the least non-negative integer υ for which 

( ) ( ).1+υυ = AA rr  (3) 

Should A be non-singular, then ( ) ,0ind =A  whereas when A is a null 
matrix, then ( ) 1ind =A  (Campbell and Meyer [3, p. 121]). 

Theorem 1. Let A be a non-null square matrix of order n and index 
2≤υ  and let 

( ) ( ) ( ),, υυ
υ

υυ
υ ==′= CBACBA rrr  (4) 

( ) ( ) ( ),, CBACBA rrr ==′=  (5) 
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( ) ( ) ( ),, GFBCGFBC rrr ==′′=′  (6) 

( ) ( ) ( )SRCBSRCB rrr ==′′=′ ⊥⊥⊥⊥ ,  (7) 

be rank factorizations of BCAA ′υ ,,  and ,⊥⊥′ CB  respectively, where ,υB  

RGFCBC ,,,,,υ  and S are full column-rank matrices. 

Then the following hold: 

(a) ( ) ( ) ( ) ( ),2
⊥⊥⊥ ′−=− CBCAA rrrr  (8) 

(b) ( ) ( )⊥= SB rr  if ,2 0=A  (9) 

(c) ( ) ( ) ,0det,0det ≠′≠′ ⊥υ⊥υυυ CBBC  (10) 

(d) ( ) ⊥υ
−

⊥υ⊥υ⊥υ ′′= BCBCN 1  (11) 

is invariant for any choice of ⊥υB  and ,⊥υC  

(e) IN =  if .0=υA  

Further, the following hold for 2=υ  and :2 0≠A  

 (i) ( ) ( ) ,0det,0det ≠′≠′ ⊥⊥GFFG  (12) 

(ii) ,, ⊥⊥
+

⊥⊥⊥
+

⊥ == RBCFSCBG  (13) 

where ( ) BBBB ′′= −+ 1  and ( ) CCCC ′′= −+ 1  denote the Moore-Penrose 

inverses of B and C, respectively. 

(iii) [ ],,2 ⊥⊥
−

⊥⊥ = SCACC r  (14) 

where 

( ) +−− ′= BCAr  (15) 

is a reflexive generalized inverse of A and ( )−′C  is an arbitrary right-

inverse of .C ′  

(iv) ( ) ( ) ,2 ⊥⊥⊥
+

⊥⊥ = SCBCC  (16) 
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 (v) ( ) ( )⊥⊥⊥⊥⊥ = SCBG  (17) 

[ ( ) ],, 2 ⊥⊥⊥= CB  (18) 

(vi) ( ) CFGFBGN ′′′= ⊥
−

⊥⊥⊥
1

2  (19) 

 ( ) ,1
⊥⊥

−
⊥⊥

+
⊥⊥⊥⊥ ′′′′−= BRSCABRSC  (20) 

where ,2 NAN −=  

(vii) [ ] ,, 212 Φ⊥= CNN  (21) 

where 21 NNN −=  and Φ  is a full row-rank matrix. 

Proof of (a). Resorting to Theorem 19 of Marsaglia and Styan [19] 
and bearing in mind the identities (see, e.g., Rao and Mitra [20, p. 156]) 

( ) ( ) ICCCCIBBBB =′′+=′′+ ⊥
+

⊥
+

⊥
+

⊥
+ ,  (22) 

the twin rank equalities 

[ ] ( ) (( ) ) ( ) ( ) ( ) ( ),, ⊥⊥⊥⊥⊥
+

⊥ ′+=′+=−+= CBACBBCBBIBCB rrrrrrr  

 (23) 

[ ] ( ) ([ ( ) ] ) ( ) ( ) ( ) ( )2, ACBCCBCCICCB rrrrrrr +=′+=′′−+= ⊥⊥⊥
+

⊥⊥⊥  

 (24) 

are easily established. Equating the right-hand sides of (23) and (24) 
yields (8). 

Proof of (b). Under ,2 0=A  equality (8) takes the form 

( ) ( ) ( )⊥⊥⊥ ′−= CBCA rrr  (25) 

whence (9) follows upon reminding (5) and (7) and noting that 

( ) ( ) ( ) ( ) ( ).⊥⊥⊥⊥⊥ =−=′− SSCCBC rrrrr  (26) 

Proof of (c). As ( ) ,1ind =υA  bearing in mind (4) and restating (8) 

with υA  as an argument, the following prove true: 



MARIA GRAZIA ZOIA 54 

( ) ( ) ( ) ,0det ≠′→′′=′ υυυυυυυυ BCCBCBCB rr  

( ) ( ) ( ) ( ) ( ) .0det002 ≠′→=′−→=− ⊥υ⊥υ⊥υ⊥υ⊥υ
υυ CBCBCAA rrrr  (27) 

Proof of (d). In order to prove the claimed invariance, reference can 
be made to Theorem 5, p. 5 in Faliva and Zoia [12]. 

Proof of (e). Should υA  be a null matrix, then υB  and υC  would be 
empty matrices, and ⊥υB  and ⊥υC  would be arbitrary non-singular 
matrices (see, e.g., Faliva and Zoia [12, p. 131], Chipman and Rao [4]), 
whence the equality IN =  would follow as a by-product. 

Proof of (i). As ( ) ,2ind =A  then ( ) ,1ind =′FG  and (10) applies 
accordingly with F and G in place of υB  and .υC  

Proof of (ii). Reminding (6), (7) and (22) and upon noting that 

,IFF =−  it is easy to check that 

[ ( ) ] ,⊥⊥⊥⊥⊥
+

⊥⊥⊥
+ =′′−= SCSCBBISCBB  

0=′=′=′=′ ⊥⊥
−

⊥⊥
+−

⊥⊥
+−

⊥⊥
+ SCCFSCBBCFSCBGFFSCBG  (28) 

whence the conclusions that 

( ) ( ) ( ) ( ),⊥⊥⊥⊥⊥
+

⊥⊥
+ === SSCSCBBSCB rrrr  (29) 

[ ] ( ) ( )⊥⊥⊥
+ += SGSCBG rrr ,  (30) 

are easily drawn. 

Further, observe that the following hold as :2=υ  

( ) ( ) ( ) ( ) ( ) ( )⊥=−=′= GAAGBCA rrrrrr 22 ,  (31) 

which in turn entails the equality 

( ) ( )⊥⊥ = SG rr  (32) 

in light of (8) and (26). 

Since both the orthogonality and the rank conditions of Definition 1 
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are satisfied, ⊥⊥
+ SCB  provides one choice of .⊥G  The same conclusion 

about ⊥⊥
+ RBC  with respect to ⊥F  is drawn likewise. 

Proof of (iii). As ,2 CGC =  Theorem 6, p. 7 in Faliva and Zoia [12] 
applies, yielding 

[ ( ) ]⊥−
⊥⊥ ′= GCCC ,2  (33) 

which in turn leads to (14) by resorting to (13) and (15). 

Proof of (iv). Formula (16) follows from backward application to (14) 
of the said Faliva and Zoia’s theorem, by keeping in mind (15). 

Proof of (v). Result (17) is easily established on the basis of (13) and 
(28). 

Moving to (18), observe first that applying Theorem 6, p. 7 in Faliva 
and Zoia [12], to the matrix ( )⊥⊥BG  yields 

( ) [ ( ) ( ) ].⊥⊥
+

⊥⊥⊥ ′= GBBBG  (34) 

Premultiplying the latter block in the right-hand side by BC ′  and 
resorting to (13) and (16), leads to 

[ ( ) ] [ ( ) ] [ ( ) ]⊥⊥⊥⊥⊥⊥
+

⊥⊥⊥⊥ == 2,,, CBSCBCBGCB  

which proves to be a choice of ( )⊥⊥BG  in light of the results below, 

[ ( ) ] [ ( ) ] [ ( ) ] [ ],,,,, 0000 =′′=′′=′′ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ GFGGGCBGGCBBG  

([ ( ) ]) ( ) ( ) ( ) ([ ( ) ])⊥
−

⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ′′′+=′+= GCBCBCBCCCB ,, 2222 rrrrr  

( ) ( ) ( ( ) ) ( ) ( ) ( )⊥⊥⊥
+

⊥⊥ ′++=′′′++= GFSCGCBRRC rrrrrr 22  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )⊥⊥⊥ +=++=++= CASSAGSA rrrrrrrr 222  

( ) ( ) ( ) ( ) .2
⊥⊥⊥ =−=−+= BGGAA rrnrnr  

The rank equalities above have been obtained by making use of (7), (12), 

(13), (14), (31), (32) and (33), by choosing ( )+′C  as a generalized inverse of 
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,C ′  by reminding the noteworthy equality ( ) ,+++ ′= BCA  and by 
resorting twice to the usual Marsaglia and Styan’s theorem. 

Proof of (vi). By making use of the identity 

( ) ( ) ,11 IDVDVVDVD =′′+′′ ⊥
−

⊥⊥⊥
−  (35) 

where D and V are full column-rank matrices such that [ ]⊥VD,  is non-
singular (see, e.g., Faliva and Zoia [12, p. 9]), by bearing in mind that 

BFB =2  and ,2 CGC =  and by resorting to (6), (11), (12), (13) and (22), 
check that 

 ( ) [ ( ) ]ACBCBIABCBCNAN 2
1

2222
1

2222 ′′−−=′′−=−= −
⊥

−
⊥⊥⊥  

( ( ) ) ( ( ) )CGFGFGBFCBCBCGBFCGBFCB ′′′′−′−=′′′′′−′−= −− 21  

[ ( ) ] ( ) CFGFBGCGFGFIB ′′′−=′′′−−= ⊥
−

⊥⊥⊥
− 11  

( ) .1
⊥⊥

−
⊥⊥

+
⊥⊥⊥⊥ ′′′′−= BRSCABRSC  

Proof of (vii). Upon noting that [ ] ( )[ ]AINNANN +−= ,, 12  and 
that the block matrix ( )[ ]AIA +− ,  is of full row-rank, the conclusion 
that 

[ ]( ) ( )NNN rr =12,  

is easily drawn and the factorization (21) follows accordingly, in light of 

(11) by taking 2=υ  and ( ) [ ].,2
1

22 AIABCB +−′′= ⊥
−

⊥⊥Φ  

Theorem 2. Let A be a square matrix of order n and index 2≤υ  
partitioned as follows: 

( )
,

321

2221

1211
,

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

+

=⎥⎦
⎤

⎢⎣
⎡=

mm

mm

mm

qm

nn

II
..........

II
II

P..PPPI

A

000

000
000

ΛΛ
ΛΛ

 (36) 

where qmqn PPP ...,,,, 21=  are square matrices of order m, and let P 
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denote the Schur complement of ,22Λ  namely 

.2121
1

221211 qPPPIP ++++=−= − ΛΛΛΛ  (37) 

Further let AA ,υ  and ⊥⊥′ CB  be factorized as in Theorem 1, and 

( ) ( ) ( ),~~,~~ CBPCBP rrr ==′=  (38) 

( ) ( ) ( ),~~~~,~~~~ GFBCGFBC rrr ==′′=′  (39) 

( ) ( ) ( )⊥⊥⊥⊥ ′==′=′ CPBSRSRCPB ~~~~,~~~~ rrr  (40) 

be rank factorizations of BCP ~~, ′  and ,~~
⊥⊥′ CPB  respectively, where 

.
1
∑
=

=
q

k
kkPP  (41) 

Besides, put 

[ ( ) ].1, −= qmmm 0IJ  (42) 

Then the following hold: 

(a) a reflexive generalized inverse of A is given by 

,1
221221

1
22

1
2221

1
22

1
2212

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+−

−
=

−+−−+−

−++
−

ΛΛΛΛΛΛΛ

ΛΛ

PP
PPAr  (43) 

where 

( ) +++ ′= BCP ~~  (44) 

is the Moore-Penrose inverse of P, 

(b) ,~,~
⊥⊥⊥⊥ =⊗= CJCCuC q  (45) 

[ ( ) ( ) ],~...,,~,~,~
332 qqq PBPPBPPPBBB ⊥⊥⊥⊥⊥ ′−++′−+++′−′=′  

,~
⊥⊥ = BJB  (46) 

where qu  is a 1×q  vector of 1’s and ⊗ denotes the Kronecker product. 
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Further, the following hold under :2=υ  

  (i) ( ) ,⊥⊥
+−

⊥⊥
− ′= SCBCSCAr  (47) 

 (ii) [ ],~~,~
2 ⊥⊥

+
⊥⊥ −= SCPPCJC  (48) 

(iii) ( ) ( )⊥⊥⊥
+

⊥⊥ −= SCPBCJC ~~~~
2  provided ( ) ( ),~~~~

⊥⊥⊥
+ = SSCPB rr  (49) 

 (iv) ( ) ( )⊥⊥⊥⊥⊥ = SCJBG ~~  in general (50) 

 [ ( ) ]⊥⊥⊥′= 2,~ JCBP  if ( ) ( )⊥⊥⊥
+

⊥⊥ =′′ SSCPPPBR ~~~~~ rr  

and 

 ( ) ( ),~~
⊥⊥ =′ BBP rr  (51) 

 (v) ( ) ,1
2 CFGFJBGJN ′′′= ⊥

−
⊥⊥⊥  (52) 

 (vi) [ ] ,, 212 Φ⊥= JCNNJ  (53) 

where 12, NN  and Φ  are defined as in Theorem 1, 

 (vi) ( ) ( )⊥= SB ~~ rr  if ( ) ( ) .12 mqr −=A  (54) 

 Proof of (a). The proof of (43) follows along the same line of 
reasoning as in Theorem 15, p. 232 in Faliva [8]. The reflexivity property 

−−− = rrr AAAA  is easily checked. 

Proof of (b). To prove (45) and (46) observe that by inspection of (5), 
the conclusion that ⊥′B  and ⊥C  are full rank solutions of the 
homogeneous equations 

,0=′AΞ  (55) 

,0=AX  (56) 

respectively, is easily drawn. 

Besides, upon noticing that A can be factorized as follows: 

,
21

1
2222

12

2221

1
2212

⎥⎦

⎤
⎢⎣

⎡
⎥⎦

⎤
⎢⎣

⎡=⎥⎦

⎤
⎢⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
= −

−

I
IPP

I
IA

ΛΛΛ
Λ

ΛΛ
ΛΛ 0

0
0

0
 (57) 
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equations (55) and (56) can be more conveniently rewritten in partitioned 
form as 

[ ] [ ],,
~~

,
22

12
21 00

0
′′=⎥

⎦

⎤
⎢
⎣

⎡ ′′′
Λ
ΛΞΞ CB  (58) 

.
~~

1

1

2221
⎥⎦
⎤

⎢⎣
⎡=⎥⎦

⎤
⎢⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ ′
0
00

X
XCB

ΛΛ
 (59) 

Solving (58) yields 

,~
1 ⊥′=′ BΞ  

[ ( ) ( ) ],~...,,~,~
3322 qqq PBPPBPPPB ⊥⊥⊥ ′−++′−+++′−=′Ξ  (60) 

whereas solving (59) yields 

⊥−⊥ ⊗== CuXCX ~,~
121 q  (61) 

as simple computations show. 

Proof of (i). First of all observe that by making use of (37), (41), (45) 
and (46), some computations give 

 ( ) ⊥⊥⊥⊥⊥⊥ ++++++++′−′=′ CPPPPPPBCBCB ~~~~
332 qqq  

( )∑
=

⊥⊥⊥⊥ −′−′=
q

k
kk

2

~1~~~ CPBCB  

⊥
= =

⊥⊥⊥ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−′−′= ∑ ∑ CPPBCB ~~~~

1 1

q

k

q

k
kkk  

( ) .~~~~
⊥⊥⊥⊥ ′−=−′= CPBCPPB  (62) 

Thus any rank factorization of ⊥⊥′ CB  is also a rank factorization of 

⊥⊥′− CPB ~~  and vice versa, which entails in particular that 

.~,~
⊥⊥ == SSSS  (63) 
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Then, keeping in mind (36), (37), (41), (43) and (45), notice that 

( ) [ ]

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=⊗

⊥

⊥

⊥

⊥−
−

C

C
C

IIII

II
I

PPPCu
~

~
~

...,,,~
321

1
2212

0
00

qqΛΛ  

( )∑ ∑ ∑
=

⊥
= =

⊥ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=−=

q

k

q

k

q

k
kkk kk

2 2 2

~~1 CPPCP  

( ) ⊥⊥
= =

+−=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−= ∑ ∑ CIPPCPP ~~

1 1

q

k

q

k
kkk  

( ) ,~
⊥+= CIP  (64) 

( ) ( ) ( ) ,~~~~~~~~~~~~ 1 0=′′=−=− ⊥⊥⊥
−

⊥⊥⊥⊥⊥
+

⊥⊥
+ SCPBBBBSCPBBISCPPPI  

( )
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

⊗
⋅

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
=

⊥⊥−

⊥⊥

−

−++

⊥⊥
−

SCu
SC

I
PPIPPSCAA ~~

~~

11

1
2212

qq
r 0

ΛΛ  

 ( ) ( )
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

⊗
+−+

=
⊥⊥−

⊥⊥
+

⊥⊥
+

SCu
SCIPPPISCPP

~~
~~~~

1q
 

 ( )
( )

,~~
~~

1 ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⊗
−+

=
⊥⊥−

⊥⊥
++

SCu
SCPPIPP

q
 

( ) ,~~
⊥⊥⊥⊥ =⊗ SCSCuq  (65) 

( ) ( ) −−−−+− =′′=′ rrr AACCAABC  (66) 

for some ( )−′C  in view of Lemma 2.5.2, p. 28 in Rao and Mitra [20]. 

Hence, equality (47) ensues from (65) and (66) via premultiplication 

of the former by ( ) .+−′ BC  

Proof of (ii). Resorting to (43), (45), (63), (64) and (14) 
premultiplying the latter by J, yields 
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[ ]⊥⊥
−

⊥⊥ = SCJAJCJC r,2  

[ [ ]]
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

⊗
⋅−=

⊥⊥−

⊥⊥−++
⊥ SCIu

SCPPC ~~
~~

,,~
1

1
2212

mq
ΛΛ  

[ ( ) ]⊥⊥
+

⊥ −−= SCIPIPC ~~,~  

[ ].~~,~
⊥⊥

+
⊥ −= SCPPC  

Proof of (iii). Result (49) can be obtained from (48) following the 
same line of reasoning used to deduce (16) from (14) in Theorem 3.1, by 

making use of (44). The rank condition is required for ( )⊥⊥⊥
+ SCPB ~~~  to be 

a meaningful expression. 

Proof of (iv). Result (50), which is the mirror image of (17), is easily 
established upon noting that 

⊥⊥⊥⊥⊥⊥
+

⊥ === SCSJCSCJBBJBG ~~  (67) 

in light of (13), (28), (45) and (63). 

Bearing in mind (67), the proof of (51) rests essentially on the same 
line of arguments set forth to prove (18). The rank conditions are needed 
for the columns of the matrix in the right-hand side to provide a basis for 
the row kernel of .⊥JBG  

Proof of (v) and (vi). Results (52) and (53) follow from (19) and (21), 
respectively, through premultiplication by J. 

Proof of (vii). Keeping in mind (8), (45) and (62), we can write 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ).~~~~2
⊥⊥⊥⊥⊥⊥⊥ =′−=′−=− SCPBCCBCAA rrrrrrr  (68) 

Further, resorting to the rank equality 

( ) ( ) ( ),22 PA rrr += Λ  

noting that 

( ) ( ) ( ) ( )BP ~,122 rrqmr =−=Λ  
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and substituting into (68), we eventually get the equality 

 ( ) ( ) ( ) ( ).~1~ 2
⊥=−−+ SAB rrqmr  (69) 

By inspection of (69), it follows that 

( ) ( ) ( ) ( ).1~~ 2 −=↔= ⊥ qmrrr ASB  

We will now present a useful decomposition of a square matrix into a 
component of index one, known as core component (Campbell and Meyer 
[3, p. 127]), and a nilpotent term. 

Theorem 3. A square matrix A with index υ  has a unique 
decomposition 

HKA +=  (70) 

with the properties 

  (i) ( ) ,1ind =K  (71) 

 (ii) ,0=υH  (72) 

(iii) ,0== KHHK  (73) 

 (iv) ( ) ( ) ( ) ...,,2,1, =+= krrr kk KHA  (74) 

 (v) ,υυ = KA  (75) 

 (vi) ( ) ( ) ,11
⊥

−
⊥⊥⊥⊥υ

−
⊥υ⊥υ⊥υ ′′=′′ BCBCBCBC  (76) 

where ,υB  υC  are as defined in (4) and B  and C  are full column-rank 

matrices obtained by a rank factorization of K, that is, 

( ) ( ) ( )., CBKCBK rrr ==′=  (77) 

Proof. For a proof of (i)-(v) see Rao and Mitra [20, p. 93] and 
Campbell and Meyer [3, p. 121]. For what concerns (vi) observe first that 

( ) ( ) υυ
−υυ ′=′′=′ CBCBCBCB 1  (78) 

because of (75) and (77). Hence, ⊥B  and ⊥C  turn out to play the role of 
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orthogonal complements of υB  and υC  and equality (76) ensues from 
Theorem 5, p. 5 in Faliva and Zoia [12]. 

The lemma and the theorem below provide useful matrix-function 
inversion formulas about a pole on the basis of the core-nilpotent 
decomposition above. 

Lemma. Consider the matrix functions 

( ) ( ) ,1
1

zz
−

+= HIH  (79) 

( ) ( ) ( ) ,1 KKIK +−−= zz  (80) 

( ) ,1HHIH −−=  (81) 

where H and K are as in the foregoing theorem, and ( )zKdet  has all its 

roots outside the unit circle, except for a possibly multiple unit-root. 

The following Laurent expansions hold for ( )z1−H  and ( )z1−K  in a 

deleted neighbourhood of :1=z  

 (i) ( ) ( )
( )

,
1

11

1

1 ∑
−υ

=

−

−

−
+=

i

i
i

i

z
z HIH  (82) 

(ii) ( ) ( ) ( ),~
1

11 zzz MNK +
−

=−  (83) 

where 

( ) ,1
⊥υ

−
⊥υ⊥υ⊥υ ′′= BCBCN  (84) 

( ) ∑
∞

=

=
0

,~~

i

i
izz MM  (85) 

( ) ( ) CBCBM ′′= −21~  (86) 

and the iM~ ’s are matrices with exponentially decreasing entries. 

Proof. To prove (i), observe that H and ( ) 1−− HI  commute, the 
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matrix H  enjoys the same nilpotency property as H as a by-product and 
the expansion in the right-hand side of (82) holds accordingly. 

The proof of (ii) can be obtained resorting to Theorem 1, p. 37 in 
Faliva and Zoia [12], upon noting that 

,⊥⊥⊥⊥ ′−=′⇒−= CBCKBIKK  (87) 

( ) ( ) ,0det1ind ≠′⇒= ⊥⊥CBK  (88) 

where the dot stands for derivatives and reference is made to (10). 
Results (83), (84) and (85) hold accordingly. Finally, formula (86) proves 
true in light of the said theorem upon noting that 

0=K  (89) 

and resorting to identity (35). 

Theorem 4. Consider the matrix polynomial 

( ) ( ) KHAAIA +=+−= ,1 zzz  (90) 

which can be factorized as 

( ) ( ) ( ) ( ),zzz KHHIA −=  (91) 

where the symbols have the same meaning as in the previous lemma. 

Then, the following Laurent expansion 

( )
( )∑ ∑

υ

=

∞

=

− +
−

=
1 0

1

1
1

i i

i
iii z

z
z MNA  (92) 

holds in a deleted neighbourhood of .1=z  

The following closed-form expressions hold for the coefficient matrices 
υN  and :1−υN  

( ) ,1 11 −υ−υ
υ −= NHN  (93) 

( ) ( ) ( ) 1222
1 111 −υ−υ−υ−υ
−υ −υ−+−= NHNHN  (94) 

adopting the convention that .0 IH =  
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Proof. The proof of (92) is straightforward upon noting that 

( ) ( ) ( ) ( ) 1111 −−−− −= HIHKA zzz  (95) 

and by replacing the inverses of the matrix functions appearing in the 
right-hand sides with their Laurent expansions given by formulae (82) 
and (83) of the Lemma. 

Formulas (93) and (94) follow from (82), (83) and (86) by making use 

of the first matrix coefficient ( )1~M  in the expansion of ( )zM~  about .1=z  

Indeed, simple computations yield 

( ) ( ) ,1 11 υ−−υ−υ
υ −−= HINHN  (96) 

( ) ( ) ( ) ( ) ( ) .1~11 11122
1

υ−−υ−υ+υ−−υ−υ
−υ −−+−−= HIHMHINHN  (97) 

Now, applying the binomial theorem to ( ) υ−− HI  and ( ) ,1+υ−− HI  

formulas (96) and (97) simplify into formulas (93) and (94), bearing in 
mind the nilpotency of H and that 

( ) 0=HM 1~  (98) 

in light of formulas (86) and (73). 
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