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Abstract

In this paper we construct explicitly an analytic immersion CP" —

cP? of degree d > 2 in case when n +1 is a prime. The proof uses

special values of minors of Vandermonde’s determinant.
1. Introduction and Statement of Results

The existence problem of embeddings or immersions between given
differentiable manifolds i1s a fundamental problem in differential
topology. It has been mainly treated in case when the target manifold is
an Euclidean space. When the target manifolds are some other manifolds
such as real or complex projective spaces or lens spaces, some results
have been obtained in ([1], [4], [5], [6], [7], [8], [9]). In this paper we treat

analytic immersions between complex projective spaces.

Let CP" denote the complex projective space of dimension n. For a

continuous map f : CP" — CP™ with n < m, the degree of f which we

denote by deg(f) is the integer determined by the induced
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homomorphism f*: H2(CP™, Z)= Z — H*(CP", Z) = Z. It is well
known that the homotopy class of f is completely characterized by deg(f)
([11, [8D.

On the existence of an analytic embedding or immersion CP" —

CP™ of given degree, the following facts are known:

Fact 1. For any d > 0 there exists an analytic embedding CP" —
CP?™! of degree d and an analytic immersion CP" — CP?" of degree

d [1, Theorem 1.2].

Fact 2. If f: CP" — CP™ is an analytic immersion and m < 2n,
then deg(f) =1 [1, Theorem 2.1].

Fact 3. A map f:CP" — CP?" is homotopic to an analytic
embedding if and only if deg(f) =1 or deg(f) = 2 [1, Theorem 2.2].

An explicit construction of an analytic embedding CP" — CP?" of

degree 2 is given in [2]. In this paper we give an explicit construction of

an analytic immersion CP" — CP?" of given degree d > 2 in case

when n +1 is a prime.
Our theorem is the following:

Theorem 1.1. Let d be an integer such that d > 2. We define

homogeneous polynomials f;(z) = fi(20, 21, - 2p,) € Clzg, 21, -y 2] (@ =
0,1, .., 2n), by
@) zid, if 0<1i<n,
ﬁ Z)= n d-1 . .
ijo Zj2j+i—n’ if n<i<2n+1,

where k is the residue of k divided by n + 1.

Then f = (fy, ..., fan) induces an analytic map f:CP" — CP*"
deﬁned by ]?([20, 215 wees Zn]) = [fO(Z)’ fi(Z), ey an(Z)], where [ZO’ R1s Zn]
is the point of CP" whose homogeneous coordinate is (2, 21, ..., 2,)- If

n+1 isaprime, then [ is an immersion of degree d.
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The proof of Theorem 1.1 is reduced to the following:

Theorem 1.2. For any point (ay, ..., a,) € C"* = {0}, we define the

(n +1)x (2n + 1) matrix J as follows:

a O 0 0 o a9 a,
0 a 0 oo 0 Qg as e Qo
J=|o 0 . . . : . .
: 0 Qn Qo An-2
0 0 0O a, o o a,_1

Then rankJ =n+1, if n+1 is aprime.
To prove Theorem 1.2, we use the following proposition.

Proposition 1.3. Let p be a prime and ¢ = exp(2nv—1/p). We define
the p x p matrix P by

11 1 1
1 ¢ S

P={1 ¢ ¢4 a2 |
) Qé—l §2(}z—1) Q(p.—l)2

Then for any integer r (1 < r < p), any r-th minor of P is not equal to zero.

2. Proofs of Theorems

In this section we prove Theorems 1.1 and 1.2 assuming Proposition

1.3. Proposition 1.3 will be proved in the next section.

In general, if a map f : CP" — CP™ is defined by f = (fy, ..., ) :
c*l {0} » ¢™ — {0}, where fj (j=0,..,m) are homogeneous
polynomials of degree d, then deg(f) = d (see for example [1]), and if fis
an immersion, then f 1s an immersion. Thus to prove Theorem 1.1, it
suffices to prove that the Jacobian matrix J(f) of f : C**' — C?"*! has

maximal rank for any (2, ..., z,) € C"*1 — {0}, if n +1 is a prime.
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The Jacobian matrix JJ(f) of the map fin Theorem 1.1 is

d-1 d-1 d-2 d-1 d-2
dz 0 0 - 0 2+ (d -1)zpz 25 +(d -1)zp72
d-1 d-1 d-2 d-1 d-2
0 dz{ 0 - 0 25 +(d -1)zp2 257 +(d -1)zp2)
0 0 . .
d-1 d-2 d-1 d-2
0 2z (@ -Dzp92, 7 25 +(d-1)z,-32), 3
0 0 -0 dzf{l_1 zg_l +(d - l)zn,lsz_z zii_l +(d - 1)zn,22,‘;"2

If we put 28 ' =a; (i=0,1,..,n) and define the (n +1)x (2n +1)

matrix J by
aq O O -~ 0 o ay - a,
0O @ O -~ 0 ay ag - ag
J=|0 0 : : o
: 0 Qn Qo R )
0 o - 0 a, a o - ap

then it is easily seen that rank J(f) = rankJ for (z, ..., z,) € C"*! -
{0}. Thus the proof of Theorem 1.1 is reduced to Theorem 1.2.

Now assuming that Proposition 1.3 holds, we prove Theorem 1.2. Let
V be the vector space over C consisting of n +1 dimensional complex

column vectors, and e, ey, ..., e, be the standard unit vectors in V. We

denote v = ageg + aje; + -+ a,e,, and define the (n+1)x(n+1)

matrix T by
0 1 o 0
0 0 1
T=|: + 0 0|
o : 1
1 0 O 0

Then the column vectors of the matrix J are

2 n
apey, aey, ..., aze,, Tv, T v, ..., T v,

and the eigenvalues of T are 1, ¢, QQ, ..., ", where (= exp(2nv-1/(n+1)),

and the corresponding eigenvectors are
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‘2

which we denote by pg, py, ..., P, respectively.

We define the subspaces W} and Wy of Vby
W = (ageg, areq, ..., aze,), Wy = (v, Tv, ..., T"v).
We put dim W, = r.
Lemma 2.1. There exist r integers i, ..., 1, (0 < i < <1, <n) such
r
that Wy = (p; , .-, p;,) and v = Zk=1 o, P, , where o, # 0.

Proof. Since W, is a T-invariant subspace of V and T is

diagonalizable, W5 is a direct sum of eigenspaces of 7. Therefore W, =

t
<pl-1, . pir> for some iy, ..., i,. Hence v = Zajkpjk, where o, # 0 for
k=1

some {ji, ..., i} < {i1, ..., iy} because v e Wy. Let (p;,.., pj)=Ws.
Then W; is a T-invariant subspace containing v and Wy < W;. Since W,y
is the minimal 7T-invariant subspace containing v, we have Wy = W, and

therefore {ji, ..., j;} = {i1, .., iy}. This completes the proof.

Note that rank J = dim(W; + W;) since v € W;. If we denote by s the

number of zeroes in ay, ..., a,,, then dimW, =n+1-s.
— n _ i .
We denote p; = z]‘:()pjiej’ pji =C" for0<i<n.

Now we assume that n+1 = p is a prime. If s =0, then W} = V.

Hence we assume that s > 1. Then there exist integers jj, ..., js such

that a; =---=a; =0, and hence W, ={y= Yygs oo yu)lyj, ==y, =0}

We denote the s x r matrix (pjpiA )1S],1SS 1<).<r DY P'. Since by Lemma 2.1
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any vector x € Wy is written as x = Z;zl x;.p;, , the condition that

x € W; N Wy is described as

Pl i =]1|eC’
X, 0

By Proposition 1.3 the rank of P’ is maximal. Since v e W, N W,, we
have Wy NW, #0 and therefore s<r and rankP =s Hence
dimW, "W, =r —s. Thus
dim(W; + Wy)=dim W] + dim Wy —dim W} N W, =

n+l-s+r—-dimW N Wy =n+1. This completes the proof of Theorem
1.2.

Remark 1. If n+1=Im, where [, m are integers with 1</, m<n+1,
then py, = Clm =1. Hence if we put v = pg— p,, = qpeg + 1€y +--- +
ape,, then we have ag=q; =0, Wy =(pg, p,,) and Wy N W, = 0.
Therefore dimW; < n+1-2, dimW, = 2 and dim(W; N Wy) > 1. Hence
rankJ = dim W, + Wy = dim W, + dim Wy —dim(W, N1 W) <n+1-2+2-1
=n. Thus if n+1 is not a prime, then the map f:CP" — CP?" in

Theorem 1.1 is not an immersion.
3. Proof of Proposition 1.3

Proposition 1.3 is equivalent to the following proposition:

Proposition 3.1. Let p be a prime and ¢ = exp(2nv—1/p). For any
integer r such that 1 <r < p and any sequence of integers ki, kg, ..., k,
such that 0<ky <kg <---<k, < p, we define the polynomial D(xy,xs,..., X, )

€ Z[x1,x9, ..., X.] by

ky ky ky
X%, Xg Xy

ko ko ko
x; Xy Xy
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Then for any sequence of integers lj, ly, ..., . such that 0 <[ <ly < --
<l <p, DEh, 2, .. cry=o.

In what follows, we prove Proposition 3.1 supposing that the

assumption in Proposition 3.1 holds.
Since D(x, x9, ..., x,) is an alternating polynomial in x7, x9, ..., X,,

we have

D(xl, X9y wees xr) = H (x] - xi)D’(xl, X9y wees xr),

1<i<j<r
D'(xy, x9, ..., x,) € Z[x1, ..., X,].

First we prepare following lemma:

Lemma 3.2. If D(¢1, ¢, .., %) = 0, then D'(1, 1, ..., 1) = 0 mod p.

Proof. Since Cli # Qlj for i+ J, D(Cll, CZZ, ey Clr) =0 implies
D(ch, g, ., c")=0. Let D(x",x"2, .. x")=F(x)e Z[x]. Then
F(¢)=0 and therefore the minimal polynomial of ¢ divides F(x) in
Z[x]. Thus we have

F(x)=Qx)x? 1+ +x+1), Qx)e Z[x].

Hence F(1) = @(1)p = 0 mod p. This completes the proof.

Now we calculate D'(1,1, ..., 1). For an integer £ and a positive

integer j we define the polynomial o, ;(xy, ..., x;) by

A
E xR0,
O, j (X1, oy ) = § bbby bt h =k, 2y 20

0, if & <0.

Then we have the following lemma:

Lemma 3.3.

Ok j+1 (%15 ooy X, ¥) = Op 1 (X1, s X5 2) = (¥ = 2)0pq, jua (%1, ooos X, 5 2).
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Proof.

Ok, jr1(%X1s oo X5, ¥) = Op_ ji1 (%, o0y X, 2)

)\’.
:Z x{»l,,,x.J(yu_Zu)
M+t =k 7
~(y-2)), x! "'xx-"z yH1zM2
Ay oot +pu=k J p +rg=p-1

)\’4
=(y—z)§ xlkl---x.’yulzuz
Ap et d g FRg =k-1 J

= (y - Z)Gk—l,j+2(x1’ res xj7 Y, 2)‘
From above lemma we get following:

Lemma 3.4.

D'(xy, ..., x,)
k

xp! le—l,z(xb x3) le—Z,S(xla X9, x3) o Ok ~(r-1), r(x1, 29, oy %)
k

X Gk2—1,2(x1’ xg) Gk2—2,3(x1’ Xg, X3) - Oky—(r-1), P, X, s %)
k

X7 Op,1,2(x1, X3) Op, g 3(%1, X9, X3) -+ Op (1), (%1, X s Xp)

Proof. Using Lemma 3.3 we have

D(x1, ..., x,)
ky ky ky k ky
X Xo — X e Xyt Xy
ko ko ko ko ko
_lx Xo* — Xp X2 =Xy
xf” xé’ —xf’ x,}fr —xlk’
k
xpt Gk1—1,2(x1’ Xg) - 0k1—1,2(x1, x)
k
xp Oky-1, 2(x1, x9) - Oky-1, 2(x1, %)

k
x;7 o 1, 2(x1, xg) o 1 9%, X;)
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= H;‘:Z(xj —xl)H:.=3(x]' —xz)

k
xpt 0k1—1,2(x1,x2) Gk1—2,3(x1,x2,x3) 0k1—2,3(x1’x2’xr)
k
y xp? sz—l,z(xl,xz) 0k2—2,3(x1,x2,x3) 0k2—2,3(x1’x2’xr)
k
x” Gkr—l,z(xbxz) okr_2,3(x1,x2,x3) Gkr—2,3(xlfx27xr)
k
Xt Gk1—1,2(x1,x2) le—(r—l),r(xl’x.‘zv-"f x,)

_H (x; -x;) X2 Opy1,2(%1, %) -+ Opy(po1), (X1, Xgs s Xy
1<i<j<r 4T : : : )

Gkr—l,Z(xl’ Xg) -+ Ok, —(r-1), Py, X9, ey %)

Now we can calculate D'(1, 1, ..., 1) as follows:

Lemma 3.5. 2!3!---(r -1/ D'(1, 1, ..., 1) = H1<i<j<r (kj — k).

j -1
Proof. If [ >0, cl’j(l, 1,..,1)= [] +§ j Hence if k>j-1,
k k(k —1)---(k = (j = 2)) :
ck_(j_l)’j(l, 1,..,1)= (k G- 1)j = G- . This

equality holds also for £ < j —1. Thus by Lemma 3.4 we have
281 (r -1 D', 1, ..., 1)

1 Ry Ry(ky =1) - k(R —1)(ky = (r—2))
1 ky ko(kg —1) -+ ko(ky —1)---(kg —(r —2))
1k kr(kr_l) kr(kr_l)"'(kr_(r_Z))

T
1k kE - BT
1 ky k3 - k51

1k k2 - B

H1£i<j£r (kj = ki).
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By Lemma 3.5 any prime factor of D'(1, 1, ..., 1) is smaller than p.

Hence D'(1, 1, ..., 1) is not a multiple of p. Thus by Lemma 3.2, D(Cll, le,

vy Cl’) # 0. This completes the proof of Proposition 3.1.
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