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Abstract

In this paper we construct explicitly an analytic immersion →nCP

n2CP  of degree 2>d  in case when 1+n  is a prime. The proof uses

special values of minors of Vandermonde’s determinant.

1. Introduction and Statement of Results

The existence problem of embeddings or immersions between given
differentiable manifolds is a fundamental problem in differential
topology. It has been mainly treated in case when the target manifold is
an Euclidean space. When the target manifolds are some other manifolds
such as real or complex projective spaces or lens spaces, some results
have been obtained in ([1], [4], [5], [6], [7], [8], [9]). In this paper we treat
analytic immersions between complex projective spaces.

Let nCP  denote the complex projective space of dimension n. For a

continuous map mnf CPCP →:  with ,mn ≤  the degree of f which we

denote by ( )fdeg  is the integer determined by the induced
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homomorphism ( ) ( ) .,,: 22 ZZCPZZCP ≅→≅∗ nm HHf  It is well

known that the homotopy class of f is completely characterized by ( )fdeg

([1], [8]).

On the existence of an analytic embedding or immersion →nCP
mCP  of given degree, the following facts are known:

Fact 1. For any 0>d  there exists an analytic embedding →nCP
12 +nCP  of degree d and an analytic immersion nn 2CPCP →  of degree

d [1, Theorem 1.2].

Fact 2. If mnf CPCP →:  is an analytic immersion and ,2nm <

then ( ) 1deg =f  [1, Theorem 2.1].

Fact 3. A map nnf 2: CPCP →  is homotopic to an analytic

embedding if and only if ( ) 1deg =f  or ( ) 2deg =f  [1, Theorem 2.2].

An explicit construction of an analytic embedding nn 2CPCP →  of

degree 2 is given in [2]. In this paper we give an explicit construction of

an analytic immersion nn 2CPCP →  of given degree 2>d  in case

when 1+n  is a prime.

Our theorem is the following:

Theorem 1.1. Let d be an integer such that .2>d  We define

homogeneous polynomials ( ) ( ) [ ]nnii zzzzzzfzf ...,,,...,,, 1010 C∈=  ( =i

),2...,,1,0 n  by

( )






+≤<

≤≤
= ∑ =

−
−+

,12,

,0,

0
1 ninifzz

niifz
zf n

j
d

nijj

d
i

i

where k  is the residue of k divided by .1+n

Then ( )nfff 20 ...,,=  induces an analytic map nnf 2: CPCP →

defined by [ ]( ) ( ) ( ) ( )[ ],...,,,...,,, 21010 zfzfzfzzzf nn =  where [ ]nzzz ...,,, 10

is the point of nCP  whose homogeneous coordinate is ( )....,,, 10 nzzz  If

1+n  is a prime, then f  is an immersion of degree d.
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The proof of Theorem 1.1 is reduced to the following:

Theorem 1.2. For any point ( ) { },0...,, 1
0 −∈ +n

naa C  we define the

( ) ( )121 +×+ nn  matrix J as follows:

.

000
0

00
000
000

110

20

0321

210























=

−

−

nn

nn

n

aaaa

aaa

aaaa

aaaa

J

Then ,1rank += nJ  if 1+n  is a prime.

To prove Theorem 1.2, we use the following proposition.

Proposition 1.3. Let p be a prime and ( ).12exp p−π=ζ  We define

the pp ×  matrix P by

( )

( ) ( )

.

1

1

1

1111

21121

1242

12























ζζζ

ζζζ

ζζζ

=

−−−

−

−

ppp

p

p

P

Then for any integer r ( ),1 pr ≤≤  any r-th minor of P is not equal to zero.

2. Proofs of Theorems

In this section we prove Theorems 1.1 and 1.2 assuming Proposition
1.3. Proposition 1.3 will be proved in the next section.

In general, if a map mnf CPCP →:  is defined by ( ) :...,,0 mfff =

{ } { },00 11 −→− ++ mn CC  where ( )mjfj ...,,0=  are homogeneous

polynomials of degree d, then ( ) df =deg  (see for example [1]), and if f is

an immersion, then f  is an immersion. Thus to prove Theorem 1.1, it

suffices to prove that the Jacobian matrix ( )fJ  of 121: ++ → nnf CC  has

maximal rank for any ( ) { },0...,, 1
0 −∈ +n

nzz C  if 1+n  is a prime.
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The Jacobian matrix ( )fJ  of the map f in Theorem 1.1 is

( ) ( )

( ) ( )

( ) ( )

( ) ( )

.

11000

110

00

11000

11000

2
2

1
1

2
1

1
0

1

2
13

1
0

2
12

1

2
1

1
3

2
10

1
2

1
1

2
01

1
2

2
0

1
1

1
0





























−+−+

−+−+

−+−+

−+−+

−
−

−−
−

−−

−
−−

−−
−−

−

−−−−−

−
−

−−−−

d
nn

dd
nn

dd
n

d
nn

dd
nn

d
n

d
n

dddd

d
n

dd
n

dd

zzdzzzdzdz

zzdzzzdz

zzdzzzdzdz

zzdzzzdzdz

If we put i
d
i az =−1  ( )ni ...,,1,0=  and define the ( ) ( )121 +×+ nn

matrix J by

,

000
0

00
000
000

110

20

0321

210























=

−

−

nn

nn

n

aaaa

aaa

aaaa

aaaa

J

then it is easily seen that ( ) JfJ rankrank =  for ( ) −∈ +1
0 ...,, n

nzz C

{ }.0  Thus the proof of Theorem 1.1 is reduced to Theorem 1.2.

Now assuming that Proposition 1.3 holds, we prove Theorem 1.2. Let

V be the vector space over C consisting of 1+n  dimensional complex

column vectors, and neee ...,,, 10  be the standard unit vectors in V. We

denote ,1100 nnaaa eeev +++=  and define the ( ) ( )11 +×+ nn

matrix T by

.

0001
10
00

100
0010























=T

Then the column vectors of the matrix J are

,...,,,,...,,, 2
1100 vvveee n

nn TTTaaa

and the eigenvalues of T are ,...,,,,1 2 nζζζ  where ( ( )),112exp +−π=ζ n

and the corresponding eigenvectors are
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1

...,,

1

,

1

,

1

1
1

2

2

n

n

nn

which we denote by nppp ...,,, 10  respectively.

We define the subspaces 1W  and 2W  of V by

....,,,,...,,, 211001 vvveee n
nn TTWaaaW ==

We put .dim 2 rW =

Lemma 2.1. There exist r integers ( )niiii rr ≤<<≤ 11 0...,,  such

that 
riiW pp ...,,

12 =  and ∑ =
α= r

k ii kk1
,pv  where .0≠α

ki

Proof. Since 2W  is a T-invariant subspace of V and T is

diagonalizable, 2W  is a direct sum of eigenspaces of T. Therefore =2W

rii pp ...,,
1

 for some ....,,1 rii  Hence ∑
=
α=

t

k
jj kk

1

,pv  where 0≠α
kj  for

some { } { }rt iijj ...,,...,, 11 ⊂  because .2W∈v  Let ....,, 21
W

tjj ′=pp

Then 2W ′  is a T-invariant subspace containing v and .22 WW ⊂′  Since 2W

is the minimal T-invariant subspace containing v, we have 22 WW =′  and

therefore { } { }....,,...,, 11 rt iijj =  This completes the proof.

Note that ( )21dimrank WWJ +=  since .1W∈v  If we denote by s the

number of zeroes in ,...,,0 naa  then .1dim 1 snW −+=

We denote ∑ =
ζ== n

j
ji

jijjii pp
0

,ep  for .0 ni ≤≤

Now we assume that pn =+ 1  is a prime. If ,0=s  then .1 VW =

Hence we assume that .1≥s  Then there exist integers sjj ...,,1  such

that ,0
1

===
sjj aa  and hence { ( ) }.0...,,

101 ===|==
sjjn

t yyyyW y

We denote the rs ×  matrix ( ) rsijp ≤λ≤≤µ≤λµ 1,1  by .P ′  Since by Lemma 2.1
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any vector 2W∈x  is written as ∑ =λ λ λ
= r

ix
1

,px  the condition that

21 WW ∩∈x  is described as

.
0

01
s

rx

x

P C∈















=
















′

By Proposition 1.3 the rank of P ′  is maximal. Since ,21 WW ∩∈v  we

have 021 ≠WW ∩  and therefore rs <  and .rank sP =′  Hence

.dim 21 srWW −=∩  Thus

( ) =−+=+ 212121 dimdimdimdim WWWWWW ∩

.1dim1 21 +=−+−+ nWWrsn ∩  This completes the proof of Theorem

1.2.

Remark 1. If ,1 lmn =+  where l, m are integers with ,1,1 +<< nml

then .1=ζ= lm
lmp  Hence if we put +++=−= 11000 eeppv aam

,nna e  then we have ,00 == laa  mW pp ,02 =  and .021 ≠WW ∩

Therefore ,21dim 1 −+≤ nW  2dim 2 =W  and ( ) .1dim 21 ≥WW ∩  Hence

( ) 1221dimdimdimdimrank 212121 −+−+≤−+=+= nWWWWWWJ ∩

.n=  Thus if 1+n  is not a prime, then the map nnf 2: CPCP →  in

Theorem 1.1 is not an immersion.

3. Proof of Proposition 1.3

Proposition 1.3 is equivalent to the following proposition:

Proposition 3.1. Let p be a prime and ( ).12exp p−π=ζ  For any

integer r such that pr ≤≤1  and any sequence of integers rkkk ...,,, 21

such that ,0 21 pkkk r <<<<≤  we define the polynomial ( )rxxxD ...,,, 21

[ ]rxxx ...,,, 21Z∈  by

( ) ....,,,

21

21

21

21
222

111

rrr k
r

kk

k
r

kk

k
r

kk

r

xxx

xxx

xxx

xxxD

…

=
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Then for any sequence of integers rlll ...,,, 21  such that <<≤ 210 ll

,plr <<  ( ) .0...,,, 21 ≠ζζζ rlllD

In what follows, we prove Proposition 3.1 supposing that the
assumption in Proposition 3.1 holds.

Since ( )rxxxD ...,,, 21  is an alternating polynomial in ,...,,, 21 rxxx

we have

( ) ( ) ( )∏
≤<≤

′−=
rji

rijr xxxDxxxxxD
1

2121 ,...,,,...,,,

( ) [ ]....,,...,,, 121 rr xxxxxD Z∈′

First we prepare following lemma:

Lemma 3.2. If ( ) ,0...,,, 21 =ζζζ rlllD  then ( ) .mod01...,,1,1 pD ≡′

Proof. Since ji ll ζ≠ζ  for ,ji ≠  ( ) 0...,,, 21 =ζζζ rlllD  implies

( ) .0...,,, 21 =ζζζ′ rlllD  Let ( ) ( ) [ ]....,,, 21 xxFxxxD rlll Z∈=′  Then

( ) 0=ζF  and therefore the minimal polynomial of ζ divides ( )xF  in

[ ].xZ  Thus we have

( ) ( ) ( ) ( ) [ ].,11 xxQxxxQxF p Z∈+++= −

Hence ( ) ( ) .mod011 ppQF ≡=  This completes the proof.

Now we calculate ( ).1...,,1,1D′  For an integer k and a positive

integer j we define the polynomial ( )jjk xx ...,,1,σ  by

( )






<

≥
=σ ∑ ≥λ=λ++λ

λλ

.0if,0

,0if,
...,, 0, 1

1, 1

1

k

kxx
xx ij

j

k j
jjk

Then we have the following lemma:

Lemma 3.3.

( ) ( ) ( ) ( ).,,...,,,...,,,...,, 12,111,11, zyxxzyzxxyxx jjkjjkjjk +−++ σ−=σ−σ
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Proof.

( ) ( )zxxyxx jjkjjk ,...,,,...,, 11,11, ++ σ−σ

( )∑ =µ+λ++λ
µµλλ −=

k j
j

j zyxx
1

1
1

( )∑ ∑=µ+λ++λ −µ=µ+µ
µµλλ−=

k j
j

j zyxxzy
1 21

211
11

( )∑ −=µ+µ+λ++λ
µµλλ−=

1 1
211

211
k j

j

j zyxxzy

( ) ( ).,,...,,12,1 zyxxzy jjk +−σ−=

From above lemma we get following:

Lemma 3.4.

( )rxxD ...,,1′

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

.

...,,,,,,

...,,,,,,

...,,,,,,

21,13213,2212,11

21,13213,2212,11

21,13213,2212,11

222
2

111
1

rrrkkk
k

rrrkkk
k

rrrkkk
k

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

rrr
r

−−−−

−−−−

−−−−

σσσ

σσσ

σσσ

=

Proof. Using Lemma 3.3 we have

( )rxxD ...,,1

rrrrr kk
r

kkk

kk
r

kkk

kk
r

kkk

xxxxx

xxxxx

xxxxx

1121

1121

1121
22222

11111

−−

−−

−−

=

( )

( ) ( )

( ) ( )

( ) ( )

∏ =

−−

−−

−−

σσ

σσ

σσ

−=
r

j

rkk
k

rkk
k

rkk
k

j

xxxxx

xxxxx

xxxxx

xx

rr
r

2

12,1212,11

12,1212,11

12,1212,11

1

,,

,,

,,

22
2

11
1
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( ) ( )∏ ∏= =
−−=

r

j

r

j jj xxxx
2 3 21

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )rkkk
k

rkkk
k

rkkk
k

xxxxxxxxx

xxxxxxxxx

xxxxxxxxx

rrr
r ,,,,,

,,,,,

,,,,,

213,23213,2212,11

213,23213,2212,11

213,23213,2212,11

222
2

111
1

−−−

−−−

−−−

σσσ

σσσ

σσσ

×

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

∏ ≤<≤

−−−

−−−

−−−

σσ

σσ

σσ

−=
rji

rrrkk
k

rrrkk
k

rrrkk
k

ij

xxxxxx

xxxxxx

xxxxxx

xx

rr
r

1

21,1212,11

21,1212,11

21,1212,11

.

...,,,,

...,,,,

...,,,,

22
2

11
1

Now we can calculate ( )1...,,1,1D′  as follows:

Lemma 3.5. ( ) ( ) ( )∏ ≤<≤
−=′−

rji ij kkDr
1

.1...,,1,1!1!3!2

Proof. If ,0≥l  ( ) .
1

1...,,1,1, 





 −+

=σ
l

lj
jl  Hence if ,1−≥ jk

( ) ( )
( )

( ) ( )( )
( ) .

!1
21

1
1...,,1,1,1 −

−−−=







−−
=σ −− j

jkkk
jk

k
jjk  This

equality holds also for .1−< jk  Thus by Lemma 3.4 we have

( ) ( )1...,,1,1!1!3!2 Dr ′−

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )( )2111

2111

2111

222222

111111

−−−−

−−−−

−−−−

=

rkkkkkk

rkkkkkk

rkkkkkk

rrrrrr

12

1
2

2
22

1
1

2
11

1

1

1

−

−

−

=

r
rrr

r

r

kkk

kkk

kkk

( )∏ ≤<≤
−=

rji ij kk
1

.
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By Lemma 3.5 any prime factor of ( )1...,,1,1D′  is smaller than p.

Hence ( )1...,,1,1D′  is not a multiple of p. Thus by Lemma 3.2, ( ,, 21 llD ζζ

) .0..., ≠ζ rl  This completes the proof of Proposition 3.1.
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