

Far East Journal of Applied Mathematics
Volume 35, Number 1, 2009, Pages 33-47
Published Online: April 24, 2009
This paper is available online at http://www.pphmj.com
© 2009 Pushpa Publishing House

2000 Mathematics Subject Classification: 90C10.
 Keywords and phrases: linear programming, integer programming, objective function

hyperplane, simplex, implicit enumerative algorithm.

This research was supported by the Guangxi Scientific Fund Grant number GKZ0728260
and the Scientific Fund of GUFE Grant number 2006JYB001.

Received November 12, 2008

A NEW IMPLICIT ENUMERATIVE SEARCH FOR THE
SOLUTION TO AN INTEGER LINEAR PROGRAM

PEI-WANG GAO

Department of Finance
Guangxi University of Finance and Economics
Nanning 530003, P. R. China
e-mail: pwgao@yahoo.cn

Abstract

This paper presents a new implicit enumerative algorithm for a pure
integer linear programming problem. In the algorithm, the objective
function as a parameter is decreased from the optimum value of the
associated linear programming relaxation problem, so that the objective
function hyperplane intersects the binding constraints cone to form a
simplex. So, the simplex is used to determine the intervals of the
variables. If there is no integer number in the interval of any variable,
the associated objective function hyperplane does not contain any
feasible integer solution and then is shifted down by one unit.
Otherwise, an implicit enumerative procedure is carried out to do a
search in the simplex. In the implicit enumerative search process, the
upper and lower bounds of the unstopped variables are improved step-
by-step based on the original constraints and objective function, and
thus the computational efficiency is greatly raised. Finally, the
computational test on some classical and randomly-generated numerical
examples is made. It shows that the algorithm presented here is
convenient, efficient and potential.

PEI-WANG GAO 34

1. Introduction

Since the cutting plane method and the branch-and-bound principle
as two classical techniques are developed for solving integer linear
programming problems (ILP in short), a considerable amount of effort in
trying to improve the performance of the methods has been expended by
various researchers (see, for instance, Achterberg et al. [1], Balas et al.
[2], Ceria et al. [4], Elhedhli and Goffin [5], and Mitchell [10]).
Nevertheless, it still spends a considerable amount of computation to
solve the linear programming subproblems generated by cuts or
branches.

Observe that in many cases, the solution to ILP is close to an optimal
solution to the associated linear programming relaxation problem,
denoted by RILP (see, for instance, Baum and Trotter [3]). People
presented an idea of letting the objective function varied parametrically
and searching for the solution to ILP on the objective function hyperplane
shifts (see, for instance, Land and Doig [9], Thompson [11], Joseph et al.
[7, 8] and Gao [6]). Along this line, this paper presents a new implicit
enumerative algorithm for a pure integer linear programming problem.
In the algorithm, the objective function as a parameter is decreased from
the optimum value of RILP so that the objective function hyperplane
intersects the binding constraints cone of RILP to form a simplex. So, the
simplex is used to determine the intervals of the variables. If there is no
integer number in the interval of any variable, the associated objective
function hyperplane does not contain any feasible integer solution and
then is shifted down by one unit. Otherwise, an implicit enumerative
procedure is carried out to do a search in the simplex. Compared with the
bound-and-stopped algorithm by Gao [6], the intervals of the variables in
the simplex are easily found with no pivot but may become wider. For
this reason, further improvement on the upper and lower bounds of the
unstopped variables is made at each iteration based on the original
constraints and objective function. It not only raises the efficiency of the
implicit enumeration but also avoids an increasing memory requirement
with problem size to do so. Finally, the computational test on some
classical and randomly-generated numerical examples is made. It shows
that the algorithm presented here is convenient, efficient and potential.

A NEW IMPLICIT ENUMERATIVE SEARCH … 35

The paper is organized as follows: In Section 2, the search region on
the objective function hyperplane is established. Section 3 presents an
implicit enumerative algorithm to do a search in the region. In Section 4,
one numerical example is first given to illustrate the use of the algorithm
and then the further computational test on some classical and randomly-
generated problems is made. Finally, in Section 5, we make a brief
conclusion about the algorithm.

2. The Determination of the Initial Bounds of the Variables

Consider an integer linear programming problem of the form

(ILP) xcTmax

bAx ≤s.t.

,0≥x and integral,

where ()ijaA = is an nm × integer matrix and b, c are integer column

vectors of appropriate dimensions.

Suppose that there is an optimal basic solution to RILP, ,∗=∗ bxB

0=∗Nx with the optimum value ,∗f where ∗Bx and ∗Nx are the basic

variables and the non-basic ones, respectively. Then the objective
function and the constraints can be expressed as

,∗∗−= ∗
N

T
N

xcff (2.1)

,1
∗∗

∗−∗∗ −= NB xNBbx (2.2)

where ∗B and ∗N are the optimal basic matrix and the non-basic matrix
respectively, and ,∗Nc the reduced costs corresponding to the non-basic

variables. For convenience, assume .0>∗Nc

If the optimal basic solution to RILP is integral, it is also optimal for

ILP. Otherwise, the optimum value for ILP is certainly smaller than ,∗f
and an implicit enumerative algorithm will be presented to solve ILP. In

PEI-WANG GAO 36

this case, let the objective function f be a parameter varied down
beginning with the optimum value. The associated objective function
hyperplane would intersect the binding constraints cone, represented by

,0≥∗Nx to form an ()1−n -simplex, denoted by .fS Obviously if any, a

feasible solution to ILP constantly lies in the simplex associated with the
integral values of the objective function. Based on the fact, our implicit
enumerative search will be carried out in the simplex.

Now, in (2.1) and (2.2), fixing an index { }nj ...,,1∈ and letting
0=∗iNx for ,...,,1 ni = ,ji ≠ we obtain the components of the jth

vertex (),fx j labelled by () (() ())Tj
mn

jj fxfxfx += ...,,1 (),...,,1 nj = as

follows:

() () ,...,,1,1 njffcfx
jN

j
jN

=−= ∗

∗
∗

() ,...,,1,0 nifx j
iN

==∗ but ,ji ≠

() () ,...,,1, mkfxdbfx j
jNkjk

j
kB

=+= ∗∗
∗∗

where ∗
kjd is the element of the matrix ∗−∗− NB 1 on row k and column j.

Letting jNjNjNjN cfc ∗∗∗∗
∗=β−=α ,1 and substituting the expression

of ()fx j
jN∗ into that of (),fx j

kB∗ we have

() ,...,,1, njffx jNjN
j

jN
=β+α= ∗∗∗ (2.3)

() ,...,,1,,, mkffx jNkBjNkB
j

kB
=β+α= ∗∗∗∗∗ (2.4)

where ., ,, jNkjkjNkBjNkjjNkB dbd ∗∗∗∗∗∗ β+=βα=α ∗∗∗

In terms of reference 6, (())fx j
inj≤≤1min and (())fx j

inj≤≤1max are

lower and upper bounds of the variable ()mnixi += ...,,1 in the
simplex ,fS respectively. Thus, by using (2.3) and (2.4) to compute the

components of the vertices in the simplex ,fS we can obtain initial lower

A NEW IMPLICIT ENUMERATIVE SEARCH … 37

and upper bounds of the variables. Furthermore, observe that a feasible
solution to ILP is non-negative and integral. Let ()fx IL

i be the smallest

integer number greater than or equal to (()),min1 fx j
inj≤≤ and ()fx IU

i be

the greatest integer number smaller than or equal to (()),max1 fx j
inj≤≤

for any,,1 ni = Then ()fx IL
i and ()fx IU

i are initial integral lower

and upper bounds of the variable ()....,,1 mnixi +=

Next, let f take the integral values with ∗< ff from large to small in
turn. In this way, as soon as a feasible solution to ILP is found in a
simplex ,fS the algorithm terminates according to the following

optimality rule.

Theorem 2.1. If there is a feasible solution xx = to ILP in a simplex

fS with ff = and no feasible solution to ILP yields for any integral

value of f with ,ff > then xx = is optimal for ILP.

The theorem above-mentioned is obviously satisfied. The new implicit
enumerative search algorithm will be presented in the next section.

3. The Implicit Enumerative Algorithm

According to the theory above, given a fixed integral value of f with

.∗< ff If there is no integer number in the interval [() ()]fxfx IU
i

IL
i , for

any { },...,,1 mni +∈ no feasible solution to ILP exists on the associated

simplex fS and the objective function hyperplane will be shifted down by

one unit. Otherwise, a new implicit enumerative search procedure is
carried out below.

First of all, let () () (),0,max,0,min,0,max jjijijijij ccaaaa === +−+

and ()0,min jj cc =− for,,1,...,,1 njmi == ILP can be rewritten as

()∑
=

−+ +=
n

j
jjj xccf

1
max (3.1)

PEI-WANG GAO 38

()∑
=

−+ =≤+
n

j
ijijij mibxaa

1
...,,1,s.t. (3.2)

,0≥jx and integral,,1 nj = (3.3)

Obviously, ,0≥+
jc ,0≤−

jc 0≥+
ija and 0≤−

ija for ,...,,1 mi = ,,1 nj =

Next, our implicit enumerative search procedure also uses the
stopped rule to assign the values of the variables as in the stopped
simplex algorithm by Thompson [11], but differently, needs no simplex
pivot to determine the bounds. In the stopped process, once a variable is
assigned an integral value, we call it stopped and otherwise, unstopped.
In what follows, S is used to represent the subscript set of the stopped
variables and T, the subscript set of the unstopped ones. After some
variables are stopped in a stopped course, the bounds of all the unstopped
variables may be improved by the following theorems.

Theorem 3.1. Suppose that in a stopped course, the variable sx for

any Ss ∈ is assigned a fixed integral value ,0
sx and the variable tx for

any Tt ∈ has a lower bound ()fx IL
t and an upper bound ().fx IU

t Then

the value of an unstopped variable ()Ttxt ∈ in a feasible solution in the

simplex fS is such that

() ()
{ }

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
>|

−−−
≤ +

+
∈ ∈ ∈

+−

≤≤

∑ ∑ ∑
0min \

0

1 it
it

Ss Tj tTj
IL
jij

IU
jijsisi

mit a
a

fxafxaxab
x

 (3.4)

and

() ()
{ } .0max \

0

1 ⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
<|

−−−
≥ −

+
∈ ∈ ∈

−+

≤≤

∑ ∑ ∑
it

it

Ss Tj tTj
IU
jij

IL
jijsisi

mit a
a

fxafxaxab
x

 (3.5)

Proof. Note that the values of the unstopped variables in a feasible

A NEW IMPLICIT ENUMERATIVE SEARCH … 39

solution to ILP in the simplex fS satisfy

() () ., Tjfxxfx IU
jj

IL
j ∈≤≤

For any ,Tt ∈ we have by the constraints (3.2),

() ()
{ }

∑ ∑ ∑
∈ ∈ ∈

++− =≤+++
Ss Tj tTj

itit
IL
jij

IU
jijsis mibxafxafxaxa

\

0 ...,,1,

and

() ()
{ }

∑ ∑ ∑
∈ ∈ ∈

−−+ =≤+++
Ss Tj tTj

itit
IU
jij

IL
jijsis mibxafxafxaxa

\

0,,1,

Therefore, we obtain for ,0>+
ita

() ()
{ } ,\

0

+
∈ ∈ ∈

+−∑ ∑ ∑−−−
≤

it

Ss Tj tTj
IL
jij

IU
jijsisi

t
a

fxafxaxab
x

mi ...,,1=

and for ,0<−
ita

() ()
{ } ,\

0

−
∈ ∈ ∈

−+∑ ∑ ∑−−−
≥

it

Ss Tj tTj
IU
jij

IL
jijsisi

t
a

fxafxaxab
x

....,,1 mi =

Summing up the 2m inequalities above from 1=i to m, respectively,
we lead to the inequalities (3.4) and (3.5), and therefore, complete the
proof of the theorem.

Note that a feasible solution in the simplex fS satisfies (3.1). Similar

to the proof of Theorem 3.1, we also have

Theorem 3.2. Suppose that in a stopped course, the variable sx for

any Ss ∈ is assigned a fixed integral value ,0
sx and the variable tx for

any Tt ∈ has a lower bound ()fx IL
t and an upper bound ().fx IU

t Then

the value of an unstopped variable ()Ttxt ∈ in a feasible solution in the

PEI-WANG GAO 40

simplex fS is such that for ,0>+
tc

() ()
{ }

t
t

Ss Tj tTj
IU
jj

IL
jjss

x
c

fxcfxcxcf
≤

−−−

+
∈ ∈ ∈

+−∑ ∑ ∑ \
0

() ()
{ }

+
∈ ∈ ∈

+−∑ ∑ ∑−−−
≤

t

Ss Tj tTj
IL
jj

IU
jjss

c

fxcfxcxcf
\

0

 (3.6)

and for ,0<−
tc

() ()
{ }

t
t

Ss Tj tTj
IU
jj

IL
jjss

x
c

fxcfxcxcf
≤

−−−

−
∈ ∈ ∈

−+∑ ∑ ∑ \
0

() ()
{ } .\

0

−
∈ ∈ ∈

−+∑ ∑ ∑−−−
≤

t

Ss Tj tTj
IL
jj

IU
jjss

c

fxcfxcxcf
 (3.7)

According to Theorems 3.1 and 3.2, the new integral lower bound,

denoted by (),fx NIL
t and upper bound, denoted by (),fx NIU

t of an

unstopped variable ()Ttxt ∈ in a feasible solution can be generated by

(3.4), (3.5), (3.6) and (3.7), and the initial bounds (),fx IL
t ().fx IU

t If

() ()fxfx NIL
t

NIU
t < for any Tt ∈ holds in a stopped course, the stopped

course should be changed. Otherwise, the forward search will go on.
Concretely, our implicit enumerative search procedure in the simplex fS

is devised as follows.

At the outset, see if () ()fxfx IU
i

IL
i > holds for any { }....,,1 mni +∈

If it is so, set 1−f to f and repeat the process above. Otherwise, set

,∅=S { }nT ...,,2,1= and find the new bounds ()fx NIL
j and ()fx NIU

j

of the variables jx for all Tj ∈ by the iterative computation of (3.4),

(3.5), (3.6), and (3.7). If () ()fxfx NIU
j

NIL
j > for any ,Tj ∈ set 1−= ff

and repeat the above process. Otherwise, pick an index s1 with =1s

A NEW IMPLICIT ENUMERATIVE SEARCH … 41

{ () ()},minarg fxfx NIL
t

NIU
tTt −∈ and then stop the variable 1sx at its

lower bound ().1 fx NIL
s Suppose that, this stopped course goes on until the

ith variable, say (),1≥ixsi is stopped. Then let { },siSS ∪= { }siTT \=

and find the new bounds ()fx NIL
j and () ()Tjfx NIU

j ∈ of the variables jx

for all Tj ∈ by the iterative computation. Check if () ()fxfx NIU
j

NIL
j >

holds for any .Tj ∈ If it is so and (),fxx NIU
sisi < the current stopped

variable six is increased by one and then the bounds of the unstopped

variables are again computed. If it is so and (),fxx NIU
sisi = then six is

unstopped (correspondingly, { },\ siSS = { }),siTT ∪= and the value of

the preceding stopped variable 1, −isx increased by one. If it is not so, the

next stopped variable ,1, +isx with { () ()}fxfxis NIL
t

NIU
tTt −=+ ∈minarg1,

is picked. Continues in this way. When the first stopped variable 1sx is

valued beyond its upper bound, set 1−f to f and repeat the above
process. And when the last variable snx is stopped at its lower bound, a

feasible solution to ILP is achieved in the simplex .fS

Detailed computational steps of the implicit enumerative search
algorithm can be described as follows.

Step 1. Solve RILP to get the optimal solution () == ∗∗
∗

NB xxx ,

()0,∗b with the optimum value ∗f and go to next step.

Step 2. If ∗x is integral, then the algorithm is terminated. Otherwise,

let IUf be the greatest integer number smaller than ∗f and M, a given

adequate small integer number with ,IUfM < set IUff = and go to
next step.

Step 3. Check if .Mf < If it is so, then the algorithm terminates

with no feasible solution. Otherwise, compute ()fx IL
i and ()fx IU

i for =i

mn +...,,1 by (2.6) and (2.7), and then go to next step.

PEI-WANG GAO 42

Step 4. If () ()fxfx IU
iB

IL
iB ∗∗ > holds for any { },...,,1 mni +∈ set 1−f

to f and go back to Step 3. Otherwise, go to next step.

Step 5. Set () { },...,,1,,0...,,0,0 nTSRsk n =∅=∈== and then
go to next step.

Step 6. If ,nk = the algorithm terminates with the output of an
optimal solution. Otherwise, go to next step.

Step 7. Compute the bounds ()fx NIL
t and ()fx NIU

t of tx for all .Tt ∈

If () ()fxfx NIL
t

NIU
t < holds for any ,Tt ∈ go to Step 9. Otherwise, go to

next step.

Step 8. If () ()fxfx IL
t

NIL
t = and () ()fxfx IU

t
NIU
t = for all ,Tt ∈ go to

Step 11. Otherwise, set () ()fxfx NIL
t

IL
t = and () ()fxfx NIU

t
IU
t = for all

,Tt ∈ and go back to Step 7.

Step 9. See if .∅=S If it is so, set 1−f to f and go back to Step 3.
Otherwise, go to next step.

Step 10. Check if () ()().fxx IU
ksks < If it is so, set () () ,1+= ksks xx and

go back to Step 7. Otherwise, let (){ } (){ } ,1,,\ −=== kkksTTksSS ∪
and go back to Step 9.

Step 11. Set 1+k to k, and pick an index ()ks with () =ks

{ () ()}fxfx IL
t

IU
tTt −∈minarg as the subscript of next stopped variable.

Stop the variable ()ksx at its lower bound ()(),fx IL
ks and let (){ },ksSS ∪=

(){ },\ ksTT = and go back to Step 6.

By carrying out the algorithm steps above, we obtain either an
optimal solution or the fact that there is no feasible solution to ILP.

4. A Numerical Example and Further Computational Study

First of all, we illustrate the use of our algorithm in detail with the
following example.

A NEW IMPLICIT ENUMERATIVE SEARCH … 43

Example 4.1. The problem considered is

(ILP) 3max x−

89785s.t. 321 ≤+−− xxx

1156 321 −≤−− xxx

29253 321 −≤−+− xxx

,0,, 321 ≥xxx and integral.

Solving the corresponding linear programming relaxation problem by
the dual simplex method, we obtain

,478.0211.0167.0344.1 6541 xxxx +++=

,411.0344.0167.0878.0 6542 xxxx +++=

.811.0544.0167.0678.14 6543 xxxx +++=

Obviously, the optimal solution to RILP, ,344.11 =x ,878.02 =x
678.143 =x is non-integral. Therefore, for a fixed integral value of 3x

with ,678.143 ≥x we can find three extreme vertices of the simplex
{ },and0,0,0 3654 xfxxxxSf −=≥≥≥|= represented as

() () ,0,0,892.87988.5,,800.13,334.13 3333
1 Txxxxfx −−−=

() () ,0,982.26838.1,0,,404.8632.0,349.4388.0 3333
2 Txxxxfx −−−=

() () ,099.18233.1,0,0,,561.6507.0,307.7589.0 3333
3 Txxxxfx −−−=

and determine the initial bounds of the variables in a feasible solution
below

() () () [],334.13,349.4388.0,0max 3131 −=−= xfxxfx IUIL

() () () [],800.13,561.6507.0,0max 3232 −=−= xfxxfx IUIL

where • stands for the smallest integral number greater than or equal

to •, and [],• the greatest integral number smaller than or equal to •.

PEI-WANG GAO 44

Subsequently, we perform the implicit enumerative search in the

simplex .fS Taking 15−=f produces () () .12 11 =>= fxfx IUIL Thus no

feasible solution to ILP exists in the associated simplex with .15−=f

Setting 161 −=−f to f, we have () () ,211 == fxfx IUIL () =fx IL
2

() .22 =fx IU In this case, by the iterative computation, we find the new

bounds such that () () () () ,12,23 2211 =>==>= fxfxfxfx NIUNILNIUNIL
and therefore conclude that no feasible solution to ILP exists in the
associated simplex.

Setting 171 −=−f to f. Correspondingly, () () ,311 == fxfx IUIL ()fx IL
2

() .32 == fx IU Computing the new bounds, we have () ,41 =fx NIL ()fx NIU
1

,3= () 32 =fx NIL and () ,22 =fx NIU and therefore conclude that no
feasible solution to ILP exists in the associated simplex due to either

() ()fxfx NIUNIL
11 > or () ().22 fxfx NIUNIL >

Finally, f is decreased by 1 up to ,18− we have () ≤= 31 fx IL

() ,41 =fx IU () () .43 22 =≤= fxfx IUIL By the iterative computation, the

new bounds are () () () 3,4,3 211 === fxfxfx NILNIUNIL and () .32 =fx NIU

Therefore, pick () { () ()} 2minarg1 =−= ∈ fxfxs NIL
t

NIU
tTt as the subscript

of the coming stopped variable and stop 2x at () .32 =fx NIL Again
computing the new bounds of the unstopped variables, we have

() ,31 =fx NIL () .31 =fx NIU Up to here, stopping 1x at () ,31 =fx NIL and
setting ,3 fx −= we obtain an optimal solution to the original problem

.18,3,3 321 === xxx

This is a demonstrating example of Section 6 due to Thompson [11].
Our algorithm only makes 4 tests on the feasibility in the simplex and 2
stops to solve the problem.

Our implicit enumerative algorithm was programmed by MATLAB
V6.5 and conducted on a HΛSEE S262C to solve the following examples.

A NEW IMPLICIT ENUMERATIVE SEARCH … 45

First of all, the classical examples by Thompson were solved for
comparison between our implicit enumerative algorithm (IE algorithm
for short) and the classical branch-and-bound algorithm (BB algorithm
for short). Table 1 gives the computational results, including the number
of the objective function hyperplane shifts (labelled by SHTnum.), the
number of the stops used (labelled by Snum.) and the executive time
spent (labelled by Time) in the implicit enumerative algorithm, and the
number of the linear programming subproblems branched (labelled by
LPnum.), the number of the pivots needed (labelled by ITERnum.) and
the executive time spent.

Table 1. Comparison between the IE algorithm and the BB algorithm

 The IE algorithm The BB algorithm
No. SHTnum. Snum. Time (Sec.) LPnum. PVnum. Time (Sec.)
1 19 1 0.078 35 120 0.359
2 19 2 0.109 37 159 0.468
3 27 2 0.156 111 604 1.843
4 2 9 0.469 47 463 1.375
5 99 2 0.984 201 600 2.485
6 552 2 1.485 203 708 2.797
7 548 2 1.469 203 708 2.797
8 1 8 0.297 125 1088 3.938
9 8 1168 68.89 ∗ ∗ ∗

Note: ∗ indicates that the optimal solution is not found after 2000 subproblems are solved.

It is seen from Table 1 that our algorithm spends less executive time
than the pure branch-and-bound algorithm, and improves the
computational stability in that the number of the stops used in our
algorithm is also fewer than the number of the linear programming
subproblems solved in the pure branch-and-bound algorithm.

Next, we made a further numerical test on the 7 randomly-generated
problems. Although, they may be of tiny-size, it is enough to indicate how
the computational efficiency of the algorithm is affected. When
tabulating the computational results (shown in Table 2), we list the
number of the shifts of the objective function hyperplane, the number of

PEI-WANG GAO 46

the stops used, and CPU times spent by the simplex method to solve
RILP (labelled by RILP) and the implicit enumerative algorithm to find a
solution to ILP (labelled by IE), respectively.

Table 2. Computational results for the randomly-generated problems

 Size Execution times (Sec.)
No. m n SHTnum. Snum. RILP IE
1 5 5 1 5 0.015 0.094
2 10 5 2 5 0.031 0.234
3 5 10 114 34 0.046 2.563
4 10 10 3 53 0.016 2.843
5 15 10 1 40 0.031 4.626
6 10 15 1 15 0.015 1.470
7 20 20 2 511 0.047 70.968

From Table 2, it is found that the execution time is primarily
determined by the number of the shifts of the objective function
hyperplane and the number of the stops used in the implicit enumerative
search process, no matter how big the size of the problem is.

5. Concluding Remarks

One of most attractive features in the algorithm is that the bounds of
the unstopped variables are improved step-by-step based on the original
constraints in the implicit enumerative process. So, the algorithm can use
the fewer stops to find the answer to a problem. Although, the objective
function hyperplane is shifted down by one unit in the implicit
enumerative search process, the branching in the branch-and-bound
algorithm often leads to a slower decrease of the objective value in most
cases. Thus, our algorithm generally spends less time than the branch-
and-bound algorithm.

In addition, we can combine cuts and branches with the implicit
enumeration to improve the bounds of the variables and decrease the
number of the stops used in the implicit enumerative search process.
Further research would be done thereafter.

A NEW IMPLICIT ENUMERATIVE SEARCH … 47

References

 [1] T. Achterberg, T. Koch and A. Martin, Branching rules revisited, Oper. Res. Lett. 33
(2005), 42-54.

 [2] E. Balas, S. Ceria, G. Cornuejols and N. Natraj, Gomory cuts revisited, Oper. Res.
Lett. 19 (1996), 1-9.

 [3] S. Baum and L. E. Trotter, Integer rounding for polymatroid and branching
optimization problems, SIAM J. Algebraic and Discrete Methods 2 (1981), 241-245.

 [4] S. Ceria, C. Cordier, H. Marchand and L. A. Wolsey, Cutting planes for integer
programs with general integer variables, Math. Program. 81 (1998), 201-214.

 [5] S. Elhedhli and J. L. Goffin, The integration of an interior-point cutting plane
method with a branch-and-price algorithm, Math. Program. 100(2) (2004), 267-294.

 [6] P. Gao, An efficient bound-and-stopped algorithm for integer linear programs on the
objective function hyperplane, Appl. Math. Comput. 185 (2007), 301-311.

 [7] A. Joseph, S. I. Gass and N. A. Bryson, A computational study of an objective
hyperplane search heuristic for the general integer linear programming problem,
Math. Comp. Model. 25(10) (1997), 63-76.

 [8] A. Joseph, S. I. Gass and N. A. Bryson, An objective hyperplane search procedure for
solving the general all-integer linear programming problem, European J. Oper. Res.
104 (1998), 601-614.

 [9] A. H. Land and A. G. Doig, An automatic method of solving discrete programming
problems, Econometrica 28 (1960), 497-520.

 [10] J. E. Mitchell, Fixing variables and generating classical cutting planes when using
an interior point branch and cut method to solve integer programming problems,
European J. Oper. Res. 97 (1997), 139-148.

 [11] G. L. Thompson, The stopped simplex method: basic theory for mixed integer
programming; integer programming, Revue Francaise de Recherche Opérationnelle 8
(1964), 159-182.

