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Abstract 

This paper presents a new implicit enumerative algorithm for a pure 
integer linear programming problem. In the algorithm, the objective 
function as a parameter is decreased from the optimum value of the 
associated linear programming relaxation problem, so that the objective 
function hyperplane intersects the binding constraints cone to form a 
simplex. So, the simplex is used to determine the intervals of the 
variables. If there is no integer number in the interval of any variable, 
the associated objective function hyperplane does not contain any 
feasible integer solution and then is shifted down by one unit. 
Otherwise, an implicit enumerative procedure is carried out to do a 
search in the simplex. In the implicit enumerative search process, the 
upper and lower bounds of the unstopped variables are improved step-
by-step based on the original constraints and objective function, and 
thus the computational efficiency is greatly raised. Finally, the 
computational test on some classical and randomly-generated numerical 
examples is made. It shows that the algorithm presented here is 
convenient, efficient and potential. 
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1. Introduction 

Since the cutting plane method and the branch-and-bound principle 
as two classical techniques are developed for solving integer linear 
programming problems (ILP in short), a considerable amount of effort in 
trying to improve the performance of the methods has been expended by 
various researchers (see, for instance, Achterberg et al. [1], Balas et al. 
[2], Ceria et al. [4], Elhedhli and Goffin [5], and Mitchell [10]). 
Nevertheless, it still spends a considerable amount of computation to 
solve the linear programming subproblems generated by cuts or 
branches. 

Observe that in many cases, the solution to ILP is close to an optimal 
solution to the associated linear programming relaxation problem, 
denoted by RILP (see, for instance, Baum and Trotter [3]). People 
presented an idea of letting the objective function varied parametrically 
and searching for the solution to ILP on the objective function hyperplane 
shifts (see, for instance, Land and Doig [9], Thompson [11], Joseph et al. 
[7, 8] and Gao [6]). Along this line, this paper presents a new implicit 
enumerative algorithm for a pure integer linear programming problem. 
In the algorithm, the objective function as a parameter is decreased from 
the optimum value of RILP so that the objective function hyperplane 
intersects the binding constraints cone of RILP to form a simplex. So, the 
simplex is used to determine the intervals of the variables. If there is no 
integer number in the interval of any variable, the associated objective 
function hyperplane does not contain any feasible integer solution and 
then is shifted down by one unit. Otherwise, an implicit enumerative 
procedure is carried out to do a search in the simplex. Compared with the 
bound-and-stopped algorithm by Gao [6], the intervals of the variables in 
the simplex are easily found with no pivot but may become wider. For 
this reason, further improvement on the upper and lower bounds of the 
unstopped variables is made at each iteration based on the original 
constraints and objective function. It not only raises the efficiency of the 
implicit enumeration but also avoids an increasing memory requirement 
with problem size to do so. Finally, the computational test on some 
classical and randomly-generated numerical examples is made. It shows 
that the algorithm presented here is convenient, efficient and potential. 



A NEW IMPLICIT ENUMERATIVE SEARCH … 35 

The paper is organized as follows: In Section 2, the search region on 
the objective function hyperplane is established. Section 3 presents an 
implicit enumerative algorithm to do a search in the region. In Section 4, 
one numerical example is first given to illustrate the use of the algorithm 
and then the further computational test on some classical and randomly-
generated problems is made. Finally, in Section 5, we make a brief 
conclusion about the algorithm. 

2. The Determination of the Initial Bounds of the Variables 

Consider an integer linear programming problem of the form 

(ILP) xcTmax  

bAx ≤s.t.  

,0≥x  and integral, 

where ( )ijaA =  is an nm ×  integer matrix and b, c are integer column 

vectors of appropriate dimensions. 

Suppose that there is an optimal basic solution to RILP, ,∗=∗ bxB  

0=∗Nx  with the optimum value ,∗f  where ∗Bx  and ∗Nx  are the basic 

variables and the non-basic ones, respectively. Then the objective 
function and the constraints can be expressed as 

,∗∗−= ∗
N

T
N

xcff  (2.1) 

,1
∗∗

∗−∗∗ −= NB xNBbx  (2.2) 

where ∗B  and ∗N  are the optimal basic matrix and the non-basic matrix 
respectively, and ,∗Nc  the reduced costs corresponding to the non-basic 

variables. For convenience, assume .0>∗Nc  

If the optimal basic solution to RILP is integral, it is also optimal for 

ILP. Otherwise, the optimum value for ILP is certainly smaller than ,∗f  
and an implicit enumerative algorithm will be presented to solve ILP. In 
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this case, let the objective function f be a parameter varied down 
beginning with the optimum value. The associated objective function 
hyperplane would intersect the binding constraints cone, represented by 

,0≥∗Nx  to form an ( )1−n -simplex, denoted by .fS  Obviously if any, a 

feasible solution to ILP constantly lies in the simplex associated with the 
integral values of the objective function. Based on the fact, our implicit 
enumerative search will be carried out in the simplex. 

Now, in (2.1) and (2.2), fixing an index { }nj ...,,1∈  and letting 
0=∗iNx  for ,...,,1 ni =  ,ji ≠  we obtain the components of the jth 

vertex ( ),fx j  labelled by ( ) ( ( ) ( ))Tj
mn

jj fxfxfx += ...,,1  ( ),...,,1 nj =  as 

follows: 

( ) ( ) ,...,,1,1 njffcfx
jN

j
jN

=−= ∗

∗
∗  

( ) ,...,,1,0 nifx j
iN

==∗  but ,ji ≠  

( ) ( ) ,...,,1, mkfxdbfx j
jNkjk

j
kB

=+= ∗∗
∗∗  

where ∗
kjd  is the element of the matrix ∗−∗− NB 1  on row k and column j. 

Letting jNjNjNjN cfc ∗∗∗∗
∗=β−=α ,1  and substituting the expression 

of ( )fx j
jN∗  into that of ( ),fx j

kB∗  we have 

( ) ,...,,1, njffx jNjN
j

jN
=β+α= ∗∗∗  (2.3) 

( ) ,...,,1,,, mkffx jNkBjNkB
j

kB
=β+α= ∗∗∗∗∗  (2.4) 

where ., ,, jNkjkjNkBjNkjjNkB dbd ∗∗∗∗∗∗ β+=βα=α ∗∗∗  

In terms of reference 6, ( ( ))fx j
inj≤≤1min  and ( ( ))fx j

inj≤≤1max  are 

lower and upper bounds of the variable ( )mnixi += ...,,1  in the 
simplex ,fS  respectively. Thus, by using (2.3) and (2.4) to compute the 

components of the vertices in the simplex ,fS  we can obtain initial lower 
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and upper bounds of the variables. Furthermore, observe that a feasible 
solution to ILP is non-negative and integral. Let ( )fx IL

i  be the smallest 

integer number greater than or equal to ( ( )),min1 fx j
inj≤≤  and ( )fx IU

i  be 

the greatest integer number smaller than or equal to ( ( )),max1 fx j
inj≤≤  

for any ....,,1 ni =  Then ( )fx IL
i  and ( )fx IU

i  are initial integral lower 

and upper bounds of the variable ( )....,,1 mnixi +=  

Next, let f take the integral values with ∗< ff  from large to small in 
turn. In this way, as soon as a feasible solution to ILP is found in a 
simplex ,fS  the algorithm terminates according to the following 

optimality rule. 

Theorem 2.1. If there is a feasible solution xx =  to ILP in a simplex 

fS  with ff =  and no feasible solution to ILP yields for any integral 

value of f with ,ff >  then xx =  is optimal for ILP. 

The theorem above-mentioned is obviously satisfied. The new implicit 
enumerative search algorithm will be presented in the next section. 

3. The Implicit Enumerative Algorithm 

According to the theory above, given a fixed integral value of f with 

.∗< ff  If there is no integer number in the interval [ ( ) ( )]fxfx IU
i

IL
i ,  for 

any { },...,,1 mni +∈  no feasible solution to ILP exists on the associated 

simplex fS  and the objective function hyperplane will be shifted down by 

one unit. Otherwise, a new implicit enumerative search procedure is 
carried out below. 

First of all, let ( ) ( ) ( ),0,max,0,min,0,max jjijijijij ccaaaa === +−+  

and ( )0,min jj cc =−  for ....,,1,...,,1 njmi ==  ILP can be rewritten as 

( )∑
=

−+ +=
n

j
jjj xccf

1
max  (3.1) 
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( )∑
=

−+ =≤+
n

j
ijijij mibxaa

1
...,,1,s.t.  (3.2) 

,0≥jx  and integral ....,,1 nj =  (3.3) 

Obviously, ,0≥+
jc  ,0≤−

jc  0≥+
ija  and 0≤−

ija  for ,...,,1 mi =  ....,,1 nj =  

Next, our implicit enumerative search procedure also uses the 
stopped rule to assign the values of the variables as in the stopped 
simplex algorithm by Thompson [11], but differently, needs no simplex 
pivot to determine the bounds. In the stopped process, once a variable is 
assigned an integral value, we call it stopped and otherwise, unstopped. 
In what follows, S is used to represent the subscript set of the stopped 
variables and T, the subscript set of the unstopped ones. After some 
variables are stopped in a stopped course, the bounds of all the unstopped 
variables may be improved by the following theorems. 

Theorem 3.1. Suppose that in a stopped course, the variable sx  for 

any Ss ∈  is assigned a fixed integral value ,0
sx  and the variable tx  for 

any Tt ∈  has a lower bound ( )fx IL
t  and an upper bound ( ).fx IU

t  Then 

the value of an unstopped variable ( )Ttxt ∈  in a feasible solution in the 

simplex fS  is such that 

( ) ( )
{ }

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
>|

−−−
≤ +

+
∈ ∈ ∈

+−

≤≤

∑ ∑ ∑
0min \

0

1 it
it

Ss Tj tTj
IL
jij

IU
jijsisi

mit a
a

fxafxaxab
x  

 (3.4) 

and 

( ) ( )
{ } .0max \

0

1 ⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
<|

−−−
≥ −

+
∈ ∈ ∈

−+

≤≤

∑ ∑ ∑
it

it

Ss Tj tTj
IU
jij

IL
jijsisi

mit a
a

fxafxaxab
x  

 (3.5) 

Proof. Note that the values of the unstopped variables in a feasible 
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solution to ILP in the simplex fS  satisfy 

( ) ( ) ., Tjfxxfx IU
jj

IL
j ∈≤≤  

For any ,Tt ∈  we have by the constraints (3.2), 

( ) ( )
{ }

∑ ∑ ∑
∈ ∈ ∈

++− =≤+++
Ss Tj tTj

itit
IL
jij

IU
jijsis mibxafxafxaxa

\

0 ...,,1,  

and 

( ) ( )
{ }

∑ ∑ ∑
∈ ∈ ∈

−−+ =≤+++
Ss Tj tTj

itit
IU
jij

IL
jijsis mibxafxafxaxa

\

0 ....,,1,  

Therefore, we obtain for ,0>+
ita  

( ) ( )
{ } ,\

0

+
∈ ∈ ∈

+−∑ ∑ ∑−−−
≤

it

Ss Tj tTj
IL
jij

IU
jijsisi

t
a

fxafxaxab
x  

mi ...,,1=  

and for ,0<−
ita  

( ) ( )
{ } ,\

0

−
∈ ∈ ∈

−+∑ ∑ ∑−−−
≥

it

Ss Tj tTj
IU
jij

IL
jijsisi

t
a

fxafxaxab
x  

....,,1 mi =  

Summing up the 2m inequalities above from 1=i  to m, respectively, 
we lead to the inequalities (3.4) and (3.5), and therefore, complete the 
proof of the theorem. 

Note that a feasible solution in the simplex fS  satisfies (3.1). Similar 

to the proof of Theorem 3.1, we also have 

Theorem 3.2. Suppose that in a stopped course, the variable sx  for 

any Ss ∈  is assigned a fixed integral value ,0
sx  and the variable tx  for 

any Tt ∈  has a lower bound ( )fx IL
t  and an upper bound ( ).fx IU

t  Then 

the value of an unstopped variable ( )Ttxt ∈  in a feasible solution in the 
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simplex fS  is such that for ,0>+
tc  

( ) ( )
{ }

t
t

Ss Tj tTj
IU
jj

IL
jjss

x
c

fxcfxcxcf
≤

−−−

+
∈ ∈ ∈

+−∑ ∑ ∑ \
0

 

( ) ( )
{ }

+
∈ ∈ ∈

+−∑ ∑ ∑−−−
≤

t

Ss Tj tTj
IL
jj

IU
jjss

c

fxcfxcxcf
\

0

 (3.6) 

and for ,0<−
tc  

( ) ( )
{ }

t
t

Ss Tj tTj
IU
jj

IL
jjss

x
c

fxcfxcxcf
≤

−−−

−
∈ ∈ ∈

−+∑ ∑ ∑ \
0

 

( ) ( )
{ } .\

0

−
∈ ∈ ∈

−+∑ ∑ ∑−−−
≤

t

Ss Tj tTj
IL
jj

IU
jjss

c

fxcfxcxcf
 (3.7) 

According to Theorems 3.1 and 3.2, the new integral lower bound, 

denoted by ( ),fx NIL
t  and upper bound, denoted by ( ),fx NIU

t  of an 

unstopped variable ( )Ttxt ∈  in a feasible solution can be generated by 

(3.4), (3.5), (3.6) and (3.7), and the initial bounds ( ),fx IL
t  ( ).fx IU

t  If 

( ) ( )fxfx NIL
t

NIU
t <  for any Tt ∈  holds in a stopped course, the stopped 

course should be changed. Otherwise, the forward search will go on. 
Concretely, our implicit enumerative search procedure in the simplex fS  

is devised as follows. 

At the outset, see if ( ) ( )fxfx IU
i

IL
i >  holds for any { }....,,1 mni +∈  

If it is so, set 1−f  to f and repeat the process above. Otherwise, set 

,∅=S  { }nT ...,,2,1=  and find the new bounds ( )fx NIL
j  and ( )fx NIU

j  

of the variables jx  for all Tj ∈  by the iterative computation of (3.4), 

(3.5), (3.6), and (3.7). If ( ) ( )fxfx NIU
j

NIL
j >  for any ,Tj ∈  set 1−= ff  

and repeat the above process. Otherwise, pick an index s1 with =1s  
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{ ( ) ( )},minarg fxfx NIL
t

NIU
tTt −∈  and then stop the variable 1sx  at its 

lower bound ( ).1 fx NIL
s  Suppose that, this stopped course goes on until the 

ith variable, say ( ),1≥ixsi  is stopped. Then let { },siSS ∪=  { }siTT \=  

and find the new bounds ( )fx NIL
j  and ( ) ( )Tjfx NIU

j ∈  of the variables jx  

for all Tj ∈  by the iterative computation. Check if ( ) ( )fxfx NIU
j

NIL
j >  

holds for any .Tj ∈  If it is so and ( ),fxx NIU
sisi <  the current stopped 

variable six  is increased by one and then the bounds of the unstopped 

variables are again computed. If it is so and ( ),fxx NIU
sisi =  then six  is 

unstopped (correspondingly, { },\ siSS =  { }),siTT ∪=  and the value of 

the preceding stopped variable 1, −isx  increased by one. If it is not so, the 

next stopped variable ,1, +isx  with { ( ) ( )}fxfxis NIL
t

NIU
tTt −=+ ∈minarg1,  

is picked. Continues in this way. When the first stopped variable 1sx  is 

valued beyond its upper bound, set 1−f  to f and repeat the above 
process. And when the last variable snx  is stopped at its lower bound, a 

feasible solution to ILP is achieved in the simplex .fS  

Detailed computational steps of the implicit enumerative search 
algorithm can be described as follows. 

Step 1. Solve RILP to get the optimal solution ( ) == ∗∗
∗

NB xxx ,  

( )0,∗b  with the optimum value ∗f  and go to next step. 

Step 2. If ∗x  is integral, then the algorithm is terminated. Otherwise, 

let IUf  be the greatest integer number smaller than ∗f  and M, a given 

adequate small integer number with ,IUfM <  set IUff =  and go to 
next step. 

Step 3. Check if .Mf <  If it is so, then the algorithm terminates 

with no feasible solution. Otherwise, compute ( )fx IL
i  and ( )fx IU

i  for =i  

mn +...,,1  by (2.6) and (2.7), and then go to next step. 
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Step 4. If ( ) ( )fxfx IU
iB

IL
iB ∗∗ >  holds for any { },...,,1 mni +∈  set 1−f  

to f and go back to Step 3. Otherwise, go to next step. 

Step 5. Set ( ) { },...,,1,,0...,,0,0 nTSRsk n =∅=∈==  and then 
go to next step. 

Step 6. If ,nk =  the algorithm terminates with the output of an 
optimal solution. Otherwise, go to next step. 

Step 7. Compute the bounds ( )fx NIL
t  and ( )fx NIU

t  of tx  for all .Tt ∈  

If ( ) ( )fxfx NIL
t

NIU
t <  holds for any ,Tt ∈  go to Step 9. Otherwise, go to 

next step. 

Step 8. If ( ) ( )fxfx IL
t

NIL
t =  and ( ) ( )fxfx IU

t
NIU
t =  for all ,Tt ∈  go to 

Step 11. Otherwise, set ( ) ( )fxfx NIL
t

IL
t =  and ( ) ( )fxfx NIU

t
IU
t =  for all 

,Tt ∈  and go back to Step 7. 

Step 9. See if .∅=S  If it is so, set 1−f  to f and go back to Step 3. 
Otherwise, go to next step. 

Step 10. Check if ( ) ( )( ).fxx IU
ksks <  If it is so, set ( ) ( ) ,1+= ksks xx  and 

go back to Step 7. Otherwise, let ( ){ } ( ){ } ,1,,\ −=== kkksTTksSS ∪  
and go back to Step 9. 

Step 11. Set 1+k  to k, and pick an index ( )ks  with ( ) =ks  

{ ( ) ( )}fxfx IL
t

IU
tTt −∈minarg  as the subscript of next stopped variable. 

Stop the variable ( )ksx  at its lower bound ( )( ),fx IL
ks  and let ( ){ },ksSS ∪=  

( ){ },\ ksTT =  and go back to Step 6. 

By carrying out the algorithm steps above, we obtain either an 
optimal solution or the fact that there is no feasible solution to ILP. 

4. A Numerical Example and Further Computational Study 

First of all, we illustrate the use of our algorithm in detail with the 
following example. 
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Example 4.1. The problem considered is 

(ILP) 3max x−  

89785s.t. 321 ≤+−− xxx  

1156 321 −≤−− xxx  

29253 321 −≤−+− xxx  

,0,, 321 ≥xxx  and integral. 

Solving the corresponding linear programming relaxation problem by 
the dual simplex method, we obtain 

,478.0211.0167.0344.1 6541 xxxx +++=  

,411.0344.0167.0878.0 6542 xxxx +++=  

.811.0544.0167.0678.14 6543 xxxx +++=  

Obviously, the optimal solution to RILP, ,344.11 =x  ,878.02 =x  
678.143 =x  is non-integral. Therefore, for a fixed integral value of 3x  

with ,678.143 ≥x  we can find three extreme vertices of the simplex 
{ },and0,0,0 3654 xfxxxxSf −=≥≥≥|=  represented as 

( ) ( ) ,0,0,892.87988.5,,800.13,334.13 3333
1 Txxxxfx −−−=  

( ) ( ) ,0,982.26838.1,0,,404.8632.0,349.4388.0 3333
2 Txxxxfx −−−=  

( ) ( ) ,099.18233.1,0,0,,561.6507.0,307.7589.0 3333
3 Txxxxfx −−−=  

and determine the initial bounds of the variables in a feasible solution 
below 

( ) ( ) ( ) [ ],334.13,349.4388.0,0max 3131 −=−= xfxxfx IUIL  

( ) ( ) ( ) [ ],800.13,561.6507.0,0max 3232 −=−= xfxxfx IUIL  

where •  stands for the smallest integral number greater than or equal 

to •, and [ ],•  the greatest integral number smaller than or equal to •. 
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Subsequently, we perform the implicit enumerative search in the 

simplex .fS  Taking 15−=f  produces ( ) ( ) .12 11 =>= fxfx IUIL  Thus no 

feasible solution to ILP exists in the associated simplex with .15−=f  

Setting 161 −=−f  to f, we have ( ) ( ) ,211 == fxfx IUIL  ( ) =fx IL
2  

( ) .22 =fx IU  In this case, by the iterative computation, we find the new 

bounds such that ( ) ( ) ( ) ( ) ,12,23 2211 =>==>= fxfxfxfx NIUNILNIUNIL  
and therefore conclude that no feasible solution to ILP exists in the 
associated simplex. 

Setting 171 −=−f  to f. Correspondingly, ( ) ( ) ,311 == fxfx IUIL  ( )fx IL
2  

( ) .32 == fx IU  Computing the new bounds, we have ( ) ,41 =fx NIL  ( )fx NIU
1  

,3=  ( ) 32 =fx NIL  and ( ) ,22 =fx NIU  and therefore conclude that no 
feasible solution to ILP exists in the associated simplex due to either 

( ) ( )fxfx NIUNIL
11 >  or ( ) ( ).22 fxfx NIUNIL >  

Finally, f is decreased by 1 up to ,18−  we have ( ) ≤= 31 fx IL  

( ) ,41 =fx IU  ( ) ( ) .43 22 =≤= fxfx IUIL  By the iterative computation, the 

new bounds are ( ) ( ) ( ) 3,4,3 211 === fxfxfx NILNIUNIL  and ( ) .32 =fx NIU  

Therefore, pick ( ) { ( ) ( )} 2minarg1 =−= ∈ fxfxs NIL
t

NIU
tTt  as the subscript 

of the coming stopped variable and stop 2x  at ( ) .32 =fx NIL  Again 
computing the new bounds of the unstopped variables, we have 

( ) ,31 =fx NIL  ( ) .31 =fx NIU  Up to here, stopping 1x  at ( ) ,31 =fx NIL  and 
setting ,3 fx −=  we obtain an optimal solution to the original problem 

.18,3,3 321 === xxx  

This is a demonstrating example of Section 6 due to Thompson [11]. 
Our algorithm only makes 4 tests on the feasibility in the simplex and 2 
stops to solve the problem. 

Our implicit enumerative algorithm was programmed by MATLAB 
V6.5 and conducted on a HΛSEE S262C to solve the following examples. 
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First of all, the classical examples by Thompson were solved for 
comparison between our implicit enumerative algorithm (IE algorithm 
for short) and the classical branch-and-bound algorithm (BB algorithm 
for short). Table 1 gives the computational results, including the number 
of the objective function hyperplane shifts (labelled by SHTnum.), the 
number of the stops used (labelled by Snum.) and the executive time 
spent (labelled by Time) in the implicit enumerative algorithm, and the 
number of the linear programming subproblems branched (labelled by 
LPnum.), the number of the pivots needed (labelled by ITERnum.) and 
the executive time spent. 

Table 1. Comparison between the IE algorithm and the BB algorithm 

 The IE algorithm The BB algorithm 
No. SHTnum.  Snum. Time (Sec.) LPnum. PVnum. Time (Sec.) 
1 19 1 0.078 35 120 0.359 
2 19 2 0.109 37 159 0.468 
3 27 2 0.156 111 604 1.843 
4 2 9 0.469 47 463 1.375 
5 99 2 0.984 201 600 2.485 
6 552 2 1.485 203 708 2.797 
7 548 2 1.469 203 708 2.797 
8 1 8 0.297 125 1088 3.938 
9 8 1168 68.89 ∗ ∗ ∗ 

Note: ∗ indicates that the optimal solution is not found after 2000 subproblems are solved. 

It is seen from Table 1 that our algorithm spends less executive time 
than the pure branch-and-bound algorithm, and improves the 
computational stability in that the number of the stops used in our 
algorithm is also fewer than the number of the linear programming 
subproblems solved in the pure branch-and-bound algorithm. 

Next, we made a further numerical test on the 7 randomly-generated 
problems. Although, they may be of tiny-size, it is enough to indicate how 
the computational efficiency of the algorithm is affected. When 
tabulating the computational results (shown in Table 2), we list the 
number of the shifts of the objective function hyperplane, the number of 
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the stops used, and CPU times spent by the simplex method to solve 
RILP (labelled by RILP) and the implicit enumerative algorithm to find a 
solution to ILP (labelled by IE), respectively. 

Table 2. Computational results for the randomly-generated problems 

 Size  Execution times (Sec.) 
No. m n SHTnum. Snum. RILP IE 
1 5 5 1 5 0.015 0.094 
2 10 5 2 5 0.031 0.234 
3 5 10 114 34 0.046 2.563 
4 10 10 3 53 0.016 2.843 
5 15 10 1 40 0.031 4.626 
6 10 15 1 15 0.015 1.470 
7 20 20 2 511 0.047 70.968 

From Table 2, it is found that the execution time is primarily 
determined by the number of the shifts of the objective function 
hyperplane and the number of the stops used in the implicit enumerative 
search process, no matter how big the size of the problem is. 

5. Concluding Remarks 

One of most attractive features in the algorithm is that the bounds of 
the unstopped variables are improved step-by-step based on the original 
constraints in the implicit enumerative process. So, the algorithm can use 
the fewer stops to find the answer to a problem. Although, the objective 
function hyperplane is shifted down by one unit in the implicit 
enumerative search process, the branching in the branch-and-bound 
algorithm often leads to a slower decrease of the objective value in most 
cases. Thus, our algorithm generally spends less time than the branch-
and-bound algorithm. 

In addition, we can combine cuts and branches with the implicit 
enumeration to improve the bounds of the variables and decrease the 
number of the stops used in the implicit enumerative search process. 
Further research would be done thereafter. 
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